Numerical approximation of convective Brinkman-Forchheimer flow with variable permeability
| dc.contributor.author | Nwaigwe, Chinedu | |
| dc.contributor.author | Oahimire, Jonathan | |
| dc.contributor.author | Weli, Azubuike | |
| dc.date.accessioned | 2023-10-03T17:18:46Z | |
| dc.date.available | 2023-10-03T17:18:46Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract-translated | This paper investigates the nonlinear dispersion of a pollutant in a non-isothermal incompressible flow of a temperature-dependent viscosity fluid in a rectangular channel filled with porous materials. The Brinkman-Forch heimer effects are incorporated and the fluid is assumed to be variably permeable through the porous channel. External pollutant injection, heat sources and nonlinear radiative heat flux of the Rossland approximation are accounted for. The nonlinear system of partial differential equations governing the velocity, temperature and pol lutant concentration is presented in non-dimensional form. A convergent numerical algorithm is formulated using an upwind scheme for the convective part and a conservative-type central scheme for the diffusion parts. The convergence of the scheme is discussed and verified by numerical experiments both in the presence and absence of suction. The scheme is then used to investigate the flow and transport in the channel. The results show that the velocity decreases with increasing suction and Forchheimer parameters, but it increases with increasing porosity. | en |
| dc.format | 16 s. | cs |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | Applied and Computational Mechanics. 2023, vol. 17, no. 1, p. 19-34. | en |
| dc.identifier.doi | https://doi.org/10.24132/acm.2023.767 | |
| dc.identifier.issn | 1802-680X (Print) | |
| dc.identifier.issn | 2336-1182 (Online) | |
| dc.identifier.uri | http://hdl.handle.net/11025/54292 | |
| dc.language.iso | en | en |
| dc.publisher | University of West Bohemia | en |
| dc.rights | © University of West Bohemia | en |
| dc.rights.access | openAccess | en |
| dc.subject | Forchheimerův proud | cs |
| dc.subject | nelineární sací rychlost | cs |
| dc.subject | nelineární záření | cs |
| dc.subject | nelineární Soret-Dufour efekty | cs |
| dc.subject | proměnná propustnost | cs |
| dc.subject | variabilní Soret-Dufour efekty | cs |
| dc.subject.translated | Forchheimer flow | en |
| dc.subject.translated | nonlinear suction velocity | en |
| dc.subject.translated | nonlinear radiation | en |
| dc.subject.translated | nonlinear Soret-Dufour effects | en |
| dc.subject.translated | variable permeability | en |
| dc.subject.translated | variable Soret-Dufour effects | en |
| dc.title | Numerical approximation of convective Brinkman-Forchheimer flow with variable permeability | en |
| dc.type | article | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- 767-4678-1-PB.pdf
- Size:
- 1.1 MB
- Format:
- Adobe Portable Document Format
- Description:
- Plný text
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: