Response probability density of a system with cross-correlated parametric and additive input noises

dc.contributor.authorNáprstek, Jiří
dc.contributor.authorFisher, Cyril
dc.date.accessioned2019-06-25T06:02:57Z
dc.date.available2019-06-25T06:02:57Z
dc.date.issued2019
dc.description.abstractData processing and subsequent mining is a widely followed task. Employment of suitable evaluation and in- terpretation procedures can significantly improve the effective resolution of measuring facility using an identical hardware equipment. Recording of time variable processes is accompanied by various internal disturbing effects as a rule. They influence parameters of the measuring facility, transducer-device transmitting, etc. These parasitic processes are usually of the random character and, consequently, they exercise as parametric noises. Moreover, the input signal mostly consists of a useful signal, which can be taken for deterministic, and of a random additive part. Due to interaction of additive noises with the device itself, the cross-correlation of both additive and multiplicative noises cannot be neglected as a rule. Various combinations of noises are the origin of random and also systematic measuring errors which can have under certain circumstances a cumulative character. Their influence deteriorates the output signal quality and can lead finally to the stochastic stability loss. These effects can be theoretically described using differential systems with stochastic coefficients and a stochastic right hand side considering all input and output processes to be of the Markov type. A direct investigation of the relevant Fokker-Planck equation is employed as the main tool. Two first stochastic moments (mathematical mean value and variance) as evolutionary processes are investigated for a general deterministic useful signal and subsequently for two special cases of this one. Both types of input random noises are considered. Conditions of stochastic stability with respect to intensities of input random processes are formulated. The probability density function is deduced as well, in order to illustrate the probabilistic character of the system response as a whole. The stochastic asymmetry of the output signal is identified. Limitation procedures show a smooth transition from a general stochastic problem to deterministic noise free input signal and its processingen
dc.format14 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationApplied and Computational Mechanics. 2019, vol. 11, no. 1, p. 39-52.en
dc.identifier.doi10.24132/acm.2019.459
dc.identifier.issn1802-680X (Print)
dc.identifier.issn2336-1182 (Online)
dc.identifier.urihttp://hdl.handle.net/11025/34830
dc.language.isoenen
dc.publisherUniversity of West Bohemiaen
dc.relation.ispartofseriesApplied and Computational Mechanicsen
dc.rights© 2019 University of West Bohemia. All rights reserved.en
dc.rights.accessopenAccessen
dc.subjectrekonstrukce signálucs
dc.subjectzkřížených korelačních vstupních procesůcs
dc.subjectFokker-Planckova rovnicecs
dc.subjectstochastický momentcs
dc.subjectasymetrie hustoty pravděpodobnosti odezvycs
dc.subject.translatedsignal reconstructionen
dc.subject.translatedcross-correlated input processesen
dc.subject.translatedFokker-Planck equatioen
dc.subject.translatedstochastic momenten
dc.subject.translatedasymmetry of the response probability densityen
dc.titleResponse probability density of a system with cross-correlated parametric and additive input noisesen
dc.typečlánekcs
dc.typearticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
459-3375-1-PB.pdf
Size:
728.07 KB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: