Digital Predictive Maintenance: Case Study

dc.contributor.authorBenešová, Andrea
dc.contributor.authorHirman, Martin
dc.contributor.authorSteiner, František
dc.contributor.authorTupa, Jiří
dc.date.accessioned2025-06-20T08:38:19Z
dc.date.available2025-06-20T08:38:19Z
dc.date.issued2024
dc.date.updated2025-06-20T08:38:19Z
dc.description.abstractThis paper deals with the issue of digital predictive maintenance and its application to selected equipment, focusing on a case study of climate chambers. The study analyzed the current state of maintenance of these devices, performed cost calculations, and evaluated the possible risks. Based on these analyses, a procedure for the implementation of predictive maintenance was proposed, which could lead to the reduction of the identified risks and the optimization of the costs associated with the maintenance of the equipment. The paper provides a comprehensive overview of digital predictive maintenance that includes a theoretical framework, a case study, and an implementation methodology, thus contributing to a deeper understanding of the benefits and challenges associated with this area.en
dc.format6
dc.identifier.document-number001345150300035
dc.identifier.doi10.1109/Diagnostika61830.2024.10693912
dc.identifier.isbn979-8-3503-6149-0
dc.identifier.issn2464-7071
dc.identifier.obd43943959
dc.identifier.orcidBenešová, Andrea 0000-0003-0879-7846
dc.identifier.orcidHirman, Martin 0000-0002-8481-8971
dc.identifier.orcidSteiner, František 0000-0002-5702-7015
dc.identifier.orcidTupa, Jiří 0000-0002-4329-5406
dc.identifier.urihttp://hdl.handle.net/11025/60584
dc.language.isoen
dc.project.IDSGS-2024-008
dc.publisherIEEE
dc.relation.ispartofseries16th International Conference on Diagnostics in Electrical Engineering, Diagnostika 2024
dc.subjectcase studyen
dc.subjectclimate chamberen
dc.subjectdigitalen
dc.subjectpredictive maintenanceen
dc.subjectrisk analysisen
dc.titleDigital Predictive Maintenance: Case Studyen
dc.typeStať ve sborníku (D)
dc.typeSTAŤ VE SBORNÍKU
dc.type.statusPublished Version
local.files.count1*
local.files.size237303*
local.has.filesyes*
local.identifier.eid2-s2.0-85207053057

Files

Original bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
Benesova_Digital_Predictive_Maintenance_Case_Study.pdf
Size:
231.74 KB
Format:
Adobe Portable Document Format
License bundle
Showing 1 - 1 out of 1 results
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: