Movement EEG classification using parallel Hidden Markov Models

dc.contributor.authorDobiáš, Martin
dc.contributor.authorŠťastný, Jakub
dc.contributor.editorPinker, Jiří
dc.date.accessioned2019-10-08T07:55:40Z
dc.date.available2019-10-08T07:55:40Z
dc.date.issued2016
dc.description.abstract-translatedIn this contribution we examine the use and utility of parallel HMM classification in single-trial movement-EEG classification of index finger reaching and grasping movement. Parallel HMMs allow us to easily utilize the information contained in multiple channels. Using HMM classifier output in parallel from examined EEG channels we have been able to achieve as good a classification score as with single electrode results, further we do not rely on a single electrode giving persistently good results. Our parallel approach has the added benefit of not having to rely on small inter-session variability as it gives very good results with fewer classifier parameters being optimized. Without any classification optimization we can get a score improvement of 11.2% against randomly selected physiologically relevant electrode. If we use subject specific information we can further improve on the reference score by 1%, achieving a classification score of 84.2±0.7%.en
dc.format4 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citation2016 International Conference on Applied Electronics: Pilsen, 6th – 7th September 2016, Czech Republic, p.65-68.en
dc.identifier.isbn978–80–261–0601–2 (Print)
dc.identifier.isbn978–80–261–0602–9 (Online)
dc.identifier.issn1803–7232 (Print)
dc.identifier.issn1805–9597 (Online)
dc.identifier.urihttp://hdl.handle.net/11025/35189
dc.language.isoenen
dc.publisherZápadočeská univerzita v Plznics
dc.rights© Západočeská univerzita v Plznics
dc.rights.accessopenAccessen
dc.subjectelektroencefalografiecs
dc.subjectskryté Markovovy modelycs
dc.subjectelektrodycs
dc.subjecterbiumcs
dc.subjectindexycs
dc.subjectmodelování mozkucs
dc.subject.translatedelectroencephalographyen
dc.subject.translatedhidden Markov modelsen
dc.subject.translatedelectrodesen
dc.subject.translatederbiumen
dc.subject.translatedindexesen
dc.subject.translatedbrain modelingen
dc.titleMovement EEG classification using parallel Hidden Markov Modelsen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Dobias.pdf
Size:
755.44 KB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: