Investigation of heat and mass transfer processes in the combustion chambe of industrial power plant boiler. Part 2. Distribution of concentrations of O2, CO, CO2, NO

dc.contributor.authorAskarova, Aliya
dc.contributor.authorMaximov, Valeriy
dc.contributor.authorBolegenova, Saltanat
dc.contributor.authorBolegenova, Symbat
dc.contributor.authorYergaliyeva, Aigul Balatbekovna
dc.contributor.authorŠafařík, Pavel
dc.date.accessioned2019-01-30T08:30:16Z
dc.date.available2019-01-30T08:30:16Z
dc.date.issued2018
dc.description.abstractIn the present paper, a study of furnace processes in the combustion chamber of the real energy boiler BKZ-160 of Almaty TPP-3 (Kazakhstan) using three-dimensional modeling methods has been carried out. Calculations of the combustion chamber for flame combustion of pulverized coal have been performed. The main purpose of this paper was to study the effect of fractional fuel composition on the concentration characteristics of the combustion process. Numerical simulation was carried out with two models of coal particle size distribution: monodisperse fuel flame (coal particle size identical and equal to 60 μm) and a polydisperse fuel flame (coal particle diameter varies from 10 to 120 μm). The polydisperse distribution corresponds to the fractional distribution (percentage of total coal particles) calculated for this boiler: the first fraction - 10% with dp=10 μm; 20% with dp=30 μm; 40% with dp=60 μm; 20% with dp=100 μm; 10% with dp=120 μm.The numerical simulation results of the influence of the pulverized coal particle size composition on concentration characteristics of combustion process are presented. The distributions of oxidizer (oxygen) and combustion products (NO, CO, CO2) are shown. Areas with the greatest concentration of gas products of burning are determined, regularities of formation of products and their concentration at the exit of fire chamber are also determined. The effect of fractional fuel composition on the obtained characteristics is sufficiently large, the empirical data obtained directly at TPP-3 show better convergence with the result of the computational experiment that confirms simultaneously the adequacy of the used physical and mathematical statement of the problem, as well as the validity of using the model of polyfractional distribution.en
dc.format12 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationApplied and Computational Mechanics. 2018, vol. 12, no. 2, p. 127-138.en
dc.identifier.doi10.24132/acm.2018.396
dc.identifier.issn1802-680X (Print)
dc.identifier.issn2336-1182 (Online)
dc.identifier.urihttp://hdl.handle.net/11025/30875
dc.language.isoenen
dc.publisherUniversity of West Bohemiaen
dc.relation.ispartofseriesApplied and Computational Mechanicsen
dc.rights© 2018 University of West Bohemia. All rights reserved.en
dc.rights.accessopenAccessen
dc.subjectspalovánícs
dc.subjectmodelovánícs
dc.subjectpole koncentracecs
dc.subjectmonodisperzního plamenného uhlícs
dc.subjectplamen polydisperzního práškového uhlícs
dc.subject.translatedcombustionen
dc.subject.translatedmodelingen
dc.subject.translatedconcentration fielden
dc.subject.translatedmonodisperse pulverized coal flameen
dc.subject.translatedpolydisperse pulverized coal flameen
dc.titleInvestigation of heat and mass transfer processes in the combustion chambe of industrial power plant boiler. Part 2. Distribution of concentrations of O2, CO, CO2, NOen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
396-3188-1-PB.pdf
Size:
2.64 MB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: