From surface roughness to crater formation in a 2D multi-scale simulation of ultrashort pulse laser ablation

dc.contributor.authorThomae, N.
dc.contributor.authorStabroth, M.
dc.contributor.authorVollmann, J.
dc.contributor.authorDoring, M.
dc.contributor.authorRedka, David
dc.contributor.authorHuber, Heinz Paul
dc.contributor.authorSchmidt, M.
dc.date.accessioned2025-06-27T10:09:51Z
dc.date.available2025-06-27T10:09:51Z
dc.date.issued2025
dc.date.updated2025-06-27T10:09:51Z
dc.description.abstractSurface roughness plays a critical role in ultrashort pulse laser ablation, particularly for industrial applications using burst mode operations, multi-pulse laser processing, and the generation of laser-induced periodic surface structures. Hence, we address the impact of surface roughness on the resulting laser ablation topography, comparing predictions from a simulation model to experimental results. We present a comprehensive multi-scale simulation framework that first employs finite-difference-time-domain simulations for calculating the surface fluence distribution on a rough surface measured by atomic-force-microscopy followed by the two-temperature model coupled with hydrodynamic/solid mechanics simulation for the initial material heating. Lastly, a computational fluid dynamics model for material relaxation and fluid flow is developed and employed. Final state results of aluminum and AISI 304 stainless steel simulations demonstrated alignment with established ablation models and crater dimension prediction. Notably, Al exhibited significant optical scattering effects due to initial surface roughness of 15 nm-being 70 times below the laser wavelength -leading to localized, selective ablation processes and substantially altered crater topography compared to idealized conditions. Contrary, AISI 304 with Rq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}_{\text{q}}$$\end{document} surface roughness of 2 nm showed no difference. Hence, we highlight the necessity of incorporating realistic, material-specific surface roughness values into large-scale ablation simulations. Furthermore, the induced local fluence variations demonstrated the inadequacy of neglecting lateral heat transport effects in this context.en
dc.format18
dc.identifier.document-number001378913900004
dc.identifier.doi10.1007/s00339-024-08064-8
dc.identifier.issn0947-8396
dc.identifier.obd43946488
dc.identifier.orcidRedka, David 0000-0002-7306-2232
dc.identifier.orcidHuber, Heinz Paul 0000-0003-2444-9833
dc.identifier.urihttp://hdl.handle.net/11025/61904
dc.language.isoen
dc.project.IDEH22_008/0004634
dc.relation.ispartofseriesAPPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
dc.rights.accessA
dc.subjectultrashort pulse laser ablationen
dc.subjectsurface roughnessen
dc.subjectmulti-scale simulationen
dc.subjectaluminumen
dc.subjectsteelen
dc.titleFrom surface roughness to crater formation in a 2D multi-scale simulation of ultrashort pulse laser ablationen
dc.typeČlánek v databázi WoS (Jimp)
dc.typeČLÁNEK
dc.type.statusPublished Version
local.files.count1*
local.files.size4427365*
local.has.filesyes*
local.identifier.eid2-s2.0-85212082288

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
HUBER_From surface roughness.pdf
Size:
4.22 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: