A variational representation for efficient noisy segmentation

dc.contributor.authorRomano, R.
dc.contributor.authorVitulano, D.
dc.contributor.editorSkala, Václav
dc.date.accessioned2013-08-20T13:08:21Z
dc.date.available2013-08-20T13:08:21Z
dc.date.issued2002
dc.description.abstractIn this paper we focus on a novel technique VRENS, (Variational Representation for Efficient Noisy Segmentation) to segment images (i.e. containg also textures) under noise. It is based on a hierarchical representation obtained by a combination of the classical weak membrane and a simpler region competition method. VRENS seems to be an interesting algorithm because of its robustness to added gaussian noise along with a low computational cost.en
dc.format4 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationWSCG '2002: Posters: The 10-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2002, 4.-8. February 2002 Plzeň, p. 41-44.en
dc.identifier.isbn80-903100-0-1
dc.identifier.urihttp://wscg.zcu.cz/wscg2002/Papers_2002/A49.ps.gz
dc.identifier.urihttp://hdl.handle.net/11025/6078
dc.language.isoenen
dc.publisherUNION Agencyen
dc.relation.ispartofseriesWSCG '2002: Postersen
dc.rights© UNION Agencycs
dc.rights.accessopenAccessen
dc.subjectvariační modelycs
dc.subjecttexturycs
dc.subjectsegmentace obrazucs
dc.subject.translatedvariational modelsen
dc.subject.translatedtexturesen
dc.subject.translatedimage segmentationen
dc.titleA variational representation for efficient noisy segmentationen
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 2 out of 2 results
No Thumbnail Available
Name:
A49.ps
Size:
2.31 MB
Format:
Postscript Files
Description:
Plný text
No Thumbnail Available
Name:
A49.pdf
Size:
794.69 KB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: