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ABSTRACT 
The notion of transplanting limbs to enhance a motion capture database is appealing and has been recently 
introduced [Sha04], [Ike04]. A key difficulty in the process is identifying believable combinations. Not all 
transplantations are successful; we also need to identify appropriate frames in the different clips that are “cut-
pasted.” In this paper, we describe motion grafting, a method to synthesize new believable motion using existing 
motion captured data. In our deterministic scheme designed for locomotive actions, motion grafts increase the 
number of combinations by mixing independent kinematics chains with a base motion in a given clip.  
Our scheme uses a cluster graph data structure to establish correlation among grafts so that the result is 
believable and synchronized.   
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1. INTRODUCTION 
Movies and interactive applications such as games 
use virtual humanoid actors extensively. These 
virtual actors are modeled using hierarchical 
skeletons consisting of 30 or more degrees of 
freedom. Animating such characters is a daunting 
task at best. The animation data for such characters 
can be generated in one of three ways: (i) it can be 
produced procedurally by simulating various 
physical processes, (ii) it can be handcrafted 
painstakingly by skilled animators using 
forward/inverse kinematics based systems or (iii) it 
can be acquired directly from a live performer using 
motion capture devices. Method (iii) has gained 
wide acceptance in recent times because motion 
capture is the fastest way to generate rich, realistic 
animation data. In addition motion capture (mocap) 
techniques can capture even individual nuances of a 
performer and thus produce very realistic 
animation. 

Having said, this, we recognize that human beings 
are active entities that produce innumerable actions. 
A characteristic of humans is that we perform 
logically distinct and kinematically unrelated 
actions in parallel. For example, consider “a hand 
wave sequence.” A performer can wave his hands 
when in different postures — while standing, 
sitting, talking, and walking.  The actions in such 
cases may be viewed as compositional. The number 
of such compositional actions tends to grow 
exponentially. Additionally each action can be 
performed in multiple styles. For example the hand 
wave may be performed at different rates. 
Variations of the same basic motion often depend 
upon internal factors such as moods and external 
factors such interaction contexts or physical 
constraints. 

Traditionally, however, data for each actor action is 
acquired separately. In contrast to the discussion in 
the previous paragraph, such a scheme has the 
disadvantage that virtual actor actions are limited to 
the number of sequences originally captured. This 
drawback directly impacts interactive applications. 
In such applications only a few motion sequences 
corresponding to key actions performed by the 
virtual actors are used. The reason for this is 
pragmatic. It is difficult to anticipate and act out 
“all” the different combinations of actions that 
would ever be required during runtime.   Capturing 
all the possible correlated combinations is often 
neither possible nor desired despite the obvious 
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advantages of capturing a large number of 
combinations. 

This Paper 
The obvious way to deal with motion composition 
is to cut and paste motion segments across existing 
mocap clips. However, such an attempt is likely to 
result in motions that do not look human as a result 
of inherent lack of cross-body correlation.  

The correlation in a real locomotive sequence may 
be due to active intentions on part of the actor or as 
the result of passive reflex. Examples of intentional 
correlation occur in movements such as relaxed 
walking, where arms swing out of phase with the 
legs for energetic reasons. This is a gait that is 
chosen by the actor, and can be broken at will – for 
example, to scratch or to reach. Reflex correlations 
occur as a result of the body reacting to maintain 
equilibrium. For example, the arms may be 
extended out in order to balance a fall. If the arm 
movement in this case is replaced with some other 
arm movement, the resulting motion may not look 
human. In either case the correlations play an 
important role in defining believability of the final 
motion. 

While researchers in the field of behavioral 
animation have built systems, [Blu95][Per96], that 
take advantage of parallelism in actions, attempts at 
automatic composition are recent [Sha04][Ike04]. In 
this paper we describe our method to synthesize 
new motions by composing together different 
actions onto a base clips, taking into consideration 
the problems discussed above. Our solution is based 
on a scheme that breaks down the original problem 
into manageable parts as shown in Figure 1. The net 
result is (see video) that it generates believable 
grafts. 

To our knowledge motion grafting was first 
discussed in our own prior unpublished work 
[Sha04].  An interesting implementation has been 
subsequently described in [Ike04].  The work 
presented here complements the work in [Ike04] in 
the following ways: 

• For increased quality, we target only 
motions that have running, jumping, and 
walking motions.  Several unsuccessful 
transplants are reported in [Ike04]. 

• The randomization rules to generate new 
motion are not used in our work.  Instead 
currently we have used a Cartesian product 
of upper and lower body classification to 
generate candidate grafts. 

• Instead of using an SVM based 
classification to determine successful 

transplants, we use the intrinsic correlation 
available in cluster graphs. 
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Figure 1 Grafting framework. Our scheme 
starts with a discovery of locomotive motions 
from the motion capture database.  After 
classifying independent kinematics chains, a 
cluster graph data structure is used to 
correlate seemingly different motions. 
Correlation is key to generating believable 
grafts. An optional time warp enables 
“scaling” in time. 
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The rest of this paper is organized as follows. We 
first mention the related work in this area. Next we 
briefly describe our cluster graph [Bas05] data 
structure.  An overview of our process follows in 
Section 4. Details of the steps such as determination 
of independent kinematics chains are described in 
Section 5. Sample results follow to demonstrate the 
efficacy of our method (results are best viewed in 
the accompanying videos). 

2. Background 
The history of research in humanoid animation 
dates back more than 15 years. Motion synthesis 
methods can be broadly classified as kinematics 
based, dynamics based and constraint based 
methods. In addition there are also hybrid methods 
which mix one or more of the other techniques. 
More recently, methods based on motion captured 
sequences have been developed.  

Behavioral Animation 
Behavioral animation researchers have observed 
and described ways to synthesize parallel actions. 
[Blu95] describes the use of lock variables to share 
degrees of freedom between motor skills. [Per96] 
explicitly allow for action compositing in Improv. 
Therein they describe a layered architecture for 
enabling parallel execution of independent actions. 
The primary difference between these works and 
ours lies in the fact that they deal with motion 
sequences explicitly designed to work 
independently. Defining high fidelity motion 
sequences is non-trivial. [Per96] construct motion 
sequences using combinations of sine, cosine and 
coherent noise. Noise is used to generate variations 
in motion. Sequences generated in this manner, 
though not repetitive, do not contain individualistic 
nuances of the performer. We choose to work with 
motion captured data which is richer. However the 
independent actions are not well defined here. 

Gait Synthesis Techniques 
 [Mul02] provide an excellent survey of computer 
animation of human walking. [Sun01] describe a 
low-level gait generator based on sagittal elevation 
angles, which allows curved locomotion to be 
created easily. They also describe an inverse motion 
mapping algorithm that allows motion to be adapted 
to uneven terrains. In addition they describe a 
higher level control frame work that allows motion 
requirements to be specified at a high level by 
sketching the desired path. [Hod95] describe an 
algorithm that allows simulation of running, 
bicycling and vaulting. The simulation is achieved 
through control algorithms that cause physically 
realistic models to perform the desired behavior. 
[Fal01] describe a method to combine various 

physically based simulation controllers into a 
unified framework. 

Mocap based Motion Editing 
Techniques 
Mocap based techniques, unlike synthesis 
techniques described above, start with an existing 
motion and adapt it to different requirements. 
Researchers working in this field have proposed a 
number of innovative techniques adapting signal 
processing methods or employing constraint based 
solvers. [Bru95] have successfully applied 
techniques from image and signal processing 
domains to designing, modifying and adapting 
animated motions. [Unu95] describe a method for 
modeling human figure locomotion’s with 
emotions. Herein Fourier expansions of 
experimental data of actual human behaviors serve 
as a basis from which to interpolate or extrapolate 
the human locomotion’s. [Wit95] describe a simple 
technique for editing captured animation based on 
warping of the motion parameter curves. 
[Gle97][Gle98] use space-time constraint 
formulations to modify captured motion and 
retargeting motion to new characters with different 
segment lengths. [Gle01] provides a comparison of 
constraint based motion editing methods. [Lee99] 
describe a hierarchical framework for adapting 
existing motion of humanoids to externally 
specified constraints. [Shi03] describe a method that 
takes into consideration physical principles to touch 
up synthetically generated motion, so as to make it 
more plausible. 

Mocap Based Synthesis Techniques 
Motion synthesis techniques create new motion 
from existing motion data. [Kov02a], [Lee02], 
[Ari02] describe techniques to create new motion 
sequences from a corpus of motion data. Each 
technique essentially clusters similar motion into 
nodes. The next phase builds a graph of nodes, 
where each edge represents a transition between 
nodes. A walk through the cluster node graph 
results in synthesis of new motion sequences. The 
techniques differ in metrics used for clustering, 
pruning schemes and control criteria for node walk. 
[Pul00][Pul02] describe a scheme for synthesizing 
missing degrees of freedom and adding details to 
specified degrees of freedom, for a roughly 
specified motion sequence. Their method uses the 
various correlation between the various degrees of 
freedom (DOF's) within each motion sequences. 
Forsyth et. al [2] describe a technique using a novel 
search method based around dynamic programming 
to interactively synthesize motion from annotations. 
Here the system synthesizes motion corresponding 
to an annotated timeline painted by the user. 
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[Gle03] present a technique that preprocesses a 
corpus of motion capture examples into a set of 
short clips that can be concatenated to make 
continuous streams of motion. The resulting simple 
graph structure can be used in virtual environments 
where control and responsiveness are more 
important than accuracy. [Bra00] use machine 
learning techniques to model motion sequences as 
stylistic HMM parameterized by a style vector. 
Motion can be synthesized in a number of ways - a 
random walk over the HMM states, by trying to 
match given input sequence to an optimum set of 
HMM states etc. However, as the method is 
statistical there is no direct control over the desired 
motion. 

3. CLUSTER GRAPH 

We describe the cluster graph [Bas05] in brief as 
our grafting technique uses cluster graphs 
extensively. The cluster graph is a versatile data 
structure that we use to cluster together frames from 
different clips based on similarity. A cluster graph 

automatically chops individual clips and collects 
similar sub-clip sequences together. Each 
subsequence could be even half a dozen frames 
long. Seemingly unrelated clips are brought 
together into these nodes increasing the choices 
available for re-synthesis.  

Nodes in a cluster graph contain frames from one or 
more clips. Frames within a node are “similar,” that 
is, the error between any two frames is below a 
threshold. Edges are obtained from the natural 
sequential ordering of clips within nodes. Figure 2 
shows an example. 

Within a node (Figure 3), the frames are sorted by 
clips and time. Contiguous sequences of frames are 
collected together into a structure called clip-frame 
sequence. We maintain out-transitions for each clip-
frame sequence for each cluster node. Maintaining 
one transition per clip-frame sequence automatically 
prunes away transitions from contiguous frames. 

Once clip-frame sequences are clustered in a graph, 
each cluster node contains similar frames. We then 
find an intra-cluster alignment frame, ( Figure 4) for 
each clip in the cluster, using a correlation 
procedure. This alignment frame, is the best point of 
transition between any two clip-frame sequences in 
the cluster. 

Cluster graph advantages 
Cluster graph nodes contain clip-frame sequences 
from different mocap sequences clustered together 
based on similarity. These clustered clip-frame 
sequences establish correlation amongst clips. 
Cluster graphs provide a level of granularity smaller 
than those of motion graphs [14]. Traditional 
motion graphs record only one transition point 
between each pair of clips. As a result this data 
structure has been used to find transitions between 
two clips without enforcing a hard time constraint. 
For the real-time version, time is an important 
factor. We may need to transition between two clips 
at precise, or more controlled instants in time. 
Therefore it is useful to maintain as many distinct 
transition points as possible. Note further that 
transition points occur in bunches. Cluster graphs 
prune multiple transition points lying very close to 
each other temporally. 

4. METHOD OVERVIEW 
Our aim is to allow motion re-synthesis by 
selectively grafting motion signals captured on 

Figure 2 The cluster graph data structure 

Figure 3 A cluster graph node 

Figure 4 Intra-cluster alignment frames 
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different actions on to a base signal. In order to do 
this we use a collection of techniques and steps as 
illustrated by Figure 1. 

1. We start with a database of motion 
captured clips. 

2. Every clip in the mocap database is 
preprocessed to detect foot plant 
constraints. We annotate the clips with this 
information. 

3. We classify the clips based on the foot 
plant annotation into the following 
categories – “stand”, “walk”, “run”, 
“jump” and “others.” The clips of interest 
to us are the ones labeled “stand”, “walk”, 
“run” or “jump”. We discard the clips 
labeled “other”. 

4. We separate the upper body and lower 
body motion signals based on their 
respective independent kinematics chains. 
We retain the respective upper and lower 
body pair correspondence during this 
process for later use. 

5. We create a cluster graph for lower body 
motion. We use this to obtain correlation 
information amongst lower body motion.  
Lower body motion forms the base clip 
upon which grafting occurs.  

6. We create two cluster graphs for the upper 
body motion sets. The first is created with 
the entire upper body and is used for 
grafting transition information.  However, 
only a subset of transitions will not violate 
self penetration. A second cluster graph is 
created with just the root – lowerback – 
upperback – torso joint chain, to 
conservatively estimate safe grafts. 

7. We synthesize grafts as a Cartesian 
product of upper body and lower body 
motion sets. We use the composition rules 
explained below. 

8. As an optional last step we allow the 
animator to accept or reject generated clips 
before enhancing the motion database. 

4.1.1 Composition Rules 
Our categorization of motion results in upper and 
lower body motion divided into four sets 
corresponding to “stand”, “walk”, “run” and 
“jump”. We synthesize graft motion grafts by taking 
certain conservative Cartesian products of upper 
and lower body motion sets: 

1. (Upper body motion set “stand”) X (Lower 
body action sets “stand”, “walk”, “run” 
and “jump”). 

2. (Upper body motion set “walk”) X (Lower 
body motion sets “walk” and “run”) 

3. (Upper body motion set “run”) X (Lower 
body motion sets “walk” and “run”) 

4. (Upper body motion set “jump”) X (Lower 
body motion set “jump”) 

 

5. GRAFTING 
Grafting is the process of synthesizing motion. It 
essentially involves masking out the original base 
clip signal for the selected set of DOF’s and 
replacing them with those from a different clip. In 
this section we give some details of the modules in 
section 4. 

Independent Kinematic Chains 
We observe that a skeletal hierarchy essentially 
contains several kinematics chains as in Figure 5. 
For example nodes [root, lhipjoint, lfemur, ltibia, 
lfoot, ltoes] constitutes a kinematics chain. For 
different chains having a common root, the 
kinematics inter-dependency is restricted to the 

common roots DOF variables. The chains are 
unaffected by DOF variables at non root nodes. We 
call such chains “independent chains.” The motion 
signals captured for each independent chain 
constitutes an “independent action.” We think of a 
motion captured sequence to be composed of 
several “independent actions” running in parallel. 
We graft motion on to DOF’s of these independent 
kinematics chains. Cross body correlation creates 

Figure 5 Hierarchical skeleton with independent 
kinematics chains demarcated 
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inter-dependence amongst independent actions. We 
use independent kinematics chains to maintain 
correlation. We also use these kinematics chains to 
create sub-hierarchy cluster graphs. 
Six such kinematics chains are defined in Figure 5 
(seen best in color). 
Chain 1: Thorax … Head 
Chain 2: Thorax … LWrist 
Chain 3: Thorax … RWrist 
Chain 4: Root … Thorax 
Chain 5: Root … LToes 
Chain 6: Root … RToes 

Clip classification 
We use the lower body kinematics chains for clip 
classification. One of the important characteristics 
of lower body motion is the foot-plant constraint. 
We use foot-plant constraint pattern matching to 
classify clips. We make the following observation 
regarding foot-plant constraints. 

1. Standing Stationary: Both feet remain 
planted. 

2. Walking: Alternate feet are planted passing 
through a double step pose. 

3. Running: Alternate feet are planted with 
intervening stages of both feet being of the 
ground. 

4. Jumping: Both feet are either planted or in 
air simultaneously. 

We encode the foot-plant behavior as a set of string 
symbols and use simple string matching to classify 
clips. 

5.1.1 Detecting foot plant constraints 

We identify foot plant constraints by first 
identifying frames with zero crossings for vertical 
displacement (the y axis in our case). We select all 
frames which are close to the ground, within a 
given threshold. This forms the seed set of foot 
plant frames. For most normal walk sequences, we 
observe that the foot is placed on the ground for 
more than one frame. However, in a motion 

captured sequence, the foot positions may not 
coincide exactly due to foot skate. [Kov02b] 
describe a technique to identify and correct foot 
skate. We use a simpler method. From the initial set 
of foot plant frames obtained above, we 
sequentially search in both directions and cluster 
frames, near the seed foot plant frame, where the 
magnitude of the displacement vector is below a 
given threshold value. We stop the search at the 
first frame that fails the test. We then cluster 
together, like foot plant frames based on their 
sequence in the clip. 

6. RESULTS 
Our motion capture database, after categorization, 
consists of more than a 100 clips from the CMU 
motion capture database. As noted earlier the cluster 
graph data structure chops individual clips into 
smaller clip-frame sequences each of which can be 
as small as half a dozen frames. This combined with 
the ability of the cluster graph to detect and encode 
loops, results in an order or two magnitude increase 

Figure 6 Frames with heel or ball joints 
stationary detected as foot-plant frames 

Figure 7  The walk clip (top) is used as the 
base clip onto which the basket ball dribble 
(middle) is grafted to synthesize new (bottom) 
clip. WSCG2006 Full Papers proceedings 316 ISBN 80-86943-03-8



in the large number of paths through the structure. 
 Figure 7 and Figure 8 are representative of the 
results obtained using our method. In Figure 7  The 
walk clip (top) is used as the base clip onto which 
the basket ball dribble (middle) is grafted to 
synthesize new (bottom) clip. In Figure 8 The 
normal walk clip (top) is used as the base clip onto 
which arm motions from the exaggerated stride 
(middle) is grafted to yield the marching like 
motion (bottom). As can be seen (from the 
accompanying videos) the results are fairly 
believable and smooth. 

7. CONCLUSION 
In this paper we have described our method to 
enhance a collection of motion captured clips by 
synthesizing new motion. Our synthesis technique 
composes together motion onto independent 
kinematics chains of a base clips. Our composition 
rules allow us to take into account the correlation 
between different actions. We use cluster graphs 
extensively to obtain correlation information. 
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