An Algorithm for Line Clipping by Convex Polyhedron in E3 with O(N1/2) Complexity

dc.contributor.authorSkala, Václav
dc.date.accessioned2015-01-20T07:30:49Z
dc.date.available2015-01-20T07:30:49Z
dc.date.issued1994
dc.description.abstractA new algorithm for line clipping against convex polyhedron is given. The suggested algorithm is faster for higher number of facets of the given polyhedron than the traditional Cyrus-Beck's and others algorithms with complexity O(N). The suggested algorithm has O(N) complexity. The suggested algorithm has O(N) complexity in worst case and expected O(N1/2) complexity. The speed up is achieved because of "known order" of triangles. Some principal results of comparisons of selected algorithms are presented and give some idea how the proposed algorithm could be used effectively.en
dc.format13 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/11025/11832
dc.language.isoenen
dc.rightsPlný text není přístupný.cs
dc.rights.accessclosedAccessen
dc.subjectořezávání přímekcs
dc.subjectkonvexní polyhedroncs
dc.subjectpočítačová grafikacs
dc.subjectsložitost algoritmůcs
dc.subjectgeometrciké algoritmycs
dc.subject.translatedline clippingen
dc.subject.translatedconvex polyhedronen
dc.subject.translatedcomputer graphicsen
dc.subject.translatedalgorithm complexityen
dc.subject.translatedgeometric algorithmsen
dc.titleAn Algorithm for Line Clipping by Convex Polyhedron in E3 with O(N1/2) Complexityen
dc.typepreprintcs
dc.typepreprinten
dc.type.statusPeer-revieweden
dc.type.versiondraften

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Skala_1994_Clip-SQRT-TR.pdf
Size:
534.33 KB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections

OPEN License Selector