Far-zone effects for spherical integral transformations I: Formulas for the radial boundary value problem and its derivatives

dc.contributor.authorŠprlák, Michal
dc.contributor.authorPitoňák, Martin
dc.date.accessioned2025-06-20T08:49:53Z
dc.date.available2025-06-20T08:49:53Z
dc.date.issued2024
dc.date.updated2025-06-20T08:49:53Z
dc.description.abstractIntegral transformations represent an important mathematical tool for gravitational field modelling. A basic assumption of integral transformations is the global data coverage, but availability of high-resolution and accurate gravitational data may be restricted. Therefore, we decompose the global integration into two parts: 1) the effect of the near zone calculated by the numerical integration of data within a spherical cap, and 2) the effect of the far zone due to data beyond the spherical cap synthesised by harmonic expansions. Theoretical and numerical aspects of this decomposition have frequently been studied for isotropic integral transformations on the sphere, such as Hotine's, Poisson's, and Stokes's integral formulas. In this article, we systematically review the mathematical theory of the far-zone effects for the spherical integral formulas, which transform the disturbing gravitational potential or its purely radial derivatives into observable quantities of the gravitational field, i.e., the disturbing gravitational potential and its radial, horizontal, or mixed derivatives of the first, second, or third order. These formulas are implemented in a Matlab software and validated in a closed-loop simulation. Selected properties of the harmonic expansions are investigated by examining the behaviour of the truncation error coefficients. The mathematical formulations presented here are indispensable for practical solutions of direct or inverse problems in an accurate gravitational field modelling or when studying statistical properties of integral transformations.en
dc.format33
dc.identifier.document-number001217450100002
dc.identifier.doi10.1007/s10712-023-09818-4
dc.identifier.issn0169-3298
dc.identifier.obd43940672
dc.identifier.orcidŠprlák, Michal 0000-0002-3861-7001
dc.identifier.orcidPitoňák, Martin 0000-0003-4730-7758
dc.identifier.urihttp://hdl.handle.net/11025/61340
dc.language.isoen
dc.project.IDGA23-07031S
dc.relation.ispartofseriesSurveys in Geophysics
dc.rights.accessA
dc.subjectgravitational tensoren
dc.subjectspherical capen
dc.subjectspherical harmonicsen
dc.subjecttruncated integrationen
dc.subjecttruncation error coefficientsen
dc.titleFar-zone effects for spherical integral transformations I: Formulas for the radial boundary value problem and its derivativesen
dc.typeČlánek v databázi WoS (Jimp)
dc.typeČLÁNEK
dc.type.statusPublished Version
local.files.count1*
local.files.size3223795*
local.has.filesyes*
local.identifier.eid2-s2.0-85192085895

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
s10712-023-09818-4 (1).pdf
Size:
3.07 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections