A new approach to turbid water surface identification for autonomous navigation

Date issued

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Václav Skala - UNION Agency

Abstract

Navigation of autonomous vehicles in natural environments based on image processing is certainly a complex problem due to the dynamic characteristics of aquatic surfaces, such as brightness and color saturation. This paper presents a new approach to identify turbid water surfaces based on their optical properties, aiming to allow automatic navigation of autonomous vehicles regarding inspection, mitigation and management of aquatic natural disasters. More specifically, computer vision techniques were employed in conjunction to artificial neural networks (ANNs), in order to build a classifier designed to generate a navigation map that is interpreted by a state machine for decision making. To do so, a study on the use of different features based on color and texture of such turbid surfaces was conducted. In order to compress the extracted information, Principal Component Analysis (PCA) was performed and its results were used as inputs to ANN. The whole developed approach was embedded in an aquatic vehicle, and results and assessments were validated in real environments and different scenarios.

Description

Subject(s)

počítačové vidění, povrch vozidla, analýza hlavních komponent, umělá neuronová síť

Citation

WSCG '2016: short communications proceedings: The 24th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2016 in co-operation with EUROGRAPHICS: University of West Bohemia, Plzen, Czech RepublicMay 30 - June 3 2016, p. 317-326.