LatEd: A Geometric Latent Vector Editor

dc.contributor.authorKomar, Alexander
dc.contributor.authorKammerer, Michael
dc.contributor.authorBarzegar Khalilsaraei, Saeedeh
dc.contributor.authorAugsdoerfer, Ursula
dc.contributor.editorSkala, Václav
dc.date.accessioned2024-07-31T18:36:16Z
dc.date.available2024-07-31T18:36:16Z
dc.date.issued2024
dc.description.abstract-translatedUsing a neural network approach, a shape may be compressed to a one-dimensional vector, the so-called latent dimension or latent vector. This latent shape dimension is examined in this paper. This latent vector of a shape is used to identify the corresponding shape in a database. Two types of networks are evaluated in terms of lookup accuracy and reconstruction quality using a database of Lego pieces. Even with small training set a reasonable robustness to rotation and translation of the shapes was achieved. While a human can interpret uncompressed data just fine, the compressed values of the network might be cryptic and thus offer no insight regarding the uncompressed input. Therefore, we introduce a latent dimension editor which allows the user to examine the geometry content of the latent vector and its influence on the decoded shape. The latent vector editor enables the visual exploration of the latent vector, by making changes to the latent vector visible in real-time via a 3D visualization of the reconstructed object.en
dc.format6 s.cs
dc.format.mimetypeapplication/pdf
dc.identifier.citationWSCG 2024: full papers proceedings: 32. International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, p.325-330.en
dc.identifier.doihttps://doi.org/10.24132/CSRN.3401.35
dc.identifier.issn2464–4625 (online)
dc.identifier.issn2464–4617 (print)
dc.identifier.urihttp://hdl.handle.net/11025/57406
dc.language.isoenen
dc.publisherVáclav Skala - UNION Agencyen
dc.rights© Václav Skala - UNION Agencyen
dc.rights.accessopenAccessen
dc.subjectneuronové sítěcs
dc.subjectGANcs
dc.subjectsigned distance fieldscs
dc.subject.translatedneural networksen
dc.subject.translatedGANen
dc.subject.translatedsigned distance fieldsen
dc.titleLatEd: A Geometric Latent Vector Editoren
dc.typekonferenční příspěvekcs
dc.typeconferenceObjecten
dc.type.statusPeer revieweden
dc.type.versionpublishedVersionen

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
D13-2024.pdf
Size:
4.94 MB
Format:
Adobe Portable Document Format
Description:
Plný text
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: