Improving Image Reconstruction using Incremental PCA-Embedded Convolutional Variational Auto-Encoder
| dc.contributor.author | Azizi, Amir | |
| dc.contributor.author | Charambous, Panayiotis | |
| dc.contributor.author | Chrysanthou, Yiorgos | |
| dc.contributor.editor | Skala, Václav | |
| dc.date.accessioned | 2024-07-27T18:31:28Z | |
| dc.date.available | 2024-07-27T18:31:28Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract-translated | Traditional image reconstruction methods often face challenges like noise, artifacts, and blurriness, requiring handcrafted algorithms for effective resolution. In contrast, deep learning techniques, notably Convolutional Neural Networks (CNNs) and Variational Autoencoders (VAEs), present more robust alternatives. This paper presents a novel and efficient approach for image reconstruction employing Convolutional Variational Autoen coders (CVAEs). We use Incremental Principal Component Analysis (IPCA) to enhance efficiency by discerning and capturing significant features within the latent space. This model is integrated into both the encoder and sampling stages of CVAEs, refining their capability to generate high-fidelity images. Our incremental strategy mitigates scalability issues associated with traditional PCA while preserving the model’s aptitude for identifying crucial image features. Experimental validation utilizing the MNIST dataset showcases noteworthy reductions in processing time and enhancements in image quality, underscoring the efficacy and potential applicability of our model for large-scale image generation tasks. | en |
| dc.format | 10 s. | cs |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | WSCG 2024: full papers proceedings: 32. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p. 107-116. | en |
| dc.identifier.doi | https://doi.org/10.24132/CSRN.3401.12 | |
| dc.identifier.issn | 2464–4625 (online) | |
| dc.identifier.issn | 2464–4617 (print) | |
| dc.identifier.uri | http://hdl.handle.net/11025/57383 | |
| dc.language.iso | en | en |
| dc.publisher | Václav Skala - UNION Agency | en |
| dc.rights | © Václav Skala - UNION Agency | en |
| dc.rights.access | openAccess | en |
| dc.subject | zpracování obrazu | cs |
| dc.subject | rekonstrukce obrazu | cs |
| dc.subject | analýza hlavních komponent | cs |
| dc.subject | konvoluční variační automatické kodéry | cs |
| dc.subject.translated | image processing | en |
| dc.subject.translated | image reconstruction | en |
| dc.subject.translated | principal component analysis | en |
| dc.subject.translated | Convolutional Variational Auto-encoders | en |
| dc.title | Improving Image Reconstruction using Incremental PCA-Embedded Convolutional Variational Auto-Encoder | en |
| dc.type | konferenční příspěvek | cs |
| dc.type | conferenceObject | en |
| dc.type.status | Peer reviewed | en |
| dc.type.version | publishedVersion | en |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- A97-2024.pdf
- Size:
- 10.29 MB
- Format:
- Adobe Portable Document Format
- Description:
- Plný text
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: