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ABSTRACT
Recent research in 3D shape analysis focuses on the study of visual attention on rendered 3D shapes investigating
the impact of different factors such as material, illumination, and camera movements. In this paper, we analyze
how the pose of a deformable shape affects visual attention. We describe an eye-tracking experiment that studied
the influence of different poses of non-rigid 3D shapes on visual attention. The subjects free-viewed a set of 3D
shapes rendered in different poses and from different camera views. The fixation maps obtained by the aggregated
gaze data were projected onto the 3D shapes and compared at vertex level. The results indicate an impact of
the pose for some of the tested shapes and also that view variation influences visual attention. The qualitative
analysis of the 3D fixation maps shows high visual focus on the facial regions regardless of the pose, coherent with
previous works. The visual attention variation between poses appears to correspond to geometric salient features
and semantically salient parts linked to the action represented by the pose.
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1 INTRODUCTION
Understanding and modeling human visual attention
is a relevant research topic that has been widely
investigated in computer graphics and computer vi-
sion [Bor13]. Several applications relying on user’s
gaze detection and analysis have been proposed in the
last decades. Foveated or selective rendering [Pat16]
and mesh simplification [Lar11] are some examples
of computer graphics applications aiming at high
perceived visual quality of the scene. In computer
vision, many object recognition and object detection
applications are based on saliency models [Bor13].

In 3D shape analysis, the concept of mesh saliency was
introduced in [Lee05]. The authors presented a method
to compute a per-vertex saliency measure on the 3D
mesh inspired by low-level visual attention. Several
other works, e.g. [Wu13, Lei16], proposed similar
surface-based saliency models focusing on the geomet-
ric properties of the 3D mesh. Recent works provided
a step forward into the analysis of visual attention ap-
plied to static 3D shapes, investigating the influence of
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other factors such as different camera views [McD09],
rendering lighting conditions, materials, and camera
movements [Lav18]. In general, the datasets used in
these works consist of rigid 3D shapes such as 3D mod-
els of statues, vases, mechanical objects, and non-rigid
shapes in resting positions like a quadruped animal
standing on four legs. However, in real application
scenarios, it is common to deal with deformable shapes
that move and assume different poses, in addition to
views. For this reason, we focus on investigating visual
attention variations when looking at the same shape
holding different poses. Our contribution with this
paper is to perform a first step to explore how pose
could potentially influence visual attention. This is
done by acquiring and analyzing eye-tracking data
from observers viewing near-isometric deformations of
3D shapes, i.e. human or animal shapes, in different
poses.

In the experiment presented in this paper, we asked the
participants to free-view a computer screen displaying
a set of 3D shapes rendered in different poses and from
different angles. We acquired the participants’ gaze
data using an eye tracker and we computed the 2D ag-
gregated fixation maps. Each 2D fixation map has then
been projected onto the related 3D shape transferring
the fixation data to the vertices of the mesh and creat-
ing a 3D fixation map. The 3D fixation maps of the
same shape in different poses have then been compared
to each other to analyze variations in visual attention.
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The remainder of the paper is organized as follows:
Section 2 presents previous works on visual attention
related to 3D models by eye-tracking analysis; Sec-
tions 3 and 4 describe the process to create the stim-
uli used during the experiment, the equipment used,
and the experiment methodology. Section 5 presents
the process of creating the 3D fixation maps, while the
comparison between 3D fixation maps is described in
Section 6. Since we aggregate the fixation data from
our valid set of participants, an analysis of the consis-
tency across participants’ data (Inter Observer Congru-
ency) is required and it is described in Section 7. The
results are analyzed in Section 8, while in Section 9 we
summarize the findings of our work.

2 RELATED WORK
In the last decades, several works investigated vi-
sual attention on 3D objects through the analysis of
eye-tracking data focusing on different perspectives.
In [How05], the authors, through a set of experiments
differing in tasks, analyzed gaze data to determine
salient features of 3D models in the context of mesh
simplification to maintain high perceptual quality. The
sets of 3D models used in these experiments include
natural objects, i.e. animal shapes, and artifacts. One
of the results showed that the heads of natural objects
obtained high values of saliency. Similar findings were
presented in [McD09]; this work focused on the analy-
sis of salient body parts of virtual human characters in
crowd rendering, revealing high saliency for the heads
and the upper torsos. The models displayed in these
experiments were textured human characters wearing
different casual outfits, either standing in a neutral
position or performing walk cycles.
In [Kim10], the mesh saliency model presented by Lee
et al. [Lee05] was compared with fixation data acquired
through an experiment to verify their similarity. In this
experiment, Lee et al. saliency model showed higher
correlation values than a random model indicating a
correspondence between the saliency model prediction
and human eye fixations. Here, the comparison analy-
sis was performed at image level applying a modified
version of the chance-adjusted saliency metric [Par02].
More recent works studied visual attention directly on
the 3D shapes, both real 3D printed [Wan16, Wan18]
and virtual [Lav18]. Saliency models like [Lee05] were
also analyzed in [Wan16, Lav18], however in these
studies they exhibited poor performance in predicting
human fixations, demonstrating the complexity of the
visual attention process.
These existing saliency models are based only on the
analysis of the geometric features of the shapes. The
authors of [Lav18, Wan18] studied also the impact of
other conditions on visual attention, such as view ori-
entation and material. In [Lav18], it was reported a sig-
nificant influence of material, light setting, and camera

paths on fixation data when inspecting virtual 3D mod-
els. In a setting with real objects [Wan18], different
camera views provided different results on fixations; in
contrast, the two analyzed materials did not determine
any significant difference. Based on these recent find-
ings, we were inspired to go a step further and analyze
a property that, to the best of our knowledge, has not
studied before, the impact of different poses of non-
rigid shapes from different views.

3 CREATION OF THE STIMULI
Six non-rigid characters have been selected from the
TOSCA high-resolution dataset [Tos, Bro08] for non-
rigid shape similarity and correspondence experiments.
Meshes of the same character in different poses have
the same triangulation and the vertices are listed in the
same order. This allows a direct comparison at a per-
vertex level. The selected characters are two human
males, a horse, a cat, a gorilla, and a centaur. The av-
erage number of vertices is about 35000. For each of
the chosen characters, four different poses have been
selected for a total of 24 different meshes. As shown
in Figure 5 and Figure 6, the poses include resting po-
sitions (e.g. Horse0, Michael15), as well as extreme
actions (e.g. Horse10, Centaur3), common (e.g. Cat2)
and more uncommon (e.g. Gorilla8) positions.

Each mesh was rendered from three different camera
locations: one in front of the mesh (V0), one at a 45◦ an-
gle (V45), and the last one at 90◦ angle (V90). For meshes
belonging to the same character, the cameras were posi-
tioned at a constant distance from the center of mass of
each mesh. The height of the camera center was set at
the same height as the center of mass of the mesh. All
meshes were rendered using Blender 2.801 Eevee en-
gine, with a Lambertian gray shading. The same light-
ing setup was used for each camera view, with a single
light providing uniform illumination positioned behind
the camera and pointing at the same direction of the
camera. The final rendered images have a resolution of
1920×1080.

4 EXPERIMENT EQUIPMENT AND
PROCEDURE

The stimuli were visualized on a 15.6 inches laptop
screen. A Tobii X2-30 eye tracker was used to col-
lect the gaze data of the participants. This device has
a sampling rate of 30 Hz and a gaze accuracy of 0.4◦

under ideal conditions. Tobii Pro Studio software2 was
used to design the experiment and record the gaze data.
21 participants were recruited for the experiment, hav-
ing normal or corrected-to-normal vision and they were

1 https://www.blender.org
2 https://www.tobiipro.com/product-listing/
tobii-pro-studio/
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not aware of the purpose of the experiment. Partici-
pants’ age ranged from 19 to 46. The reported gen-
ders were 7 F, 13 M, and 1 “Prefer not to answer”. The
data collected from four participants were rejected due
to calibration issues or a low percentage of valid de-
tected gaze. After reading the experiment instructions
and signing the consent form, the session started with
a 9-points calibration procedure for the eye-tracker de-
vice. During the 9-points calibration, the participant
was asked to follow a moving red dot on the screen, this
procedure lasts for around 40 seconds. As an additional
check of the calibration accuracy, the first stimuli set
were four images of a cross positioned in different areas
of the screen. Each image was shown for four seconds
and the participants were asked to look at the center of
each cross. Thereafter, the participants were asked to
free-view the set of 72 rendered images, each for seven
seconds with a monochromatic (mid-gray) image in be-
tween the stimuli of the duration of two seconds to sep-
arate stimuli reactions. The order in which the rendered
images were displayed was randomized for each partic-
ipant to prevent an order effect bias [Cun11].

5 3D FIXATION MAPS

The first step for the creation of the 3D fixation
maps is collecting the aggregated gaze data for each
stimulus. The identification of fixations has been
performed applying the I-VT fixation filter provided by
Tobii which classifies eye movements based on their
velocity [Kom10]. For each mesh Ci, representing
the character C in pose i, and each view j, the set of
fixations of all participants were aggregated in a 2D
fixation map f C

i j , a 2D matrix of the same size of the
stimuli. Each fixation contributes by adding to f C

i j a
two-dimensional gaussian kernel centered on the pixel
coordinates of the fixation point with a radius of 62
pixels which corresponds in our setup to a visual angle
of 1◦, i.e. the radius of the fovea, the region in the
visual field with highest visual acuity [Duc17]. The
values of the 2D fixation map are mapped to the unit
interval creating a grayscale image.

We project the 2D fixation image on the related 3D
mesh with Meshlab software [Mes]. The current 3D
mesh has now grayscale color values at vertex level
representing the fixation values, with bright color val-
ues corresponding to areas related to high fixation val-
ues and dark color values indicating low or absent fixa-
tions. The 3D fixation map of the character C in pose i
from view j is defined as the list of vertex color values.
Since the shapes belong to the TOSCA high-resolution
dataset, 3D meshes of the same character have the ver-
tices listed in the same order. Hence, 3D fixation maps
of the same character can be directly compared with a
chosen similarity or distance metric.

6 3D FIXATION MAPS COMPARISON
Since the goal is to analyze the effects on visual atten-
tion of different poses of the same character, we com-
pared all pairs of 3D fixation maps of the same charac-
ter C obtained from the same view j. Pearson’s Corre-
lation Coefficient (PCC) is used as a comparison mea-
sure. For two 3D fixation maps X and Y , PCC is defined
as cov(X ,Y )/(σX σY ), where cov indicates the covari-
ance and σ the standard deviation. PCC estimates the
linear relationship between two 3D fixation maps and
its values range between −1 and 1, with 0 implying no
correlation and 1 and −1 perfect positive and negative
linear relationship respectively. PCC is an evaluation
metric commonly applied to compute the similarity be-
tween 2D saliency maps [Byl19] and it has also been
used in recent works on fixation maps applied to 3D
shapes [Lav18].

We define VC
a j the set of vertices of the mesh Ca visible

from view j. When comparing the 3D fixation maps
FC

a j and FC
b j related to meshes Ca and Cb, PCC is com-

puted exclusively on VC
a j∩VC

b j, i.e. the subset of vertices
that are visible from view j for both meshes Ca and Cb,
to assure the comparison is run solely on valid fixation
values.

Due to the variability of the poses, it is unlikely that the
observer will look at the exact same portion of the mesh
when viewing two different poses of the same charac-
ter. For this reason, in addition to PCC, the Jaccard In-
dex J (intersection over union) of the two sets of visible
vertices VC

a j and VC
b j is computed to measure their sim-

ilarity: J = |VC
a j ∩VC

b j|/|VC
a j ∪VC

b j|. J values range from
0 (empty intersection) to 1 (equal sets). In this context,
since PCC is computed on the intersection set, J indi-
cates a measure of the extent of this common region on
which the corresponding PCC was measured in relation
to the union set of visible vertices. J indicates also how
much the two poses vary from each other. If J is close
to 0, it means that the two poses share a small set of
vertices visible from the same view, due for example to
auto-occlusions (e.g. the face of Gorilla8 is hidden by
the left arm from view V90) or different nature of the
poses (e.g. from view V0, the abdomen of the cat char-
acter is visible in Cat1 but completely hidden in Cat0),
hence the observer looks overall at different portions of
the same mesh. While if J is close to 1, it means that
the sets of visible vertices of the two poses are almost
congruent, hence the observer looks overall at a similar
portion of the mesh.

7 INTER OBSERVER CONGRUENCY
ANALYSIS

The similarity values obtained from the 3D fixation
maps comparison rely on the aggregated gaze data gath-
ered from all valid participants (N = 17). To investigate

ISSN 2464-4617 (print) 
ISSN 2464-4625 (DVD)

Computer Science Research Notes 
CSRN 3001

WSCG2020  Proceedings 

155



Figure 1: On the left, an example of binary fixation
map with threshold 0.2 for David10 obtained from view
V45. On the right, the corresponding original 3D fix-
ation map color coded for visualization purpose, with
yellow representing the highest number of fixations and
blue indicating areas with no fixations.

the Inter Observer Congruency (IOC), i.e. the consis-
tency across participants data, we adopt a leave one out
approach similar to [Tor06]. For each stimulus, the con-
gruency of the 3D fixation map generated from the data
of one subject is tested against the partial aggregated
3D fixation map obtained by all the other N − 1 par-
ticipants. The final IOC value is generated by averag-
ing the congruency values obtained with this procedure
from all subjects.

A binary map indicating the most fixated vertices is cre-
ated by setting a threshold to the partial aggregated 3D
fixation map of N − 1 participants. The vertices with
fixation value > 0.2 have been selected creating the
binary map which covers most of the aggregated fix-
ations, as shown in Figure 1.

The fixations obtained by the left-out subject are then
projected on the 3D mesh as circular patches to take
into account eye tracker accuracy errors. The congru-
ency value of the left-out subject is computed as the ra-
tio of the vertices touched by a single observer fixations
that fall also within the binary map.
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Figure 2: Inter Observer Congruency (IOC) mean val-
ues of all stimuli.
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Figure 3: Mean and standard deviation values of Jac-
card Index between pairs of shapes grouped by charac-
ters and views.
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Figure 4: Mean and standard deviation values of Pear-
son’s correlation coefficient grouped by characters and
views.

8 RESULTS
The IOC results show a total mean value of 0.70 char-
acterizing a fairly coherent dataset of fixations. Hence,
the 3D fixation maps computed from aggregating the
fixations data of all valid participants can be used on
the comparison analysis.

A further analysis of the IOC values show a small
variation between views (IOCV0 = 0.71, IOCV45 = 0.69,
and IOCV90 = 0.69) and a wider variation is presented
when computing the mean IOC values of the different
characters regardless of the view (IOCgorilla = 0.62,
IOChorse = 0.62, IOCcat = 0.65, IOCcentaur = 0.71,
IOCdavid = 0.78, IOCmichael = 0.80). Interestingly, the
highest IOC values are the ones related to human char-
acters showing higher consistency across participants
when looking at humans. The mean IOC value for each
stimulus is shown in Figure 2.

A first qualitative analysis of the 3D fixation maps sup-
ports previous findings [How05, McD09] of high visual
attention values, across all three views, over characters’
heads and human characters’ torsos, as shown in Fig-
ure 5 and Figure 6. This seems to happen also if chang-
ing the pose.
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(a) Cat, view V0 (b) Cat, view V45 (c) Cat, view V90

(d) Gorilla, view V0 (e) Gorilla, view V45 (f) Gorilla, view V90

(g) Horse, view V0 (h) Horse, view V45 (i) Horse, view V90

Figure 5: Similarity matrices for characters: Cat, Gorilla, and Horse. The similarity matrices show the Pearson’s
Linear Correlation (PCC) values between pairs of shapes belonging to the same character and looked from the
same view. The corresponding Jaccard Index is indicated between parentheses. The aggregated 3D fixation maps
related to each pose are shown above each similarity matrix. The 3D fixation maps are color coded for visualization
purpose, with yellow representing the highest number of fixations and blue indicating areas with no fixations.
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(a) Centaur, view V0 (b) Centaur, view V45 (c) Centaur, view V90

(d) David, view V0 (e) David, view V45 (f) David, view V90

(g) Michael, view V0 (h) Michael, view V45 (i) Micheal, view V90

Figure 6: Similarity matrices for characters: Centaur, David, and Michael. The similarity matrices show the
Pearson’s Linear Correlation (PCC) values between pairs of shapes belonging to the same character and looked
from the same view. The corresponding Jaccard Index is indicated between parentheses. The aggregated 3D
fixation maps related to each pose are shown above each similarity matrix. The 3D fixation maps are color coded
for visualization purpose, with yellow representing the highest number of fixations and blue indicating areas with
no fixations.
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Figure 3 shows the mean and standard deviation of
the Jaccard Index values (intersection over union) com-
puted from pairs of different poses of the same char-
acter. These values express a measure of variability of
visible vertices between a pair of poses. Since PCC
is computed on the intersection of the sets of visible
vertices, the Jaccard Index measures also the extent of
the portion of the mesh on which the corresponding
PCC value was measured in relation to the union of
the visible vertices. For example, the mean Jaccard
Index for the gorilla shapes viewed from view V90 is
0.39 which implies that on average the pairs of these
3D meshes share only about two-fifths of the union of
the visible vertices from view V90 due to variability in
the poses. While the mean Jaccard Index value for the
horse shapes viewed from view V90 is 0.79 which indi-
cates that on average the pairs of these 3D meshes share
about four-fifths of the union of the visible vertices, de-
noting that very similar portions of the mesh are visible
from that view.

All the computed PCC resulted in positive values,
hence we treat the data as similarity values between 0
and 1. Figure 4 shows the mean and standard deviation
values obtained by pairs of 3D fixation maps belonging
to the same character and view.

For some of the characters, the mean PCC values show
a low similarity indicating that a different pose might
influence visual attention. A variation of mean values
of the character between views reveals a notable impact
also of the view itself. This trend is not constant be-
tween characters, revealing that some poses seen from
specific views influence the visual attention more than
others, as shown by the similarity matrices of each char-
acter and view in Figures 5 and 6.

Three examples of low similarity values can be found
in the Gorilla and Centaur characters from view V90
(Figures 5f and 6c) and the Horse character from view
V0 (Figure 5g). The corresponding 3D fixation maps
show high fixation values over geometric salient fea-
tures such as folds on the mesh (e.g. the fold between
torso and leg in Gorilla14) as well as parts of the mesh
related to the action the shape could represent, e.g. the
front leg up in the air for Horse7.

Further examples indicating the influence of action rep-
resentation can be found comparing the 3D fixation
maps of specific pairs of poses. Cat2 pose presents a
cat licking its right paw, while Cat8 shows a cat lurk-
ing. In Figures 5b and 5c, the 3D fixation maps of Cat2
indicate considerable higher fixation values on the right
leg compared to the 3D fixation maps of Cat8. This
could be related to the proximity of the leg to the head
of the cat or to the actual relevance of the leg in the
context of the action that is represented. In Figure 6b,
Centaur1 and Centaur3 show two opposite poses, the
first with the front legs raised off the ground, while the

second with the back legs up in the air. In both cases,
the 3D fixation maps indicate higher fixation values cor-
responding to the pair of legs raised off the ground, the
agent of the represented actions. It appears that the fixa-
tion patterns for some characters are clustered on areas
related to a potential action which leads to additional
questions to explore further.

9 CONCLUSIONS
In this work, we presented a first investigation of the im-
pact of different poses of 3D meshes on gaze data. The
aggregated fixation data of the participants obtained
by an eye-tracker were projected onto the 3D meshes.
Pearson’s Correlation Coefficient was used as a mea-
sure of similarity between pairs of 3D fixation maps of
the same character in different poses and from differ-
ent views. The obtained 3D fixation maps are coherent
with previous studies in that fixation data are focused
strongly on the facial regions [How05, McD09, Lav18].
In addition, this paper further indicates that the fixa-
tions on the facial regions also appear on characters in
different poses. The PCC results show low similarity
values between different poses for some of the tested
characters. In particular, the low similarity between
some of the poses appeared linked with fixations fo-
cusing on two factors: geometric salient features and
semantically salient parts caused by potential actions or
gestures. These results indicate the necessity of further
investigations. For example, it would be relevant in fu-
ture research to explore further the relationship between
these two factors and to investigate the influence of dif-
ferent types of actions.
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