Sumarizace novinových článků
Date issued
2022
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Západočeská univerzita v Plzni
Abstract
Automatická sumarizace textu je důležitý úkol z oboru zpracování přirozeného jazyka s mnoha aplikacemi. V této práci se zaměřujeme na sumarizaci novinových článků. V práci představujeme nový sumarizační dataset vytvořený z článků ČTK. Na tomto datasetu jsme natrénovali některé z nejmodernějších modelů pro extraktivní sumarizaci s využitím neuronových sítí BERT a Longformer a zhodnotili je podle metrik ROUGE-N, ROUGE-L a BertScore. Z experimentů vyplývá, že nejlepší model dle BertScore je založený na předtrénovaném Longformeru (0.802), ale lze jej využít jen pokud je dopředu znám či zadán počet vět ve shrnutí. Pokud tato informace k dispozici není, nejlepším přístupem se jeví klasifikace jednotlivých vět s kontextem a pozičními metadaty pomocí předtrénovaného modelu BERT (0.79).
Description
Subject(s)
sumarizace, nlp, extraktivní, vícedokumentová, bert, czert, longformer