Movement EEG classification using parallel Hidden Markov Models
| dc.contributor.author | Dobiáš, Martin | |
| dc.contributor.author | Šťastný, Jakub | |
| dc.contributor.editor | Pinker, Jiří | |
| dc.date.accessioned | 2019-10-08T07:55:40Z | |
| dc.date.available | 2019-10-08T07:55:40Z | |
| dc.date.issued | 2016 | |
| dc.description.abstract-translated | In this contribution we examine the use and utility of parallel HMM classification in single-trial movement-EEG classification of index finger reaching and grasping movement. Parallel HMMs allow us to easily utilize the information contained in multiple channels. Using HMM classifier output in parallel from examined EEG channels we have been able to achieve as good a classification score as with single electrode results, further we do not rely on a single electrode giving persistently good results. Our parallel approach has the added benefit of not having to rely on small inter-session variability as it gives very good results with fewer classifier parameters being optimized. Without any classification optimization we can get a score improvement of 11.2% against randomly selected physiologically relevant electrode. If we use subject specific information we can further improve on the reference score by 1%, achieving a classification score of 84.2±0.7%. | en |
| dc.format | 4 s. | cs |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | 2016 International Conference on Applied Electronics: Pilsen, 6th – 7th September 2016, Czech Republic, p.65-68. | en |
| dc.identifier.isbn | 978–80–261–0601–2 (Print) | |
| dc.identifier.isbn | 978–80–261–0602–9 (Online) | |
| dc.identifier.issn | 1803–7232 (Print) | |
| dc.identifier.issn | 1805–9597 (Online) | |
| dc.identifier.uri | http://hdl.handle.net/11025/35189 | |
| dc.language.iso | en | en |
| dc.publisher | Západočeská univerzita v Plzni | cs |
| dc.rights | © Západočeská univerzita v Plzni | cs |
| dc.rights.access | openAccess | en |
| dc.subject | elektroencefalografie | cs |
| dc.subject | skryté Markovovy modely | cs |
| dc.subject | elektrody | cs |
| dc.subject | erbium | cs |
| dc.subject | indexy | cs |
| dc.subject | modelování mozku | cs |
| dc.subject.translated | electroencephalography | en |
| dc.subject.translated | hidden Markov models | en |
| dc.subject.translated | electrodes | en |
| dc.subject.translated | erbium | en |
| dc.subject.translated | indexes | en |
| dc.subject.translated | brain modeling | en |
| dc.title | Movement EEG classification using parallel Hidden Markov Models | en |
| dc.type | konferenční příspěvek | cs |
| dc.type | conferenceObject | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- Dobias.pdf
- Size:
- 755.44 KB
- Format:
- Adobe Portable Document Format
- Description:
- Plný text
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: