Two-phase MRI brain tumor segmentation using random forests and level set methods

dc.contributor.authorLefkovits, László
dc.contributor.authorLefkovits, Szidónia
dc.contributor.editorSkala, Václav
dc.date.accessioned2019-05-14T09:52:34Z
dc.date.available2019-05-14T09:52:34Z
dc.date.issued2018
dc.description.abstractMagnetic resonance images (MRI) in various modalities contain valuable information usable in medical diagnosis. Accurate delimitation of the brain tumor and its internal tissue structures is very important for the evaluation of disease progression, for studying the effects of a chosen treatment strategy and for surgical planning as well. At the same time early detection of brain tumors and the determination of their nature have long been desirable in preventive medicine. The goal of this study is to develop an intelligent software tool for quick detection and accurate segmentation of brain tumors from MR images. In this paper we describe the developed two-staged image segmentation framework. The first stage is a voxelwise classifier based on random forest (RF) algorithm. The second acquires the accurate boundaries by evolving active contours based on the level set method (LSM). The intelligent combination of two powerful segmentation algorithms ensures performances that cannot be achieved by either of these methods alone. In our work we used the MRI database created for the BraTS ’14-‘16 challenges, considered a gold standard in brain tumor segmentation. The segmentation results are compared with the winning state of the art methods presented at the Brain Tumor Segmentation Grand Challenge and Workshop (BratsTS).en
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationWSCG '2018: short communications proceedings: The 26th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2016 in co-operation with EUROGRAPHICS: University of West Bohemia, Plzen, Czech Republic May 28 - June 1 2018, p. 152-159.en
dc.identifier.doihttps://doi.org/10.24132/CSRN.2018.2802.19
dc.identifier.isbn978-80-86943-41-1
dc.identifier.issn2464-4617
dc.identifier.uriwscg.zcu.cz/WSCG2018/!!_CSRN-2802.pdf
dc.identifier.urihttp://hdl.handle.net/11025/34667
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencyen
dc.relation.ispartofseriesWSCG '2018: short communications proceedingsen
dc.rights© Václav Skala - UNION Agencycs
dc.rights.accessopenAccessen
dc.subjectnádor mozkucs
dc.subjectmultimodalní MRIcs
dc.subjectvoxel-wise segmentacecs
dc.subjectnáhodný lescs
dc.subjectmetoda nastavení úrovněcs
dc.subjectvýběr funkcecs
dc.subjectstruktura nádorucs
dc.subjecthierarchické segmentacecs
dc.subjectučení pod dohledemcs
dc.subject.translatedbrain tumoren
dc.subject.translatedmultimodal MRIen
dc.subject.translatedvoxel-wise segmentationen
dc.subject.translatedrandom foresten
dc.subject.translatedlevel set methoden
dc.subject.translatedfeature selectionen
dc.subject.translatedtumor structureen
dc.subject.translatedhierarchical segmentationen
dc.subject.translatedsupervised learningen
dc.titleTwo-phase MRI brain tumor segmentation using random forests and level set methodsen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Lefkovits.pdf
Size:
1.58 MB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
OPEN License Selector