Integration of Reconstruction Error Obtained by Local and Global Kernel PCA with Different Role

dc.contributor.authorHotta, Kazuhiro
dc.contributor.editorBaranoski, Gladimir
dc.contributor.editorSkala, Václav
dc.date.accessioned2014-03-18T09:33:11Z
dc.date.available2014-03-18T09:33:11Z
dc.date.issued2011
dc.description.abstractThis paper presents a scene classification method using the integration of the reconstruction errors by local Kernel Principal Component Analysis (KPCA) and global KPCA. There are some methods for integrating local and global features. However, it is important to give obvious different role to each feature. In the proposed method, global feature with topological information represents the rough composition of scenes and local feature without position information represents fine part of scenes. Experimental results show that accuracy is improved by using the reconstruction errors obtained from the different point of views. The proposed method is much better than only local KPCA, global KPCA and linear Support Vector Machine (SVM) of bag-of-visual words with the same basic feature. Our method is also comparable to conventional methods using the same database.en
dc.format8 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationWSCG '2011: Communication Papers Proceedings: The 19th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 91-98.en
dc.identifier.isbn978-80-86943-82-4
dc.identifier.urihttp://wscg.zcu.cz/WSCG2011/!_2011_WSCG-Short_Papers.pdf
dc.identifier.urihttp://hdl.handle.net/11025/10826
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencycs
dc.relation.ispartofseriesWSCG '2011: Communication Papers Proceedingsen
dc.rights© Václav Skala - UNION Agencycs
dc.rights.accessopenAccessen
dc.subjectklasifikace scénycs
dc.subjectkernelová analýza hlavních komponentcs
dc.subject.translatedkernel principal component analysisen
dc.subject.translatedscene classificationen
dc.titleIntegration of Reconstruction Error Obtained by Local and Global Kernel PCA with Different Roleen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.driverinfo:eu-repo/semantics/conferenceObjecten
dc.type.driverinfo:eu-repo/semantics/publishedVersionen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Hotta.pdf
Size:
542.75 KB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: