Real-time Animation Technique for Flexible and Thin Objects

Date issued

2000

Journal Title

Journal ISSN

Volume Title

Publisher

University of West Bohemia

Abstract

In this paper, we propose an efficient technique for the animation of flexible thin objects. Mass-spring model was employed to represent the flexible objects. Many techniques have used the mass-spring model to generate plausible animation of soft objects. The easiest approach to animation with mass-spring model is explicit Euler method, but the explicit Euler method has serious disadvantage that it suffers from `instability problem'. The implicit integration method is a possible solution to overcome the instability problem. However, the most critical flaw of the implicit method is that it involves a large linear system. This paper presents a fast animation technique for mass-spring model with approximated implicit method. The proposed technique stably updates the state of n mass-points in O(n) time when the number of total springs are O(n). We also consider the interaction of the flexible object and air in order to generate plausible results.

Description

Subject(s)

real-time animace, flexibilní objekt, implicitní metoda, stabilita, model závaží na pružině

Citation

WSCG '2000: Conference proceeding: The 8th International Conference in Central Europe on Computers Graphics, Visualization and Interaktive Digital Media '2000 in cooperation with EUROGRAPHICS and IFIP WG 5.10: University of West Bohemia, Plzen, Czech republic, February 7 - 10, 2000, p. 322-329.