Thermal stability and coalescence dynamics of exsolved metal nanoparticles at charged perovskite surfaces

dc.contributor.authorWeber, Moritz L.
dc.contributor.authorJennings, Dylan
dc.contributor.authorFearn, Sarah
dc.contributor.authorCavallaro, Andrea
dc.contributor.authorProcházka, Michal
dc.contributor.authorGutsche, Alexander
dc.contributor.authorHeymann, Lisa
dc.contributor.authorGuo, Jia
dc.contributor.authorYasin, Liam
dc.contributor.authorCooper, Samuel J.
dc.contributor.authorMayer, Joachim
dc.contributor.authorRheinheimer, Wolfgang
dc.contributor.authorDittmann, Regina
dc.contributor.authorWaser, Rainer
dc.contributor.authorGuillon, Olivier
dc.contributor.authorLenser, Christian
dc.contributor.authorSkinner, Stephen J.
dc.contributor.authorAguadero, Ainara
dc.contributor.authorNemšák, Slavomír
dc.contributor.authorGunkel, Felix
dc.date.accessioned2025-06-27T10:09:37Z
dc.date.available2025-06-27T10:09:37Z
dc.date.issued2024
dc.date.updated2025-06-27T10:09:37Z
dc.description.abstractExsolution reactions enable the synthesis of oxide-supported metal nanoparticles, which are desirable as catalysts in green energy conversion technologies. It is crucial to precisely tailor the nanoparticle characteristics to optimize the catalysts’ functionality, and to maintain the catalytic performance under operation conditions. We use chemical (co)-doping to modify the defect chemistry of exsolution-active perovskite oxides and examine its influence on the mass transfer kinetics of Ni dopants towards the oxide surface and on the subsequent coalescence behavior of the exsolved nanoparticles during a continuous thermal reduction treatment. Nanoparticles that exsolve at the surface of the acceptor-type fast-oxygen-ion-conductor SrTi0.95Ni0.05O3−δ (STNi) show a high surface mobility leading to a very low thermal stability compared to nanoparticles that exsolve at the surface of donor-type SrTi0.9Nb0.05Ni0.05O3−δ (STNNi). Our analysis indicates that the low thermal stability of exsolved nanoparticles at the acceptor-doped perovskite surface is linked to a high oxygen vacancy concentration at the nanoparticle-oxide interface. For catalysts that require fast oxygen exchange kinetics, exsolution synthesis routes in dry hydrogen conditions may hence lead to accelerated degradation, while humid reaction conditions may mitigate this failure mechanism.en
dc.format14
dc.identifier.document-number001352369200004
dc.identifier.doi10.1038/s41467-024-54008-4
dc.identifier.issn2041-1723
dc.identifier.obd43945554
dc.identifier.orcidProcházka, Michal 0000-0003-3364-7006
dc.identifier.urihttp://hdl.handle.net/11025/61890
dc.language.isoen
dc.project.IDEH22_008/0004572
dc.relation.ispartofseriesNature Communications
dc.rights.accessA
dc.subjectelectrocatalysisen
dc.subjectfuel cellsen
dc.subjectnanoparticlesen
dc.subjectstructural propertiesen
dc.titleThermal stability and coalescence dynamics of exsolved metal nanoparticles at charged perovskite surfacesen
dc.typeČlánek v databázi WoS (Jimp)
dc.typeČLÁNEK
dc.type.statusPublished Version
local.files.count1*
local.files.size2410667*
local.has.filesyes*
local.identifier.eid2-s2.0-85209483939

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
PROCHAZKA_Thermal_stability.pdf
Size:
2.3 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: