Scene text segmentation based on redundant representation of character candidates

dc.contributor.authorSaric, Matko
dc.contributor.editorSkala, Václav
dc.date.accessioned2018-04-16T09:38:45Z
dc.date.available2018-04-16T09:38:45Z
dc.date.issued2017
dc.description.abstractText segmentation is important step in extraction of textual information from natural scene images. This paper proposes novel method for generation of character candidate regions based on redundant representation of subpaths in extremal regions (ER) tree. These subpaths are constructed using area variation and pruned using their length: each sufficiently long subpath is character candidate which is represented by subset of regions contained in the subpath. Mean SVM probability score of regions in subset is used to filter out non character components. Proposed approach for character candidates generation is followed by character grouping and restoration steps. Experimental results obtained on the ICDAR 2013 dataset shows that the proposed text segmentation method obtains second highest precision and competitive recall rate.en
dc.format7 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationWSCG 2017: poster papers proceedings: 25th International Conference in Central Europe on Computer Graphics, Visualization and Computer Visionin co-operation with EUROGRAPHICS Association, p. 103-109.en
dc.identifier.isbn978-80-86943-46-6
dc.identifier.issn2464-4617
dc.identifier.uriwscg.zcu.cz/WSCG2017/!!_CSRN-2703.pdf
dc.identifier.urihttp://hdl.handle.net/11025/29620
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencyen
dc.relation.ispartofseriesWSCG 2017: poster papers proceedingsen
dc.rights© Václav Skala - Union Agencycs
dc.rights.accessopenAccessen
dc.subjectsegmentace textu scénycs
dc.subjectextrémní oblastics
dc.subjectSVM klasifikacecs
dc.subject.translatedscene text segmentationen
dc.subject.translatedextremal regionsen
dc.subject.translatedSVM classificationen
dc.titleScene text segmentation based on redundant representation of character candidatesen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Saric.pdf
Size:
17.76 MB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: