Využití duplicitních otázek na Stackoverflow pro učení reprezentace významu vět
Date issued
2020
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Západočeská univerzita v Plzni
Abstract
Tato bakalářská práce se zabývá vývojem neuronové sítě pro porozumění textu v odborném jazyce. Výstupy této práce mohou zlepšit výsledky úloh jako je získávání informací či generování zdrojového kódu. Pro vyřešení této úlohy představujeme novou architekturu neuronové sítě založenou na využití enkodéru kódu společně s textovým enkodérem. Architektura dále využívá nepříliš známou f1 loss, která významně zlepšuje dosažené výsledky. Důležitým výstupem této práce je vektorová reprezentace vět, která se nalézá ve skrytých vrstvách neuronové sítě. Navržený přístup je demonstrován na využití duplicitních otázek ze stránky Stackoverflow, ze kterých jsme připravili nový dataset použitelný nad rámec této práce. Pomocí navržené architektury bylo na datasetu dosaženo f1 score 74.1 %, což představuje zlepšení o 5.1 % v porovnání s výchozí architekturou založenou na sčítání reprezentací slov.
Description
Subject(s)
strojové učení, zpracování přirozeného jazyka, sémantická podobnost, stackoverflow, neuronové sítě