Two-phase MRI brain tumor segmentation using random forests and level set methods
| dc.contributor.author | Lefkovits, László | |
| dc.contributor.author | Lefkovits, Szidónia | |
| dc.contributor.editor | Skala, Václav | |
| dc.date.accessioned | 2019-05-14T09:52:34Z | |
| dc.date.available | 2019-05-14T09:52:34Z | |
| dc.date.issued | 2018 | |
| dc.description.abstract | Magnetic resonance images (MRI) in various modalities contain valuable information usable in medical diagnosis. Accurate delimitation of the brain tumor and its internal tissue structures is very important for the evaluation of disease progression, for studying the effects of a chosen treatment strategy and for surgical planning as well. At the same time early detection of brain tumors and the determination of their nature have long been desirable in preventive medicine. The goal of this study is to develop an intelligent software tool for quick detection and accurate segmentation of brain tumors from MR images. In this paper we describe the developed two-staged image segmentation framework. The first stage is a voxelwise classifier based on random forest (RF) algorithm. The second acquires the accurate boundaries by evolving active contours based on the level set method (LSM). The intelligent combination of two powerful segmentation algorithms ensures performances that cannot be achieved by either of these methods alone. In our work we used the MRI database created for the BraTS ’14-‘16 challenges, considered a gold standard in brain tumor segmentation. The segmentation results are compared with the winning state of the art methods presented at the Brain Tumor Segmentation Grand Challenge and Workshop (BratsTS). | en |
| dc.format | 8 s. | cs |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | WSCG '2018: short communications proceedings: The 26th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2016 in co-operation with EUROGRAPHICS: University of West Bohemia, Plzen, Czech Republic May 28 - June 1 2018, p. 152-159. | en |
| dc.identifier.doi | https://doi.org/10.24132/CSRN.2018.2802.19 | |
| dc.identifier.isbn | 978-80-86943-41-1 | |
| dc.identifier.issn | 2464-4617 | |
| dc.identifier.uri | wscg.zcu.cz/WSCG2018/!!_CSRN-2802.pdf | |
| dc.identifier.uri | http://hdl.handle.net/11025/34667 | |
| dc.language.iso | en | en |
| dc.publisher | Václav Skala - UNION Agency | en |
| dc.relation.ispartofseries | WSCG '2018: short communications proceedings | en |
| dc.rights | © Václav Skala - UNION Agency | cs |
| dc.rights.access | openAccess | en |
| dc.subject | nádor mozku | cs |
| dc.subject | multimodalní MRI | cs |
| dc.subject | voxel-wise segmentace | cs |
| dc.subject | náhodný les | cs |
| dc.subject | metoda nastavení úrovně | cs |
| dc.subject | výběr funkce | cs |
| dc.subject | struktura nádoru | cs |
| dc.subject | hierarchické segmentace | cs |
| dc.subject | učení pod dohledem | cs |
| dc.subject.translated | brain tumor | en |
| dc.subject.translated | multimodal MRI | en |
| dc.subject.translated | voxel-wise segmentation | en |
| dc.subject.translated | random forest | en |
| dc.subject.translated | level set method | en |
| dc.subject.translated | feature selection | en |
| dc.subject.translated | tumor structure | en |
| dc.subject.translated | hierarchical segmentation | en |
| dc.subject.translated | supervised learning | en |
| dc.title | Two-phase MRI brain tumor segmentation using random forests and level set methods | en |
| dc.type | konferenční příspěvek | cs |
| dc.type | conferenceObject | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- Lefkovits.pdf
- Size:
- 1.58 MB
- Format:
- Adobe Portable Document Format
- Description:
- Plný text
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: