Fluid Flow Modelling Using Physics-Informed Convolutional Neural Network in Parametrised Domains
| dc.contributor.author | Bublík, Ondřej | |
| dc.contributor.author | Heidler, Václav | |
| dc.contributor.author | Pecka, Aleš | |
| dc.contributor.author | Vimmr, Jan | |
| dc.date.accessioned | 2025-06-20T08:47:24Z | |
| dc.date.available | 2025-06-20T08:47:24Z | |
| dc.date.issued | 2023 | |
| dc.date.updated | 2025-06-20T08:47:24Z | |
| dc.description.abstract | We design and implement a physics-informed convolutional neural network (CNN) to solve fluid flow problems on a parametrised domain. The goal is to compare the effectiveness of training based solely on CFD-generated training data with purely physics-informed training and training based on a combination of both. We consider the problem of incompressible fluid flow in a convergent-divergent channel with variable wall shape. A speciality of the designed neural network is the incorporation of the boundary condition directly in the CNN. A physics-informed CNN that uses a non-Cartesian mesh poses a challenge when evaluating partial derivatives. We propose a gradient layer that pproximates the first and second partial derivatives by finite differences using Lagrange interpolation. Our analysis shows that the convergence of purely physics-informed training is slow. However, using a small training dataset in combination with physics-informed training can achieve results comparable to physics-uninformed training with a considerably larger training dataset. | en |
| dc.format | 15 | |
| dc.identifier.document-number | 001075311200001 | |
| dc.identifier.doi | 10.1080/10618562.2023.2260763 | |
| dc.identifier.issn | 1061-8562 | |
| dc.identifier.obd | 43941328 | |
| dc.identifier.orcid | Bublík, Ondřej 0000-0002-6427-2748 | |
| dc.identifier.orcid | Heidler, Václav 0000-0002-9419-4453 | |
| dc.identifier.orcid | Pecka, Aleš 0000-0002-3506-3138 | |
| dc.identifier.orcid | Vimmr, Jan 0000-0003-3311-4592 | |
| dc.identifier.uri | http://hdl.handle.net/11025/61104 | |
| dc.language.iso | en | |
| dc.project.ID | GA21-31457S | |
| dc.relation.ispartofseries | INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS | |
| dc.rights.access | A | |
| dc.subject | physics-informed neural network | en |
| dc.subject | convolutional neural network | en |
| dc.subject | U-Net | en |
| dc.subject | incompressible fluid flow | en |
| dc.subject | fluid dynamics | en |
| dc.title | Fluid Flow Modelling Using Physics-Informed Convolutional Neural Network in Parametrised Domains | en |
| dc.type | Článek v databázi WoS (Jimp) | |
| dc.type | ČLÁNEK | |
| dc.type.status | Published Version | |
| local.files.count | 1 | * |
| local.files.size | 5132573 | * |
| local.has.files | yes | * |
| local.identifier.eid | 2-s2.0-85173600041 |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- Fluid Flow Modelling.pdf
- Size:
- 4.89 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: