Fish Motion Estimation Using ML-based Relative Depth Estimation and Multi-Object Tracking
| dc.contributor.author | Fang, Lintao | |
| dc.contributor.author | Albadawi, Mohamad | |
| dc.contributor.author | Dolereit, Tim | |
| dc.contributor.author | Kuijper, Arjan | |
| dc.contributor.author | Matthias, Vahl | |
| dc.contributor.editor | Skala, Václav | |
| dc.date.accessioned | 2024-07-21T08:53:07Z | |
| dc.date.available | 2024-07-21T08:53:07Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract-translated | Fish motion is a very important indicator of various health conditions of fish swarms in the fish farming industry. Many researchers have successfully analyzed fish motion information with the help of special sensors or computer vision, but their research results were either limited to few robotic fishes for ground-truth reasons or restricted to 2D space. Therefore, there is still a lack of methods that can accurately estimate the motion of a real fish swarm in 3D space. Here we present our Fish Motion Estimation (FME) algorithm that uses multi-object tracking, monocular depth estimation, and our novel post-processing approach to estimate fish motion in the world coordinate system. Our results show that the estimated fish motion approximates the ground truth very well and the achieved accuracy of 81.0% is sufficient for the use case of fish monitoring in fish farms | en |
| dc.description.sponsorship | This project was funded by the Federal Ministry of Education and Research under the funding code 03ZU1107MB. | cs_CZ |
| dc.description.sponsorship | This project was funded by the Federal Ministry of Education and Research under the funding code 03ZU1107MB. | en |
| dc.format | 10 s. | cs_CZ |
| dc.format | 10 s. | cs |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | Journal of WSCG. 2024, vol. 32, no. 1-2, p. 51-60. | en |
| dc.identifier.doi | https://www.doi.org/10.24132/JWSCG.2024.6 | |
| dc.identifier.issn | 1213 – 6972 | |
| dc.identifier.issn | 1213 – 6980 (CD-ROM) | |
| dc.identifier.issn | 1213 – 6964 (on-line) | |
| dc.identifier.uri | http://hdl.handle.net/11025/57344 | |
| dc.language.iso | en | en |
| dc.publisher | Václav Skala - UNION Agency | cs |
| dc.rights | © Václav Skala - UNION Agency | cs_CZ |
| dc.rights | © Václav Skala - UNION Agency | en |
| dc.rights.access | openAccess | en |
| dc.subject | index aktivity ryb | cs |
| dc.subject | sledování více objektů | cs |
| dc.subject | rekonstrukce mapy absolutní hloubky | cs |
| dc.subject | post-processingový přístup | cs |
| dc.subject | odhad pohybu | cs |
| dc.subject | rybí roj | cs |
| dc.subject.translated | fish activity index | en |
| dc.subject.translated | multi-object tracking | en |
| dc.subject.translated | absolute depth map reconstruction | en |
| dc.subject.translated | post-processing approach | en |
| dc.subject.translated | motion estimation | en |
| dc.subject.translated | fish swarm | en |
| dc.title | Fish Motion Estimation Using ML-based Relative Depth Estimation and Multi-Object Tracking | en |
| dc.type | článek | cs |
| dc.type | article | en |
| dc.type.status | Peer-reviewed | en |
| dc.type.version | publishedVersion |
Files
Original bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- B07-2024.pdf
- Size:
- 4.38 MB
- Format:
- Adobe Portable Document Format
- Description:
- Plný text
License bundle
1 - 1 out of 1 results
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: