Numerical approximation of convective Brinkman-Forchheimer flow with variable permeability

dc.contributor.authorNwaigwe, Chinedu
dc.contributor.authorOahimire, Jonathan
dc.contributor.authorWeli, Azubuike
dc.date.accessioned2023-10-03T17:18:46Z
dc.date.available2023-10-03T17:18:46Z
dc.date.issued2023
dc.description.abstract-translatedThis paper investigates the nonlinear dispersion of a pollutant in a non-isothermal incompressible flow of a temperature-dependent viscosity fluid in a rectangular channel filled with porous materials. The Brinkman-Forch heimer effects are incorporated and the fluid is assumed to be variably permeable through the porous channel. External pollutant injection, heat sources and nonlinear radiative heat flux of the Rossland approximation are accounted for. The nonlinear system of partial differential equations governing the velocity, temperature and pol lutant concentration is presented in non-dimensional form. A convergent numerical algorithm is formulated using an upwind scheme for the convective part and a conservative-type central scheme for the diffusion parts. The convergence of the scheme is discussed and verified by numerical experiments both in the presence and absence of suction. The scheme is then used to investigate the flow and transport in the channel. The results show that the velocity decreases with increasing suction and Forchheimer parameters, but it increases with increasing porosity.en
dc.format16 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationApplied and Computational Mechanics. 2023, vol. 17, no. 1, p. 19-34.en
dc.identifier.doihttps://doi.org/10.24132/acm.2023.767
dc.identifier.issn1802-680X (Print)
dc.identifier.issn2336-1182 (Online)
dc.identifier.urihttp://hdl.handle.net/11025/54292
dc.language.isoenen
dc.publisherUniversity of West Bohemiaen
dc.rights© University of West Bohemiaen
dc.rights.accessopenAccessen
dc.subjectForchheimerův proudcs
dc.subjectnelineární sací rychlostcs
dc.subjectnelineární zářenícs
dc.subjectnelineární Soret-Dufour efektycs
dc.subjectproměnná propustnostcs
dc.subjectvariabilní Soret-Dufour efektycs
dc.subject.translatedForchheimer flowen
dc.subject.translatednonlinear suction velocityen
dc.subject.translatednonlinear radiationen
dc.subject.translatednonlinear Soret-Dufour effectsen
dc.subject.translatedvariable permeabilityen
dc.subject.translatedvariable Soret-Dufour effectsen
dc.titleNumerical approximation of convective Brinkman-Forchheimer flow with variable permeabilityen
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
767-4678-1-PB.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: