Real-time Animation Technique for Flexible and Thin Objects
Files
Date issued
2000
Journal Title
Journal ISSN
Volume Title
Publisher
University of West Bohemia
Abstract
In this paper, we propose an efficient technique for the animation of flexible thin objects. Mass-spring model was employed to represent the flexible objects. Many techniques have used the mass-spring model to generate plausible animation of soft objects. The easiest approach to animation with mass-spring model is explicit Euler method, but the explicit Euler method has serious disadvantage that it suffers from `instability problem'. The implicit integration method is a possible solution to overcome the instability problem. However, the most critical flaw of the implicit method is that it involves a large linear system. This paper presents a fast animation technique for mass-spring model with approximated implicit method. The proposed technique stably updates the state of n mass-points in O(n) time when the number of total springs are O(n). We also consider the interaction of the flexible object and air in order to generate plausible results.
Description
Subject(s)
real-time animace, flexibilní objekt, implicitní metoda, stabilita, model závaží na pružině
Citation
WSCG '2000: Conference proceeding: The 8th International Conference in Central Europe on Computers Graphics, Visualization and Interaktive Digital Media '2000 in cooperation with EUROGRAPHICS and IFIP WG 5.10: University of West Bohemia, Plzen, Czech republic, February 7 - 10, 2000, p. 322-329.