A Handcrafted Feature Descriptor for Word Recognition using Embedded Prototype Subspace Classifiers

dc.contributor.authorHast, Anders
dc.contributor.editorSkala, Václav
dc.date.accessioned2022-08-29T10:48:14Z
dc.date.available2022-08-29T10:48:14Z
dc.date.issued2022
dc.description.abstract-translatedThe purpose of this paper is to in detail describe and analyse a Fourier based handcrafted descriptor for word recognition. Especially, it is discussed how the Variability in the results can be analysed and visualised. This efficiency of the descriptor is evaluated for the use with embedded prototype subspace classifiers for handwritten word recognition. Nonetheless, it can be used with any classifier for any purpose. An hierarchical composition of discrete semicircles in the Fourier-space is proposed and it will will be show how this compares to Gabor filters, which can be used to extract edges in an image. In comparison to Histogram of Oriented Gradients, the proposed feature descriptor performs better in this scenario. Compression using PCA turns out to be able to increase both the F1-score as well as decreasing the Variability.en
dc.format9 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationJournal of WSCG. 2022, vol. 30, no. 1-2, p. 82-90.en
dc.identifier.doihttps://www.doi.org/10.24132/JWSCG.2022.10
dc.identifier.issn1213-6972 (print)
dc.identifier.issn1213-6964 (on-line)
dc.identifier.urihttp://hdl.handle.net/11025/49397
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.rights© Václav Skala - UNION Agencycs
dc.rights.accessopenAccessen
dc.subjectdiskrétní Fourierova transformacecs
dc.subjectGaborovy filtrycs
dc.subjectpodprostorycs
dc.subjectvestavěné prototypycs
dc.subjectshlukovánícs
dc.subjectF-skórecs
dc.subjectvariabilitacs
dc.subjecthluboké učenícs
dc.subjectt-SNEcs
dc.subject.translateddiscrete Fourier transformen
dc.subject.translatedGabor filtersen
dc.subject.translatedsubspacesen
dc.subject.translatedembedded prototypesen
dc.subject.translatedclusteringen
dc.subject.translatedF1 scoreen
dc.subject.translatedvariabilityen
dc.subject.translateddeep learningen
dc.subject.translatedt-SNEen
dc.titleA Handcrafted Feature Descriptor for Word Recognition using Embedded Prototype Subspace Classifiersen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
C23-full.pdf
Size:
2.2 MB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: