Detekce pohybu končetin z EEG signálu při cvičení na rehabilitačním robotovi
| dc.contributor.advisor | Mautner Pavel, Ing. Ph.D. | |
| dc.contributor.author | Mochura, Pavel | |
| dc.contributor.referee | Vařeka Lukáš, Ing. Ph.D. | |
| dc.date.accepted | 2021-9-7 | |
| dc.date.accessioned | 2021-09-13T22:16:22Z | |
| dc.date.available | 2020-9-11 | |
| dc.date.available | 2021-09-13T22:16:22Z | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-6-23 | |
| dc.description.abstract | EEG signály u měřených subjektů obsahují různé vzory podle toho, co měřený subjekt vykonával. ERD/ERS jsou příklady právě takovýchto vzorů, které jsou svázány s pohybem ruky, prstu nebo nohy. Tato diplomová práce se zabývá detekováním pohybu v EEG signálu na základě vzorů ERD a ERS. Příznakové vektory jsou konstruovány buď pomocí všech hodnot z ERD/ERS nebo z hodnot, počítaných právě z těchto vzorů, jako například MAV nebo rozptyl. Tyto vektory jsou klasifikovány neuronovou sítí, která se stává z jedné vstupní vrstvy, třech skrytých vrstev a z jedné výstupní vrstvy, kde první skrytá vrstva obsahuje 400 neuronů, druhá 200 neuronů a třetí 100 neuronů. Pro natrénování této neuronové sítě je použita trénovací množina tvořená příznakovými vektory a pro následné přenastavování vah je použit algoritmus Backpropagation. Takto nastavená neuronová síť je schopna klasifikovat pohyb v EEG záznamech s průměrnou přesností 90,05%. | cs |
| dc.description.abstract-translated | The EEG signals of the measured subjects contain different patterns depending on what the measured subject was doing. ERD/ERS are examples of such patterns that are tied to hand, finger or foot movements. This paper deals with the detection of motion in EEG signal based on ERD and ERS patterns. Symptom vectors are constructed using either all the values from ERD/ERS or values computed from just these patterns, such as MAV or dispersion. These vectors are classified by a neural network that consists of an input layer, three hidden layers and one output layer, where the first hidden layer contains 400 neurons, the second 200 neurons and the third 100 neurons. A training set consisting of symptom vectors is used to train this neural network and Backpropagation algorithm is used for subsequent rebalancing. This tuned neural network is able to classify the motion in EEG recordings with an average accuracy of 90.05%. | en |
| dc.description.result | Obhájeno | cs |
| dc.format | 79 s. | cs |
| dc.identifier | 86120 | |
| dc.identifier.uri | http://hdl.handle.net/11025/45196 | |
| dc.language.iso | cs | cs |
| dc.publisher | Západočeská univerzita v Plzni | cs |
| dc.rights | Plný text práce je přístupný bez omezení. | cs |
| dc.rights.access | openAccess | en |
| dc.subject | elektroencefalografie | cs |
| dc.subject | erd/ers | cs |
| dc.subject | přípravné evokované potenciály | cs |
| dc.subject | neuronová síť | cs |
| dc.subject | klasifikace eeg signálu | cs |
| dc.subject | backpropagation | cs |
| dc.subject | příznakové vektory | cs |
| dc.subject | fraktální dimenze | cs |
| dc.subject.translated | electroencephalography | en |
| dc.subject.translated | erd/ers | en |
| dc.subject.translated | bereitschaftspotentials | en |
| dc.subject.translated | neural network | en |
| dc.subject.translated | eeg signal classification | en |
| dc.subject.translated | backpropagation | en |
| dc.subject.translated | feature vectors | en |
| dc.subject.translated | fractal dimension | en |
| dc.thesis.degree-grantor | Západočeská univerzita v Plzni. Fakulta aplikovaných věd | cs |
| dc.thesis.degree-level | Navazující | cs |
| dc.thesis.degree-name | Ing. | cs |
| dc.thesis.degree-program | Inženýrská informatika | cs |
| dc.title | Detekce pohybu končetin z EEG signálu při cvičení na rehabilitačním robotovi | cs |
| dc.title.alternative | Movement detection from EEG signals during exercise on a rehabilitation robot | en |
| dc.type | diplomová práce | cs |
| local.relation.IS | https://portal.zcu.cz/StagPortletsJSR168/CleanUrl?urlid=prohlizeni-prace-detail&praceIdno=86120 |
Files
Original bundle
1 - 5 out of 6 results
No Thumbnail Available
- Name:
- A19N0072P.pdf
- Size:
- 1.43 MB
- Format:
- Adobe Portable Document Format
- Description:
- Plný text práce
No Thumbnail Available
- Name:
- A19N0072Pposudek-op.pdf
- Size:
- 113.33 KB
- Format:
- Adobe Portable Document Format
- Description:
- Posudek oponenta práce
No Thumbnail Available
- Name:
- A19N0072Phodnoceni-ved.pdf
- Size:
- 51.28 KB
- Format:
- Adobe Portable Document Format
- Description:
- Posudek vedoucího práce
No Thumbnail Available
- Name:
- A19N0072Pobhajoba.PDF
- Size:
- 345.7 KB
- Format:
- Adobe Portable Document Format
- Description:
- Průběh obhajoby práce
No Thumbnail Available
- Name:
- A19N0072P-zadani_DP.pdf
- Size:
- 17.22 KB
- Format:
- Adobe Portable Document Format
- Description:
- VŠKP - příloha