ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3201

Computer Science Research Notes

WSCG 2022 Proceedings

Influence of the underwater environment in the procedural
generation of marine alga Asparagopsis Armata

Nelson Rodrigues
FEUP
Porto, Portugal

up200705576@edu.fe.up.pt
https://orcid.org/0000-0002-0519-7151

Rui Rodrigues
FEUP / INESC TEC
Porto, Portugal

rui.rodrigues@fe.up.pt
https://orcid.org/0000-0003-4883-1375

Antdnio Augusto Sousa
FEUP / INESC TEC
Porto, Portugal

aas@fe.up.pt
https://orcid.org/0000-0002-9883-2686

Antoénio Coelho
FEUP / INESC TEC
Porto, Portugal

acoelho@fe.up.pt
https://orcid.org/0000-0001-7949-2877

ABSTRACT

Content generation is a heavy task in virtual worlds design. Procedural content generation techniques aim to agile
this process by automating the 3D modelling with some degree of parametrisation. The novelty of this work is
the procedural generation of the marine alga (Asparagopsis armata), taking into consideration the underwater
environmental factors. The depth and the occlusion were the two parameters in this study to simulate how the alga
growth is influenced by the environment where the alga grows. Starting by building a prototype to explore different
L-systems categories to model the alga, the stochastic L-systems with parametric features were selected to generate
different alga plasticities. Qualitative methods were used to evaluate the designed grammar and alga’s animation
results by comparing videos and images of the Asparagopsis armata with the computer-generated versions.

Keywords

Procedural Generation, Parametric L-systems, Underwater Environment, Asparagopsis Armata

1 INTRODUCTION

The recreation of virtual worlds is a process that in-
volves multi-disciplinary skills from mathematics to
design, and art. 3D asset generation is a heavy pro-
cessing task, and it takes specialised knowledge from
the designer. To agile this gap, procedural content gen-
eration techniques were developed.

The novelty of this work is the application of generative
grammars to procedural generate a virtual marine alga
(Asparagopsis armata) using stochastic and parametric
L-systems, influenced by depth and occlusion as envi-
ronment impact growth factors.

L-systems are a generative grammar used for procedu-
ral techniques to model different species of plants. The
designed L-system grammar can generate parametric
non-deterministic algae that look like Asparagopsis ar-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

https://www.doi.org/10.24132/CSRN.3201.34

mata influenced by external factors of the underwater
environment. Depth and occlusion are the two parame-
ters associated with simulating the underwater environ-
ment’s impact factors on the plant growth.

The grammar was tested by building a prototype based
on WebGL to apply the proposed L-system grammar.
The application permits to control the axiom and pro-
duction rules of the grammar and to parametrize the
underwater environment. For example, the user can de-
fine the number of algae to be spawn, the space between
them and the spots where the algae are sown.

A “wave “animation based on shaders was added to the
algae, as well as a terrain with rocks and an animated
water surface were used to enhance the underwater en-
vironment sensation.

The rest of the paper is structured as follows. Sec-
tion 2 presents the literature review related to proce-
dural content generation, L-systems and its taxonomy.
The review process explores how L-systems can gen-
erate plants and vegetation content look-alike and fin-
ishes by presenting the alga’s growth dependency on
the context of seeded and particularities of Asparagop-
sis armata. Section 3 describes how the experimen-
tal design was set up, how different types of L-system
were applied. Section 4 details how depth and occlu-

ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3201

sion penalty factors were applied to the plant growth.
Section 5 presents the results, the visual comparison
between the computer-generated and real-world algae,
and section 6 discusses the results. The paper ends by
presenting the conclusions and future work.

2 LITERATURE REVIEW

Content creation is one of the main costs of developing
a video game, it is estimated to be around 30%-40%
of the US 20M —150M average budget for AAA games
[Bar19]. To agile the content creation process, procedu-
ral content generation is an alternative to manual design
of the game assets, providing techniques to automate
the content generation [Henl13]. Procedural Content
Generation (PCQG) is the algorithm creation of the game
content with limited or indirect user input [Togl1a].
The term content is related to the assets in a game: lev-
els, maps, game rules, textures, stories, buildings, mu-
sic, etc [Togl1b]. The procedural content can be char-
acterized by grouping in what kind of content is gener-
ated, how the content is represented, and how the qual-
ity/fitness of the content is evaluated [Noo16]:

* Online-Offline Generation: the content is generated
in real-time or before the game start.

¢ Necessary-Optional Content: if it is necessary or op-
tional for the particular game.

e Control Degrees: type of generation algorithm that
is used and how it can be parameterised.

e Deterministic or Stochastic Generation: the degree
of randomness in the build process.

* Constructive or Generative-with-test: output of the
algorithm. Constructive algorithms generate the
content and end execution, producing the output
result.

The methods and techniques used to generate the con-
tent can categorise the procedural content generation
(PCQG) in the following groups [Hen13]:

¢ Pseudo-Random Generation (PRNG): e.g., algo-
rithms that produce random numbers based on
mathematical formulas can be used to generate
textures.

e Generative grammars (GG), e.g., Lindermayer-
system, split grammars, wall grammars, shape
grammars.

* Image Filtering (IF), e.g., Binary Morphology, Con-
volution Filters.

* Spatial Algorithms (SA), e.g., Tiling and layering,
Grid subdivision, Fractals, Voronoi Diagrams

e Modelling and Simulation of Complex Systems
(CS), e.g., Cellular Automata, Tensor fields,
Agent-based simulation

https://www.doi.org/10.24132/CSRN.3201.34

Computer Science Research Notes

WSCG 2022 Proceedings

* Artificial Intelligence (AI), e.g., Genetic Algo-
rithms, Artificial Neural Networks, Constraint
Satisfaction and planning

Networks, Constraint Satisfaction and planning.

Aristid Lindenmayer [Lin68] created Lindenmayer sys-
tems (L-systems) to model multi-cellular organisms,
but their versatility proved suitable for modelling plants
[Fit18] with three-like structures [Cio09]. L-systems
are a formal grammar that produces strings that get
rewritten over time, in parallel. The plant structure is
decomposed into modules or components correspond-
ing to the plant’s physical units, e.g. a leaf. Each
component is represented by a character. The axiom,
composed of a specific string of components, defines
the initial state of the plant. The production rules are
composed of strings with components and information
about the rotations to be applied to x, y and z axis
[Boul2]. The plant life cycle can be reproduced by ap-
plying the production rules to the initial axiom through
successive accumulative repetitions. As an example,
the following three components can formally define an
L-system {G, R, a}, where: a) G : set of finite symbols
that represent the plant components; b) R : production
rules, specifying the transitions; ¢) a : axiom represent-
ing the initial state of the plant; Then apply an L-system
grammar defined by:

a: ar
R1: a, — a/b,
R2: a; — bja,
R3: b, —a,
R4: b —aq

G: ar, 4y, br,b]

Will produce the following sequence:

ar

a/b,

b;ara,

aay bra] b,
b;a,b;ara,b;ara,

()

The L-system taxonomy can be grouped into the fol-
lowing types [Pru96]:

¢ DOL-systems (Deterministic and context-free):
These are the simplest L-system. They are deter-
ministic: the rules applied to the axiom will always
generate the same grammar. As a consequence, all
produced content is the same.

* Bracketed L-systems (Improve branching by saving
state): Group a set of components inside a closed
pair of the brackets. Restore the initial state after
applying the rules inside the brackets.

e Stochastic L-systems (Define rules to a symbol
based on a probability): The non-deterministic

ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3201

technique, named stochastic L-system, was used to
generate different plants from the same axiom and
rules. Each plant component has more than one rule
associated. Then, for each iteration is randomly
chose a different rule associated with a component.

e Context-sensitive L-systems (Depends on neigh-
bour’s symbols context): Captures the interaction
between adjacent elements of the developing struc-
ture. The activation of the production rules is based
not only on substituted symbols but also on their
neighbours.

* Differential L-systems: Enables interactions be-
tween plant components during development.
Combination of discrete-continuous models of de-
velopment, modules are created discretely, obeying
the production rules but developed continuously
described by differential equations.

e Parametric L-systems (Add numerical parameters,
e.g., line length): The previous techniques produce
plants with the same angles and components length.
The visual result of the plant is complete symmet-
rically. Parametric L-system overcomes this limita-
tion by configuring the length of the different com-
ponents and the values of the rotation angles.

Turtle geometry [Gol04] can be used to draw the L-
systems. The plant components are drawn one by one,
moving forward in a defined heading. As a metaphor,
each component is drawn on paper without lifting the
pen. At each iteration step, the turtle saves a state com-
posed of a position and heading. For L-systems that
support branching when the production rules parser find
a ‘[’, it will push the turtle state to a stack, and when it
finds ‘], the turtle state will be popped, and the turtle
states switch to the state before the ‘[.

The virtual generation of virtual crops has into consid-
eration the environment’s influence on the growth and
the plasticity of the plant [Mar17] essential to generate
reliable simulations to study the evolution of the crops.
Soil fertility and space distribution are examples of in-
fluencing factors [Tal20] that can be used to define a
fit function for modelling plant growth. Small muta-
tions were added to the L-system grammar generation
process to augment the plant diversity and validate the
more suitable plants to survive in the simulated envi-
ronment [Bor09]. This work will focus on the procedu-
ral generation of underwater environments. Diverse im-
pact factors can influence the sea-life distribution, such
as space competition, wave energy and sunlight attenu-
ation [Lil4].

The algae intended to be procedurally generated in this
work lives in a marine ecosystem. These ecosystems
are composed of multiple actors that can be procedural
generated: terrain, biofouling, vegetation, water (caus-
tics), and sea life. The red alga Asparagopsis armata

https://www.doi.org/10.24132/CSRN.3201.34 275

Computer Science Research Notes

WSCG 2022 Proceedings

was chosen to perform the procedural generation of
marine algae. The Asparagopsis armata was first de-
scribed in 1885 by Harvey and is an invasive alga from
Australia [And0O4] present in the North Atlantic ocean.
The alga commonly grows at depths from zero to ten
meters and has high potential growth in environments
with more light intensity [MonO5].

3 METHODS AND MATERIALS

Identifying the main alga components and the influence
growth factors were the initial steps to set up the ex-
periment. Then, an L-system grammar was designed to
model the alga and impact factors on alga growth were
defined. The experimental setup is based on a web ap-
plication where a user can write axioms and production
rules to generate a 3D visualisation of the alga.

A WebGL based library was used to build the pro-
totype. In addition, different categories of L-system
grammars are supported by the application, and ma-
rine environment parameterisations are available to the
users through a minimal user interface.

3.1 Algae Components

To correctly model the alga, an initial study about
alga Asparagopsis armata morphology was performed.
Three main components were identified to model the
alga plasticity: branches, stolons, and filaments. The
filaments are a thin branch that looks like cotton, and
stolons look like a hook/harpoon, and the branches
constitute alga structure support (Figure 1 1).

Stolon

Filaments

Figure 1: Algae plasticity.

Each component is computer-generated using basic
geometric solids. A cylinder with a sphere on top is
a branch. Filaments are represented by a cone. The
stolon is composed of a cylinder as a base, a sphere and
a cone (Figure 2).

3.2 Algae Grammar

A generative grammar was defined to model the alga,
(Table 1). The branch is represented by the character
’B’, the stolon by the character ’S’, and filaments by
the character "F’. The ’+” and ’-’ were used to rotate
on the z-axis, the *\” and /> were used to rotate on the
x-axis, and the characters ’<’ and ’>’ to rotate on the
y-axis. The characters ’[* and ’]" were used to create a
new state and return to the previous form.

! http://www.omare.pt/pt/galeria-especies/687

ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3201
_- Cylinder
- Branch N
l - Sphere
Algae e Filaments --------c---oen Cone
Grammar () (- Cylinder

-- Sphere

T Cone

Algae1 (...) Algae N
Figure 2: Alga’s components.

Action

Component
B Create a Branch component
Create a Stolon component
F Create a Filament component

Axis rotation
Rotate positive in the z-axis
Rotate negative in the z-axis
Rotate positive in the x-axis
Rotate negative in the x-axis
Rotate positive in the y-axis
Rotate negative in the y-axis

State

Push (create a new state)
] Pop (return to the previous state)

Character |

+

VIA |>~—1"

Table 1: L-system Grammar

The advance on the drawing process of the alga is per-
formed by using the turtle graphics technique.

Different categories of L-systems were explored, start-
ing by Deterministic Context-Free (DOL) with bracket
support to branch preservation state, non-deterministic
stochastic and parametric L-systems.

3.2.1 Deterministic Context-Free (DOL) Sys-
tems

With this category of L-system the rules applied to the
axiom will always generate the same grammar. As a
consequence, all algae look precisely the same. Start-
ing by a simple axiom, a ‘Branch ’will create a ‘Stolon
*with a negative rotation of 30A° degrees on the z-axis
and a filament ‘Stolon ’with a negative rotation of 30A°
degrees on the z-axis (Table 2).

Axiom | B
Rule for Branch | B-[S]-[F]
Rule for Stolons | S
Rule for Filaments | BF

Table 2: DOL-system grammar

The following character sequence is generated by iter-
ating three times over the defined grammar:

https://www.doi.org/10.24132/CSRN.3201.34

Computer Science Research Notes

WSCG 2022 Proceedings

Iteration 1 — B-[S]-[F]
Iteration 2 — B-[S]-[F]-[S]-[BF]
Iteration 3 — B-[S]-[F]-[S]-[BF]-[S]-[B-[S]-[F]BF]

The alga evolution dictated by the generated grammar
is illustrated in Figure 3. Each iteration is added a new
Branch, Stolon, and Filaments with a negative rotation
in the z-axis.

It. 1 It. 2 It. 3

Figure 3: Iterating over the DOL-system grammar.

3.2.2 Stochastic L-systems

In nature, each alga is unique. To obtain similar results,
non-deterministic grammar with stochastic behaviour
was added to the prototype. Each component has more
than one production rule, and each iteration is chosen
randomly (Table 3). As a result, the same initial axiom
and production rules will produce different characters
chains and consequently different algae.

A weight factor can be attributed to each rule. This
parametrization enables the creation of models of a
stochastic alga in a specific direction or form. Figure
4, illustrates that, by randomly assigning different rules
to the Filaments component made it possible to obtain
three different algae at the end (Figure 5). The process
is repeated for each component in iteration.

3.2.3 Parametric L-System

The previous techniques produce algae with the same
angles and same components length. The final visual
result of the algae is completely symmetrical. To con-
figure the length of the different components and the
values of the rotation angles two new parameters were
added to the grammar, (Table 4).

A numeric value is assigned to the rotation angle be-
fore a character that corresponds to an axis rotation. If
the character corresponds to a component, the numeric
value will be assigned to the component’s scale (Figure
6). If no value is present before the character, a default
value is assigned.

Thus, the value of the advance on the turtle geometry is
the same as the component scale.

4 ALGAE GROWTH PENALTIES

According to [Mon05] the light intensity influences the
alga (Asparagopsis armata) growth. In the underwa-
ter environment, the light tends to decrease with the in-
crease of depth. Also, the occlusion by neighbour algae

ISSN 2464-4617 (print) Computer Science Research Notes
ISSN 2464-4625 (DVD) CSRN 3201 WSCG 2022 Proceedings

Axiom | B

Rule for Branch 1 | B[-S]<[[F]/[F]]+

Rule for Branch 2 | B[B]>[B]

Rule for Stolons 1 | [S]<[S]>[S]

Rule for Stolons 2 | [-S][-S]>[-S]
Rule for Filaments 1 | [F][B]
Rule for Filaments 2 | [-B[F]-[F]-»[F]-\[F]-/ / [F]-»[F]]
Rule for Filaments 3 | [B[F]-[F]-»[F]++\[F]-[F]+-//[F]-{F]]

Table 3: L-Stochastic grammar

Value Action

Random value X [0,1to 1] Value before a component character, cor-

responding to a scale value, e.g [0.9B] will
scale the length of the branch to 90% of its
unitary value.

l 0.1...0.9
Weight factor [0,1t00,39] [0,4t00,89] [0,9to1]

" » [rulel, rule2, rule3] Value before a rotation component, corre-
1..90 sponding to the value of the rotation angle,
e.g [45+F] will rotate a Filaments compo-
F1 — [FIIE] nent in positive on z-axis 45 degrees.
“F2" __, [-BIFI-[FI->>[FI-\[F]-//[F]->>[F]] -
“F37 —— [B[F]-[F]->>[F1++\[F]—[Fl+-//[F]-[F1] Table 4: Parametric L-system grammar

B[BI>[BI-[[-S][-SI>[-SII[FI[E]] . . .
impacts the amount of light absorbed by s single alga.
OR These environmental impact factors were chosen to in-
fluence the algae growth supported by the developed
B-[SIFI-[[-S][-SI>[-SI[[-BIFI-[F1->>[FI\[F]-// [F]->>[F

SIFHESIESESIE- B> PR/ />R prototype, as illustrated on the fit function “(1)”.

OR

tion —
position = x,y,z (1)

scale = 1— (depth penalty + occlusion penalty)

B-[SIFI-[[-S][-SI>[-SII[BIFI-[F]->>[F1++\[F]--[F]+-//[FI--[F]1] seed = {

Figure 4: Applying L-Stochastic production rules for

the Filaments. 4.1 Depth
In underwater environments, with the increase of depth,
the light intensity decrease. The Asparagopsis armata

i % produces algae with longer length on spots with higher
-) light intensity. When the alga is seeded, a penalty factor
is set to simulate the relation between depth and growth
behaviour. With the decrease of y-value, a high level
of penalty factor is set. This factor will correspond to a
decrease in the scale of algae (Figure 7).
F3

Depth Scale
F1 F2

Figure 5: Possible outputs of applying L-stochastic Fil-
aments production rules.

s compare Figure 7: Seabed cross-cut relating depth with alga’s
[\ scale.
C:LJ: I 4.2 Occlusion

The first approach to simulate the algae occlusion
penalty was based on the z-value of the seed position
related to the light spot. The algae that were further
away from the light origin is assigned a higher penalty

Figure 6: DOL-systems on the left with fixed angles
and Filaments length, L-Parametric on the right enables
to configure angles and components length.

https://www.doi.org/10.24132/CSRN.3201.34 277

ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3201
% 00y, 2)
<1 =
DVQ ? !
| Algae
1
I
- + (zvalue)

Figure 8: Seabed cross-cut representing algae further
away from the fixed spotlight have a smaller scale.

factor. High values of this factor will correspond to a
decrease in the alga’s scale (Figure 8).

The second approach was based on the number of com-
ponents produced from alga’s grammar. Alga with
more components will need more space to evolve and
will occlude algae with fewer components. Algae with
fewer components will have a high penalty factor that
will decrease the scale of the alga (Figure 9).

Begin

—

Seed1

il —

Produce Grammar

—

Seed N

Produce Grammar

v ¥
Calculate Calculate
Number of Number of

Components Components

Sort algae by the number of
components in descending order

v

Set occlusion penalty in ascending order

Occlusion
Penalty

Figure 9: Definition of the occlusion penalty based on
the number of components.

https://www.doi.org/10.24132/CSRN.3201.34

278

Computer Science Research Notes

WSCG 2022 Proceedings

S ALGA ANIMATION

To animate the alga two different techniques were used.
The first approach uses the CPU to animate the alga
based on translations and rotations by changing only
the x and y-coordinate values in the world coordinate
system. When the alga is instantiated, a slightly random
value is assigned to the z-axis (upwards direction) to
give the sensation of individual wave movement to the
alga within the group. The loop of the movement was
based on a sinusoidal function (Figure 10).

Figure 10: Alga animation based on translations.

The second approach of the alga animation was per-
formed using shaders (GPU) that permit to obtain a
dedicated animation for each alga. The vertice trans-
formations are performed on the vertex shader. The
x-coordinate is displaced, having as reference the y-
coordinate value in the object coordinate system. The
z-coordinate value is calculated based on a sinusoidal
function to simulate the wave loop movement (Figure
11). The current 3D representation of the alga does not
have a component hierarchy relation. The vertices with
high values will decrease the offset value to avoid the
algae components getting apart.

Figure 11: Individual alga animation using shaders.

6 RESULTS
6.1 L-system grammars

It was possible to explore different types of L-systems,
starting from the most basic deterministic DOL-System
to parametric L-systems, adding a non-deterministic
behaviour (Figure 12).

ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3201

S

Figure 12: Three algae using parametric L-system with
stochastic behaviour.

6.2 Depth penalty factor

The depth factor penalty produces the effect illustrated
in Figure 13: algae instantiated in positions with lower
y-values, are smaller than their neighbours with higher
values on y-coordinates.

Figure 13: Visul representation of depth penalty.

6.3 Occlusion penalty factor

The first approach, using the z-coordinate as a reference
relative to the light source, draws smaller algae compar-
ing with algae spawned with high z-coordinate values
(Figure 14).

Figure 14: Occlusion using the alga distance to the
spotlight. The green arrow illustrated the light direc-
tion from the light source

The second approach used to apply the occlusion
penalty was based on the number of components
generated by the initial grammar when sown. Algae
with more number of components will have a minor
penalty in their scale and, as a consequence, will
produce larger algae (Figure 15).

https://www.doi.org/10.24132/CSRN.3201.34

279

Computer Science Research Notes

WSCG 2022 Proceedings

Figure 15: Occlusion is based on the number of com-
ponents generated by the grammar.

6.4 Grammar render time

The grammar’s performance was measured by logging
the time it takes to display the L-system grammar dur-
ing 1000 render loops. Table 5 presents the average
time in milliseconds for the render loop session. The
first trials were defined a DOL grammar and iterated 3
and 5 times through it. The same procedure was fol-
lowed for the L-system parametric grammar.

Scene Time (ms)

1 alga 3 iterations (DOL) 23

1 alga 3 iterations (Parametric) 100.7
1 alga 5 iterations (DOL) 39.8
1 alga 5 iterations (Parametric) 269.2
3 algae 3 iterations (DOL) 39.8
3 algae 3 iterations (Parametric) 179.5
3 algae 5 iterations (DOL) 54.1

3 algae 5 iterations (Parametric) 801.4

Table 5: Average time to render the L-system grammar.

The tests were performed in a machine with the fol-
lowing specifications: Processor: Intel(R) Core(TM)
i7-9750H CPU @ 2.60GHz; RAM: 16 GB; Graphics
card: NVIDIA GeForce RTX 2070 Max-Q); .OS: Win-
dows 11.

7 DISCUSSION

The procedural content generation of the alga is vali-
dated using the qualitative methods by comparing the
“look-and-feel “of the alga generated by the grammar
and penalty growth factors with images and videos of
real Asparagoris Armata.

The procedural generation algorithm to generate the
alga has evolved through the use of different categories
of L-systems. The DOL-system grammar does not cor-
rectly model the alga. The Branches have all the same
angle and length, which is not the default behaviour
present in nature. The Stolons have the wrong pro-
portions. With the introduction of parametric features
to the L-system grammar, it was possible to model the
components with different lengths and set different an-
gles to the rotations to create a more natural look. The

ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3201

Figure 16, illustrates the evolution of alga procedural
generation starting on the left by presenting the output
of the DOL-systems and on the right the output of para-
metric L-systems.

Figure 16: Alga procedural generation time-lapse.

In Figure 17, the alga generated with DOL-systems has
the same angle for each rotation and length for all com-
ponents of the same type. Consequently, this L-system
generates algae that look symmetric and "quadratic”.
On the other side, using the parametric L-system with
stochastic behaviour, it is possible to model algae with
different rotation angles and component lengths. The
final visual result is algae result with plasticities close
to what is possible to encounter in nature.

Figure 17: Comparison between the computer-
generated DOL-system (left) and L-Parametric (right).

The occlusion penalty based only on the depth value
was discarded (Figure 14) because the light is scattered
in the underwater environment, and it is not directional
from a single source. Having as a reference the distance
to the spotlight will not get close to actual behaviour.
The best occlusion technique is based on the number
of alga components and the space it needs to evolve.
The alga with more components will occlude the light
to their neighbours that will grow less (Figure 15).

Concerning the alga animation, the algorithm that runs
on the CPU is not visually correct because the algae
move exclusively in a group and not individually, so the
global algae visualisation looks too uniform. However,
with the implementation of the animation on the shader
(GPU), each alga has its own movement pattern and
does not suffer from the uniform translation behaviour.

Using parametric L-systems with stochastic behaviour,
plus the alga animation and the recreation of the un-

https://www.doi.org/10.24132/CSRN.3201.34

Computer Science Research Notes

WSCG 2022 Proceedings

derwater environment, it is possible to generate non-
deterministic content similar to the alga Asparagopsis
armata. Also, combining generative grammars based
on the parametric L-systems, animation, and growth
penalty factors makes it possible to model algae sim-
ilarly to Asparagopsis armata. (Figure 18 2).

2 .l CARNTUR N S

Figure 18: Comparison between alga in the underwater
environment (left) and the computer-generated (right).

A comparison video between the algae in the underwa-
ter environment and the computer-generated version is
available on supplemental material.

The DOL-Systems are faster regarding the grammar’s
render time to generate the alga(e). The parametric L-
system uses a scale factor to resize individual compo-
nents of the alga, and for each iteration, it is necessary
to save the component’s state, leading to high values
related to the render time to display the alga(e).

8 CONCLUSIONS AND FUTURE
WORK

With this work was possible to generate 3D models of
the marina algae Asparagopsis armata look-alike. The
developed prototype made it possible to explore differ-
ent types of L-systems to model the marine alga As-
paragopsis armata. Furthermore, the procedural gen-
eration process included external environmental fac-
tors (depth and occlusion) that influence algae growth.
The generative grammar with the best results was the
combination of parametric L-system with stochastic be-
haviour, enabling the generation of unique look for each
alga and, at the same time, algae with similar morpholo-
gies to those found in nature. The procedural generation
of the occlusion impact in the alga's growth, consider-
ing the sparsity of the light of the underwater environ-
ment, the number of the components of the alga's neigh-
bours was the technique chosen.

As future work, it will be created a relationship or hier-
archy between the different alga components. This hi-
erarchy will enable the exploration of animation mech-
anisms, e,g. Kinematics, and add rules to the gram-
mar to procedural generate them. Also the generation
of multiple alga’s component for a high number of iter-
ations will be improved. When the complexity of the
grammar grows, it is resource-heavy to draw all the
primitives. Writing complex L-systems grammars is

2 https:/lic.kr/p/Mc8uLp

280

ISSN 2464-4617 (print)

ISSN 2464-4625 (DVD) CSRN 3201

prone to errors, and it is challenging to design hierar-
chical relations between the plant and the components
only by typing text into the system. In future iterations,
incorporate strategies of inverse procedural modelling
[Stal0], and control mechanism based on data-driven
procedural techniques to infer the grammar from im-
ages or sketch-based inputs to provide intuitive interac-
tions to the designers [Len21].

9 REFERENCES

[And04] Andreakis, N., Procaccini, G. & Wiebe HCF
Kooistra Asparagopsis taxiformis and Asparagop-
sis armata (Bonnemaisoniales, Rhodophyta): ge-
netic and morphological identification of Mediter-

ranean populations. European Journal Of Phycol-
0gy. 39, 273-283 (2004).

[Bar19] Barriga, N. A Short Introduction to Procedural
Content Generation Algorithms for Videogames.

International Journal On Artificial Intelligence
Tools. 28, 1930001 (2019).

[Bor09] Bornhofen, S. & Lattaud, C. Competition and
evolution in virtual plant communities: a new
modeling approach. Natural Computing. 8, 349-
385 (2009), https://doi.org/10.1007/s11047-008-
9089-5

[Boul2] Boudon, F., Pradal, C., Cokelaer, T.,
Prusinkiewicz, P. & Godin, C. L-Py: An L-System
Simulation Framework for Modeling Plant Archi-
tecture Development Based on a Dynamic Lan-
guage. Frontiers In Plant Science. 3 pp. 76 (2012).

[Cio09] Ciosek., K. & Kotowski., P. GENERATING
3D PLANTS USING LINDENMAYER SYS-
TEM. Proceedings Of The Fourth International
Conference On Computer Graphics Theory And
Applications - GRAPP, (VISIGRAPP 2009). pp.
76-81 (2009).

[Fit18] Fitch, B., Parslow, P. & Lundqvist, K. Evolving
Complete L-Systems: Using Genetic Algorithms
for the Generation of Realistic Plants. Artificial
Life And Intelligent Agents. pp. 16-23 (2018).

[Gol04] Goldman, R., Schaefer, S. & Ju, T. Turtle ge-
ometry in computer graphics and computer-aided
design. Computer-Aided Design. 36, 1471-1482
(2004).

[Hen13] Hendrikx, M., Meijer, S., Van Der Velden,
J. & Tosup, A. Procedural content generation for
games: A survey. ACM Transactions On Multi-
media Computing, Communications And Applica-
tions. 9, 1-22 (2013).

[Len21] Lena Gieseke, Paul Asente, Radomir Méch,
Bedrich Benes, and Martin Fuchs. A survey of
control mechanisms for creative pattern genera-
tion. Computer Graphics Forum, 40(2), pp.585-
609, 2021

https://www.doi.org/10.24132/CSRN.3201.34 281

Computer Science Research Notes

WSCG 2022 Proceedings

[Lil4] Li, R., Ding, X., Yu, J., Gao, T., Zheng, W.,
Wang, R. & Bao, H. Procedural generation and
real-time rendering of a marine ecosystem. Jour-
nal Of Zhejiang University SCIENCE C. 15, 514-
524 (2014).

[Lin68] Lindenmayer, A. Mathematical models for
cellular interactions in development II. Simple
and branching filaments with two-sided inputs.
Journal Of Theoretical Biology. 18, 300-315
(1968).

[Mar17] Marshall-Colon, A., Long, S. P., Allen, D. K.,
Allen, G., Beard, D. A., Benes, B., von Caem-
merer, S., Christensen, A. J., Cox, D. J., Hart, J.
C., Hirst, P. M., Kannan, K., Katz, D. S., Lynch, J.
P., Millar, A. J., Panneerselvam, B., Price, N. D.,
Prusinkiewicz, P., Raila, D., Shekar, R. G., Shri-
vastava, S., Shukla, D., Srinivasan, V., Stitt, M.,
Turk, M. J., Voit, E. O., Wang, Y., Yin, X., and
Zhu, X.-G. Crops In Silico: Generating Virtual
Crops Using an Integrative and Multi-scale Mod-
eling Platform Frontiers in Plant Science, vol.8,
(2017).

[Mon0O5] Monro, K. & Poore, A. Light quantity and
quality induce shade-avoiding plasticity in a ma-
rine macroalga. Journal Of Evolutionary Biology.
18, 426-435 (2005).

[Nool6] Noor Shaker, Julian Togelius & Mark J. Nel-
son Procedural Content Generation in Games.
(Springer, Cham,2016).

[Pru96] Prusinkiewicz, P. & Lindenmayer, A.
The Algorithmic Beauty of Plants. (Springer-
Verlag,1996).

[Stal0] St’ava, Ondrej and Bene§, Bedrich and Méch,
Radomir and Aliaga, Daniel G and KriStof, Peter.
Inverse procedural modeling by automatic gener-

ation of L-systems. Computer Graphics Forum,
vol. 29, pp.665-674, (2010)

[Tal20] Talle, J. & Kosinka, J. Evolving L-Systems in a
Competitive Environment. Advances In Computer
Graphics. pp. 326-350 (2020).

[Toglla] Togelius, J., Kastbjerg, E., Schedl, D. & Yan-
nakakis, G. What is Procedural Content Genera-
tion? Mario on the Borderline. Proceedings Of
The 2nd International Workshop On Procedural
Content Generation In Games. (2011).

[Togl1b] Togelius, J., Yannakakis, G., Stanley, K.
& Browne, C. Search-Based Procedural Con-
tent Generation: A Taxonomy and Survey. /IEEE

Transactions On Computational Intelligence And
Al In Games. 3, 172-186 (2011).

