A note on a PDE approach to option pricing under xVA

dc.contributor.authorBaustian, Falko
dc.contributor.authorFencl, Martin
dc.contributor.authorPospíšil, Jan
dc.contributor.authorŠvígler, Vladimír
dc.date.accessioned2025-06-20T08:29:45Z
dc.date.available2025-06-20T08:29:45Z
dc.date.issued2022
dc.date.updated2025-06-20T08:29:45Z
dc.description.abstractIn this paper we study partial differential equations (PDEs) that can be used to model value adjustments. Different value adjustments denoted generally as xVA are nowadays added to the risk-free financial derivative values and the PDE approach allows their easy incorporation. The aim of this paper is to show how to solve the PDE analytically in the Black-Scholes setting to get new semi-closed formulas that we compare to the widely used Monte-Carlo simulations and to the numerical solutions of the PDE. Particular example of collateral taken as the values from the past will be of interest.en
dc.format10
dc.identifier.doi10.54946/wilm.11004
dc.identifier.issn1540-6962
dc.identifier.obd43932854
dc.identifier.orcidFencl, Martin 0000-0003-3646-0319
dc.identifier.orcidPospíšil, Jan 0000-0002-4288-1614
dc.identifier.orcidŠvígler, Vladimír 0000-0003-0063-3564
dc.identifier.urihttp://hdl.handle.net/11025/60015
dc.language.isoen
dc.project.IDGA18-16680S
dc.relation.ispartofseriesWilmott
dc.rights.accessC
dc.subjectvalue adjustmenten
dc.subjectPDEen
dc.subjectcollateralen
dc.subjectMonte-Carlo simulationen
dc.titleA note on a PDE approach to option pricing under xVAen
dc.typeČlánek v recenzovaném periodiku (Jost)
dc.typeČLÁNEK
dc.type.statusPublished Version
local.files.count1*
local.files.size1868408*
local.has.filesyes*

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
BaustianFenclPospisilSvigler22wilmott.pdf
Size:
1.78 MB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections