1D finite element for modelling of turbine blade vibration in the field of centrifugal forces

dc.contributor.authorDupal, Jan
dc.contributor.authorZajíček, Martin
dc.contributor.authorLukeš, Vladimír
dc.date.accessioned2020-01-10T10:27:51Z
dc.date.available2020-01-10T10:27:51Z
dc.date.issued2019
dc.description.abstract-translatedThe paper deals with the modelling of turbine blade vibrations by means of a novel 1D finite element that has only 16 degrees of freedom. Assuming linear elastic behaviour of the blade material and considering small displacements and strains, the derived blade finite element takes into account the effects of tension, torsion and bending in accordance with the Bernoulli’s hypothesis. Additionally, the finite element interlinks bending and torsion, and respects membrane forces acting on the blade. The derivation of matrices an d vectors describing the blade finite element is provided in detail by using the Lagrange’s equations while the effect of membrane forces is included via the virtual work principle. For modelling purposes, the mathematical model of a turbine blade requires only the knowledge of cross-section contour points at several selected sections along the turbine blade axis. On the basis of these points, cross-section characteristics including the warping function are approximated along the blade axis by means of cubic splines. The advantage of this approach lies in the fact that all the blade cross-section parameters are identified before running numerical simulations. The warping function introduced in this paper and derived by variational principle describes cross-section warping caused just by torsion of a prismatic rod. For the verification of the proposed 1D finite element, an analysis of modal properties of the turbine blade M6 L-1 manufactured by Doosan Škoda Power is performed. This is achieved by comparing the lowest natural frequencies and corresponding mode shapes computed by the 1D and 3D models for a standing blade. The results revealed good agreement between both models despite the significant difference in their degrees of freedom. The applicability of the 1D finite element is further demonstrated by analyzing the dependence of natural frequencies on rotor speed.en
dc.format18 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationApplied and Computational Mechanics. 2019, vol. 13, no. 2, p. 107-124.en
dc.identifier.doihttps://doi.org/10.24132/acm.2019.463
dc.identifier.issn1802-680X (Print)
dc.identifier.issn2336-1182 (Online)
dc.identifier.urihttp://hdl.handle.net/11025/36184
dc.language.isoenen
dc.publisherUniversity of West Bohemiaen
dc.rights© University of West Bohemiaen
dc.rights.accessopenAccessen
dc.subjectkonečný prvek čepelecs
dc.subjectrychlost rotorucs
dc.subjectdeformační funkcecs
dc.subjectpřirozené frekvencecs
dc.subject.translatedblade finite elementen
dc.subject.translatedrotor speeden
dc.subject.translatedwarping functionen
dc.subject.translatednatural frequenciesen
dc.title1D finite element for modelling of turbine blade vibration in the field of centrifugal forcesen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
463-3540-1-PB.pdf
Size:
1.46 MB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: