An improved simple feature set for face presentation attack detection
| dc.contributor.author | Denisova, Anna | |
| dc.contributor.editor | Skala, Václav | |
| dc.date.accessioned | 2022-09-01T07:59:39Z | |
| dc.date.available | 2022-09-01T07:59:39Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract-translated | Presentation attacks are weak points of facial biometrical authentication systems. Although several presentation attack detection methods were developed, the best of them require a sufficient amount of training data and rely on computationally intensive deep learning based features. Thus, most of them have difficulties with adaptation to new types of presentation attacks or new cameras. In this paper, we introduce a method for face presentation attack detection with low requirements for training data and high efficiency for a wide range of spoofing attacks. The method includes feature extraction and binary classification stages. We use a combination of simple statistical and texture features and describe the experimental results of feature adjustment and selection. We validate the proposed method using WMCA dataset. The experiments showed that the proposed features decrease the average classification error in comparison with the RDWT-Haralick-SVM method and demonstrate the best performance among non-CNN-based methods | en |
| dc.format | 8 s. | cs |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | WSCG 2022: full papers proceedings: 30. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. | en |
| dc.identifier.doi | https://www.doi.org/10.24132/CSRN.3201.3 | |
| dc.identifier.isbn | 978-80-86943-33-6 | |
| dc.identifier.issn | 2464-4617 | |
| dc.identifier.uri | http://hdl.handle.net/11025/49574 | |
| dc.language.iso | en | en |
| dc.publisher | Václav Skala - UNION Agency | en |
| dc.rights | © Václav Skala - UNION Agency | en |
| dc.rights.access | openAccess | en |
| dc.subject | prezentace detekce útoku | cs |
| dc.subject | extrakce funkcí | cs |
| dc.subject | hloubková mapu | cs |
| dc.subject | tepelná data | cs |
| dc.subject | infračervená data | cs |
| dc.subject | WMCA | cs |
| dc.subject | SVM | cs |
| dc.subject | RDWT- Haralick-SVM | cs |
| dc.subject | MC-CNN | cs |
| dc.subject.translated | presentation attack detection | en |
| dc.subject.translated | feature extraction | en |
| dc.subject.translated | depth map | en |
| dc.subject.translated | thermal data | en |
| dc.subject.translated | infrared data | en |
| dc.subject.translated | WMCA | en |
| dc.subject.translated | SVM | en |
| dc.subject.translated | RDWT- Haralick-SVM | en |
| dc.subject.translated | MC-CNN | en |
| dc.title | An improved simple feature set for face presentation attack detection | en |
| dc.type | conferenceObject | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion | en |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- A19-full(1).pdf
- Size:
- 2.28 MB
- Format:
- Adobe Portable Document Format
- Description:
- Plný text
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: