Visualization and 3D printing of multivariate data of biomarkers
Files
Date issued
2016
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Václav Skala - UNION Agency
Abstract
Dimensionality reduction by feature extraction is commonly used to project high-dimensional data into a lowdimensional
space. With the aim to create a visualization of data, only projections onto two dimensions are
considered here. Self-organizing maps were chosen as the projection method, which enabled the use of the U*-
Matrix as an established method to visualize data as landscapes. Owing to the availability of the 3D printing
technique, this allows presenting the structure of data in an intuitive way. For this purpose, information about the
height of the landscapes is used to produce a three dimensional landscape with a 3D color printer. Similarities
between high-dimensional data are observed as valleys and dissimilarities as mountains or ridges. These 3D
prints provide topical experts a haptic grasp of high-dimensional structures. The method will be exemplarily
demonstrated on multivariate data comprising pain-related bio responses. In addition, a new R package
“Umatrix” is introduced that allows the user to generate landscapes with hypsometric tints.
Description
Subject(s)
samoorganizační mapa, multivariační vizualizace dat, snížení dimenze, vysokorozměrná data, 3D tisk, u matice
Citation
WSCG '2016: short communications proceedings: The 24th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2016 in co-operation with EUROGRAPHICS: University of West Bohemia, Plzen, Czech RepublicMay 30 - June 3 2016, p. 7-16.