Fluid Flow Modelling Using Physics-Informed Convolutional Neural Network in Parametrised Domains

dc.contributor.authorBublík, Ondřej
dc.contributor.authorHeidler, Václav
dc.contributor.authorPecka, Aleš
dc.contributor.authorVimmr, Jan
dc.date.accessioned2025-06-20T08:47:24Z
dc.date.available2025-06-20T08:47:24Z
dc.date.issued2023
dc.date.updated2025-06-20T08:47:24Z
dc.description.abstractWe design and implement a physics-informed convolutional neural network (CNN) to solve fluid flow problems on a parametrised domain. The goal is to compare the effectiveness of training based solely on CFD-generated training data with purely physics-informed training and training based on a combination of both. We consider the problem of incompressible fluid flow in a convergent-divergent channel with variable wall shape. A speciality of the designed neural network is the incorporation of the boundary condition directly in the CNN. A physics-informed CNN that uses a non-Cartesian mesh poses a challenge when evaluating partial derivatives. We propose a gradient layer that pproximates the first and second partial derivatives by finite differences using Lagrange interpolation. Our analysis shows that the convergence of purely physics-informed training is slow. However, using a small training dataset in combination with physics-informed training can achieve results comparable to physics-uninformed training with a considerably larger training dataset.en
dc.format15
dc.identifier.document-number001075311200001
dc.identifier.doi10.1080/10618562.2023.2260763
dc.identifier.issn1061-8562
dc.identifier.obd43941328
dc.identifier.orcidBublík, Ondřej 0000-0002-6427-2748
dc.identifier.orcidHeidler, Václav 0000-0002-9419-4453
dc.identifier.orcidPecka, Aleš 0000-0002-3506-3138
dc.identifier.orcidVimmr, Jan 0000-0003-3311-4592
dc.identifier.urihttp://hdl.handle.net/11025/61104
dc.language.isoen
dc.project.IDGA21-31457S
dc.relation.ispartofseriesINTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS
dc.rights.accessA
dc.subjectphysics-informed neural networken
dc.subjectconvolutional neural networken
dc.subjectU-Neten
dc.subjectincompressible fluid flowen
dc.subjectfluid dynamicsen
dc.titleFluid Flow Modelling Using Physics-Informed Convolutional Neural Network in Parametrised Domainsen
dc.typeČlánek v databázi WoS (Jimp)
dc.typeČLÁNEK
dc.type.statusPublished Version
local.files.count1*
local.files.size5132573*
local.has.filesyes*
local.identifier.eid2-s2.0-85173600041

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Fluid Flow Modelling.pdf
Size:
4.89 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections