
Survey of Errors in Surface Representation and their
Detection and Correction

Veleba, D., Felkel, P.
Department of Computer Science

Czech Technical University, Faculty of Electrical Engineering
Karlovo náměstí 13

 121 35 Praha 2, Czech Republic

{velebd1 | felkel} @ fel.cvut.cz

ABSTRACT
In this paper, a survey on the most typical mesh errors is given. Each error is described in detail, it is illustrated
on an example and surface based techniques for its detection and correction are presented. Covered errors
include cracks, holes, T-joints, overlaps, zero volume parts, duplicated geometry, self intersections, inconsistent
normal orientation, invisible polygons, degenerate faces and concavities.

We consider the separation of the detection and the correction phases advantageous as it gives the user a better
control over the mesh correction process, allowing better corrected meshes without introducing new errors,
simplifications, or deformations.

Keywords
Mesh errors, Crack, T-joint, Inconsistent normal orientation, Swapped normals, Hole, Concavities, Invisible
polygons, Detection, Correction, Degeneracies, Mesh repair

1. INTRODUCTION
At present, a growing number of models contain
errors [Ken98, Ju04, Bis05] that either originate due
to human mistakes or are produced by incorrectly
implemented modeling software. These errors cause
problems during every subsequent reuse of the
model. Search and repair of these errors, which are
often hidden, are highly time-consuming.
There are two different approaches to repairing
polygonal models: a classic mesh repair [Mur97,
Bar98, Bor02] and a newer voxel based repair
[Noo03, Ju04, Bis05]. The latter is based on
conversion to voxel representation and back. The
most recent research in this field made Bischoff
[Bis05]. He overcomes the main disadvantage of the
voxelization, i.e. giving away the original model, by
keeping the vertices’ coordinates the same in the
corrected model as in the input model. The former
approach is more straightforward. Errors are first
detected and each group of errors is corrected

uniquely. However, the future seems to lie in
combination of these two techniques. This paper is
focused on the classic approach.
In Section 2, a survey of the typical mesh errors is
provided. Each error is described and illustrated on
an example. Error origin is discussed and methods
for detection and correction of the error are
presented. Section 3concludes.

2. ERRORS AND THEIR HANDLING
In this section, the following mesh errors are
described: cracks, holes, T-joints, overlaps, dangling
walls, duplicated geometry, self intersections,
inconsistent normal orientation, invisible polygons,
degenerated faces and concavities. First three of
them, i.e. cracks, holes and T-joints, are well-known
and hence they will be described only briefly. The
concern will be devoted to the remaining errors.

2.1. Cracks
Cracks [Nie99] are small, elongated gaps in the
model surface (see Fig.1 for an example). Cracks
usually come along with T-joints, which are
described in Section 2.3.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Short Communication papers 65 ISBN 978-80-86943-02-2

Fig.1 An example of a crack. a) A smooth surface
[Nie99] is in b) represented by planar faces. c) shows
the surface from panel b) after the correction.

2.1.1. Origin
Cracks originate mainly due to wrong triangulation
of smooth sinuous surfaces and due to round-off
errors.

2.1.2. Detection
Cracks, as well as holes, are demarked by boundary
edges. Problems may arise if we need to distinguish
cracks from holes – see [Vel06].

2.1.3. Correction
There are more approaches to correcting cracks.
However, the correction technique should handle the
cracks with respect to their origin (triangulation ×
shifted vertices).
Cracks arising from triangulation can be eliminated
by retriangulation of the larger (rougher) face with
respect to the boundary curve of the crack.
Cracks arisen due to multiplicity of vertices are
corrected by vertex contraction [Gar97, Pop97].
More recently Borodin et. al. [Bor02] introduced
further generalization of edge contraction operator, a
vertex-edge contraction. Disadvantage of these
operators is that they can produce non-manifold
meshes.

2.2. Holes
By a hole [Lie03] [Var05], we understand a closed
cycle of boundary edges. Problems with holes are
that they either should be triangulated or that they are
triangulated and should not be. See Fig.2 below.

Fig.2 Two cases of holes. a) shows two connected
holes and b) shows a single polygonal hole.

2.2.1. Origin
Holes arise mainly during imprecise surface
reconstruction but they can often be intentional in the
model.

2.2.2. Detection
Holes are detected as closed cycles of boundary

edges, as well as cracks.

Unfortunately, this technique is not able to tell apart
gaps from the natural boundary of the object.
In case there are more holes connected together,
problems may arise with choosing a correct boundary
edge belonging to the hole we are just detecting. This
is done by taking the edge with the smallest angle to
its previous edge.
Detection of holes on the natural boundary of objects
is described in [Vel06].

2.2.3. Correction
For filling the holes Liepa [Lie03] introduced a 3-
step method that firstly creates a patch that
minimizes a weight function, secondly it shortens
long edges and thus doesn’t introduce skinny
triangles, and at last, it uniformly spreads the vertices
of the patch. The best results are achieved with
weight function that considers a dihedral angle
between existing neighboring faces and the face area.
Removing the extra triangles from the triangulated
holes is quite problematic. We need to detect these
triangles and differentiate them from the correct
ones. To do this, we utilize the fact that redundant
triangles have usually much longer edges.
Unfortunately, this method fails on the boundary of
the hole where extra triangles may be left or correct
triangles may be discarded. Recent patching
algorithms also do not produce triangles with long
edges.

2.3. T-joints
T-joint [Bar98, Mur97] is a place, where two parallel
edges connect (e2 and e3 in Fig.3b), while there is no
appropriate vertex on the neighboring edge (e1). The
situation is illustrated in Fig.3b.

Fig.3 a) A T-joint. b) illustration to the definition
c) A meeting of two surfaces with different levels of
detail in a clipmap

2.3.1. Origin
T-joints are introduced by adding new vertices on
existing edges and by wrong modeling in the design
systems. T-joints also occur while handling a model
in different levels of details (LOD).

2.3.2. Detection
All edges are checked to neighbor with exactly one
another edge, i.e., they have the same end-vertices.
Edges not matching this criterion are either boundary
edges (have no neighbors) or edges participating in

Short Communication papers 66 ISBN 978-80-86943-02-2

T-joints (have more than one neighbor). Edges with
more than one neighbor can also be non-manifold
edges.

2.3.3. Correction
The best correction of T-joints is joining the multiple
edges (e.g. in Fig.3b these would be e2 and e3). The
triangles corresponding to these edges are replaced
with one polygon (which may be subsequently
triangulated) so the needless geometry is discarded.
T-joints on touch of different LODs during rendering
are eliminated either by subdivision of neighboring
triangles as in the ROAM algorithm [Duc97] or by
introducing zero area triangles to “fill” the cracks on
the touch of two levels and by interpolation of
geometry and texture in the transition region
[Los04].

2.4. Overlapping triangles
Overlapping triangles [Var05] have one or more of
their vertices placed improperly into vertices, whose
neighborhood is already fully triangulated (see
Fig.3). Such triangles overlap the mesh (or are
overlapped by other triangles) instead of filling the
empty space on the surface. As a side effect, gaps are
introduced into the model. In fact, the overlapping
triangles are special case of duplicated geometry
(2.6).

Fig.4 Overlaps: The red triangles denote
overlapping triangles, the black triangles mark holes,
and the dark grey triangles denote surface
overlapped by the red triangles [Var05].

2.4.1. Origin
Overlapping triangles originate during triangulation
of nonuniformly sampled models as a result of local
undersampling. In this case, the tessellation
algorithm positions one of the face vertices into an
incorrect vertex. This is usual in triangulations of
point clouds and in models taken by 3D scanners.

2.4.2. Detection
The overlaps are best detected by using the triangle
(polygon) fans. We iterate through the list of
vertices. For each vertex we construct its triangle fan
and then, we compute the overall angle as a sum of
angles between pairs of edges of each face connected
to the fan’s central vertex. Overall angle not equal to
2π implies a problem. If the angle is less than 2π, we
have found a crack or a hole; if the angle is larger
than 2π, we have found an overlap. Precision of
computation has to be considered.

The detection can be made more efficient if we
construct the fans only for vertices referenced by
boundary edges.

2.4.3. Correction
To correct overlaps we delete the redundant triangles
from the fans with angle larger than 2π and
triangulate the holes. However, choosing the correct
triangle to remove may be problematic.

2.5. Zero volume parts
Though rarely, zero volume parts (also called
dangling walls) [Bøh95] sometimes occur in the
model. Bøhn defines them as sets of faces that that
do not contribute to the definition of the volume
occupied by one solid or more solids in the space.
Very often, zero volume parts are used intentionally
– for example to create paintings on the walls in
models of interiors (called decals) or to connect two
separate shells (artifact faces).

2.5.1. Origin
Dangling walls are usually mistakes of a model
designer who might forgot to remove them from the
model. They can be caused by imprecise floating
point arithmetic as well.

2.5.2. Detection
In contrary to Bøhn, who detects only exactly

matching pairs of faces with different orientation, we
extend the detection to all patches that do not delimit
any volume.

To distinguish cases of intentional use of zero
volume parts from errors, we should only detect zero
volume parts which are more distant from any face
than a user-provided constant. By this, we ensure we
won't detect the decals etc. On the other hand, this
restriction prevents us from detecting artifact faces
used for connecting two separate shells for example.
It is quite problematic to distinguish zero volume
parts (ZVP) from cracks and holes. To do so, we may
count number of vertices (or edges, faces etc)
reachable from the boundary edges that delimit this
error. Generally, number of vertices reachable from
ZVP should be smaller than number of vertices
reachable from holes. This is due to fact that from the
hole the entire model could be possibly reached as
opposed to ZVP from which only ZVP itself is
reachable. Of course, this may also crash on holes in
small objects and zero volume parts consisting of
many faces, but both of these cases are extraordinary.

2.5.3. Correction
If required, dangling walls can be simply removed
from the model.

Short Communication papers 67 ISBN 978-80-86943-02-2

2.6. Duplicated geometry
We differentiate the following cases of duplicated
geometry:

• Concurrent vertices
• Concurrent edges
• Concurrent faces

o Same normals
o Opposite normals
o Same triangulation
o Different triangulation

Within all these cases we tell apart:

• Identical double geometry
• Mutually shifted double geometry

Concurrent vertices are sometimes used intentionally
to model a sharp edge. This case is depicted in Fig.5b
and described in [Vel06].
In Fig.5a you can see a cube with one side
triangulated twice by mutually shifted faces (which
include also shifted edges and shifted vertices) and
even with opposite face normals.

Fig.5 A concurrent geometry. a) shows a cube
with one side triangulated by mutually shifted
different triangles. They even have an opposite
normal orientation. b) gives an example on doubled
vertices and edges along the sharp edge

2.6.1. Origin
Beside the above mentioned intentional cases,
concurrent geometry also originates during export of
a model into another format. Owing to an incorrect
export procedure, some objects in the model are
duplicated. Moreover, the duplicated objects may
also be triangulated in another way than its original
copy, as shown in Fig.5a above.
Concurrent vertices also originate due to round-off
mistakes. These are the most common reason in
cases where vertices of neighboring triangles do not
have identical coordinates. Instead, every triangle’s
vertex is located in a slightly different position in the
space. As a side effect, a crack is introduced into the
model.

2.6.2. And finally, duplicated objects might arise
due to a human mistake. For example, duplicities
appear as a result of copy & paste operation where

the paste operation is unintentionally performed
twice or even more.
2.6.3. Detection
Cases where concurrent geometry is identical are
easy to detect: we find all vertices with the same
coordinates. Then, we have to find out whether they
were assigned to any edges or polygons; this
information will be used in the correction process.
Detecting mutually shifted concurrent geometry is
only slightly different. We are searching for
duplicated geometry within a user provided
ε-tolerance—inside the tolerance, the geometry is
considered to be duplicated in contrary to the
geometry outside the tolerance. A kd-tree can be
efficiently used for such a search.
For finer search for duplicated vertices we can apply
different ε value for each axis (x, y, and z).

2.6.4. Correction
Once the duplicated geometry has been found, either
identical or mutually shifted, we might iterate
through the duplicated vertices and leave only one of
all the vertices with identical coordinates. The
remaining vertices will be discarded—we choose the
ones that do not form polygons. If there are more
vertices forming identical polygons (edges), we
discard also the redundant polygons (edges). Before
such a deletion, we check the normal orientation of
these polygons. In case of opposite normals, we must
decide which one will be left and which one
discarded. This can be done by counting the number
of inside / outside oriented normals over the object.
The majority decides and the user is involved in
irresolute cases. Unfortunately, the majority can be
also mistaken and thus, an incorrect orientation
would be chosen. If the surfaces corresponding to the
duplicated vertices are equal and triangulated
identically, we can keep any of them.
Things become more complicated if the model
includes differently triangulated surfaces. In this
case, to achieve the best result we have to try all the
surfaces, rank how well they fit in the model, and
then choose the best one to be kept and discard the
remaining ones. This requires suitable data structures
and adequate ranking algorithm.
After the duplicated vertices are deleted, we must run
a connecting phase again as the edges that referenced
to the shifted duplicated vertices are now in correct
positions but still not connected to their neighbors
(still boundary edges). This leads to idea of
correcting the duplicated vertices before the face
connecting phase.

2.7. Self intersections
Among self intersections [Bar98] we distinguish
different parts of one model penetrating each other

Short Communication papers 68 ISBN 978-80-86943-02-2

(Fig.6a) from one complex object intersecting itself
(Fig.6b).

Fig.6 Examples on self intersections. a) [Bar98]
illustrates mutually interpenetrating parts of the
model; b) [Fel06] shows a self-intersecting object.

2.7.1. Origin
There are several sources of self intersections. First,
self intersections may arise due to round-off errors.
Result of such an error is a vertex shifted into a
different position. In some cases, this may lead to
self-intersections of incident faces.
Second, on concave objects, self intersections may be
caused by using a wrong tessellation algorithm. Such
an algorithm is unable to triangulate the concave
parts correctly and twists the faces so that they
intersect with each other.
And third, self intersections might be introduced into
the model by the designer who does not notice them,
for example because of a small resolution.

2.7.2. Detection
As mentioned in [Bar98], self intersecting geometry
is also proximate in Euclidian space. Therefore,
kd-tree can be efficiently used for its detection.

2.7.3. Correction
One technique for correction of self-intersections is
voxelization [Noo03].
Converting a model into volumetric representation, if
performed correctly, abstracts from the interior of the
model and leaves only the surface. Thus, also the self
intersections are left behind. However, the
voxelization is suitable only for self-interpenetrating
parts of one model because it corrects neither the
badly positioned vertices nor the wrongly
triangulated surface. It only turns the model into a
2-manifold (after the isosurface extraction).
The shifted vertices that cause the self intersections
should be repositioned into a correct location and the
concave parts should be retriangulated using a proper
tessellating algorithm. This might be time consuming
for a vast number of intersections but it is the proper
solution.

2.8. Inconsistent normal orientation
Based on the origin, we tell apart cases caused by the
surface reconstruction [Var05] from cases caused by
improperly implemented modeling tools [Bor04].

Fig.7 Inconsistent normal orientation. a) and b)
show a torus with swapped normals and c) shows a
correctly displayed torus

2.8.1. Origin
As mentioned above, there are two origins: surface
reconstruction and modeling tools.
To reconstruction, problematic are models sampled
either nonuniformly or differently in different
directions.
Incorrect normal orientation that originates in
modeling tools occurs randomly all over the model
and depends on the software and its current version.
Fig.7 above shows a VRML model exported from the
3ds format by MultiGen Creator [Mul06].

2.8.2. Detection
The detection of face orientation (vertices given CW
or CCW) is possible only in 2D, so we have to find
another technique. The straightest way is probably to
iterate through boundary edges and seek for couples
of edges with identical start and end vertices, i.e., for
edge “1-->2” (starting in vertex 1 and ending in
vertex 2) find another edge “1-->2”. This means
either that the edge is duplicated or that one of the
two edges (and thus also the face belonging to that
edge) has a swapped orientation.

2.8.3. Correction
There are two different aims of the correction: either
to have all model normals oriented consistently or to
have a model whose faces are visible from as many
viewpoints as possible.
Borodin combines proximity with visibility
technique to be able to achieve both. He connects the
properly specified polygons into patches. These
patches can touch each other only by vertices or non-
manifold edges [Bor04] or they do not connect with
each other at all. That is, if two patches had common
edges, they would be merged into one larger patch.
Each pair of patches is ranked with a boundary
coherence coefficient, which reflects how well do
these patches fit together. Moreover, for each patch a
front and back-face visibility is also computed. A
greedy algorithm then gradually merges patch pairs
with highest coherence ranking and updates their
visibility ranking. The final normal orientation is

Short Communication papers 69 ISBN 978-80-86943-02-2

decided based on the coherence and visibility
coefficients values.

2.9. Invisible polygons
Polygons become invisible [Vel06], e.g., when two
walls in CAD are modeled separately and placed
aside to each other (see Fig.8). If the two objects are
not connected together (they just share the boundary
vertices), it is not a real error and in fact, this
situation occurs very often. However, invisible
polygons are not needed in the model and moreover,
they increase the complexity of the model.
If the invisible polygons are part of one object, it is
an error because such a mesh is not 2-manifold. In
this case, the invisible polygons should be removed
from the model.

Fig.8 Invisible polygon at the connection of two
walls (dashed line).

2.9.1. Origin
Generally, invisible polygons can be found on
objects that stand side by side to each other. This
way of placing objects is usual in building industry
where the single components of the model (walls,
panels) have to be separated.

2.9.2. Detection
The detection should iterate through the list of faces
and look for face couples where one face overlaps
the other and lies in the same plane or is coplanar and
lies in the ε-distance from the other.

2.9.3. Correction
Correction of invisible polygons between two
separate objects should include connection of these
objects and subsequent retriangulation of the newly
created object. But as we have mentioned, this is not
always wanted.
Correction of a non-manifold object that contains
invisible polygons comprises only of removing these
polygons as there is nothing to connect or to
retriangulate.

2.10. Degenerate faces
Degenerate faces [Vel06] can be subdivided into
collapsed faces and non-planar faces. Among the
collapsed faces, we differentiate 2D faces – lines and
1D faces – vertices. For details on faces not suitable
for FEM see [Bot01].

Among the collapsed faces we count, for example,
collinear vertices (Fig.9a), a set of identical vertices
(AAA), or a face formed by two vertices (ABA).
In Fig.9b is an example of a non-planar face: one
vertex has a different height from the others, so the
four vertices do not lie in the plane. However, non-
planar faces are not always considered to be errors
and using them is sometimes a necessity.

2.10.1. Example

Fig.9 Invalid faces. a) A face formed by three
collinear vertices is shown in the upper part of the
panel and a face formed by two vertices one of which
is used twice (ABA) is shown below. b) Four vertices
forming a non-planar face from two points of view.

2.10.2. Origin
It must be pointed out that all the cases mentioned
above may also be used intentionally. For example,
MultiGen Creator exports only faces, neither it
exports edges nor does it export vertices. As a
consequence, designers who wish to export vertices
create 1D faces, which are then depicted as a
vertices.
All kinds of the errors discussed above arise during
the export into VRML.

2.10.3. Detection
To cover all the above cases of degeneracies every
face should be tested to be formed by more than 2
different vertices which must not be all collinear and
must lie in the same plane.
Ideally, these errors should be tested and eliminated
by the converter so that they do not originate at all.

2.10.4. Correction
Correction of these errors is almost impossible as we
cannot find out what a correct face should look like.

2.11. Concavity errors
Exporting concavities [Vel06] (Fig.10a) brings
problems too. Result of such an export is shown in
Fig.10b, where the concavity is transformed into a
convex object by connecting the two opposite
corners of the windows. As a side effect, the new
convex object overlaps the windows (marked red).
This error is usual in models in the building industry;
on a building frontage with concave polygons
between windows, where the windows are often
intersected by newly introduced mistaken edges.

Displaying concave surfaces is implementation-
dependent and differs in every browser. For example
a Cortona viewer displays the model shown in Fig.10

Short Communication papers 70 ISBN 978-80-86943-02-2

correctly while Xj3D [Xj06] has problems with
displaying the concavities.

Fig.10 A misinterpreted concavity. a) shows the
original concave surface (traced red) and b) shows
how both windows will be overlapped by the
improperly displayed concavity.

2.11.1. Origin
Concavities arise e.g. during export into a VRML
format. They might be caused either by triangulation
errors or by the exporter program.

2.11.2. Detection
Every face should be tested for a concavity. One of
the possible ways is constructing a normal vector for
each vertex of the face. This is done by multiplying
the vectors representing the two edges connected to
the vertex. Once we have computed all the normals,
we check whether all of them have the same
orientation. If not, the face is concave.

2.11.3. Correction
The concave face should be split it into two or more
separate faces of which every face will be convex.

3. CONCLUSION
We gave the survey on the most typical mesh errors
that often arise in CAD systems. For each error, we
described algorithms for its detection and correction.
We concentrated on mesh processing algorithms as
they can separate the detection and the correction
steps. We prefer a clear separation of detection and
correction steps as it gives the user a better control
over the mesh correction process. Corrected meshes
should then contain no new errors, simplifications, or
deformations.
We pointed out problems of two approaches: direct
mesh processing and processing of a voxelized
mesh. We find a combined approach (such as of
Bischoff [Bis05]) as the most promising for the
future research.

4. REFERENCES
[Bar98] Barequet et. al.: RSVP: A Geometric Toolkit
for Controlled Repair of Solid Models, IEEE Vis98,
1998.
[Bis05] Bischoff, S., et. al., Automatic Restoration of
Polygon Models, In ACM Transactions on Graphics,
Vol. 24, No. 4, pages 1332–1352. 2005.
[Bøh95] Bøhn, J.H. Removing Zero-Volume Parts
from CAD Models for Layered Manufacturing, IEEE

Computer Graphics and Applications, pages 27-34,
1995.
[Bor02] Borodin, P., et. al., Progressive gap closing
for mesh repairing. In Advances in Modelling,
Animation and Rendering, J. Vince and R. Earnshaw,
Eds. Springer Verlag, pages 201–213. 2002.
[Bor04] Borodin, P., Consistent Normal Orientation
for Polygonal Meshes, Institute of Computer Science
II, University of Bonn, Germany, 2004.
[Bot01] Botshc, M. and Kobbelt, L. A Robust
Procedure to Eliminate Degenerate Faces from
Triangle Meshes, CGG RWTH Aachen, 2001.
[Duc97] Duchaineau M. et al.. ROAMing Terrain:
Real-time Optimally Adapting Meshes. IEEE
Visualization, pages 81-88, 1997.
[Fel06] Felkel, P. and Obdrzalek, S. Improvement of
Oliva's Algorithm for Surface Reconstruction from
Contours. SCCG’99, pages 254-263, 1999.
[Gar97] Michael Garland and Paul S. Heckbert.
Surface simplification using quadric error metrics. In
ACM SIGGRAPH Computer Graphics Proceedings,
pages 209–216, 1997.
[Ju04] Ju, T., Robust repair of polygonal models.
ACM Trans. Graph. 23, 3, pages 888–895. 2004.
[Ken98] McKenney, D., Model Quality: The Key to
CAD/CAM/CAE Interoperability, International
TechneGroup Incorporated, Milford, OH, 1998.
[Lie03] Liepa, P., Filling holes in meshes. In
Proceedings of the Symposium on Geometry
Processing 03. pages 200–205. 2003.
[Los04] Losasso, F., Hoppe, H., „Geometry
Clipmaps: Terrain Rendering Using Nested Regular
Grids.“ ACM Transactions on Graphics (SIGGRAPH
2004), pp. 769-776, 2004.
[Mul06] MultiGen official homepage,
http://www.multigen.com/. Last visit: 10.09.2006.
[Mur97] Murali T. M., Funkhouser T. A. Consistent
solid and boundary representations from arbitrary
polygonal data. In Symposium on Interactive 3D
Graphics, pages 155-162, 196, 1997.
[Nie99] Nielson, M., Cracking the Cracking Problem
with Coons Patches, IEEE Vis99, pages 91-106,
1999.
[Noo03] Nooruddin, F., Simplification and Repair of
Polygonal Models Using Volumetric Techniques,
IEEE Vis03, 2003.
[Pop97] Jovan Popović and Hugues Hoppe.
Progressive simplicial complexes. In ACM SIG-
GRAPH Computer Graphics Proceedings, pages
217–224, 1997.

Short Communication papers 71 ISBN 978-80-86943-02-2

http://www.multigen.com/

[Var05] Varnuška, M., Surface reconstruction of
geometrical objects from scattered points, Doctoral
Thesis, University of West Bohemia, 2005.
[Vel06] Veleba, D., Correction of surface
representation, Bachelor’s thesis, Computer Science,
Czech Technical University, 2006.
[Xj06] The official site of Xj3D project,
http://www.xj3d.org. Last visit: 10.09.2006.

Short Communication papers 72 ISBN 978-80-86943-02-2

http://www.xj3d.org/

	!WSCG2007_Short_Proceedings_Numbered.pdf
	!SH-1.pdf
	D97-full.pdf
	D97-full.pdf

	D71-full.pdf
	1. INTRODUCTION
	Comparison for Collaborative Project
	Digital Archive for Comparison

	2. NAVIGATION FUNCTION FOR COMPARISON
	3. COMPARATIVE NAVIGATION SYSTEM
	Development
	System Outline
	Prototype
	Functions
	3.1.1 3D space move function
	3.1.2 Plug-in function
	3.1.3 Concurrent comparison navigation function
	3.1.3.1 One-screen mode
	3.1.3.2 Two-screen mode
	3.1.3.3 Four-screen mode

	3.1.4 Cross-section view function

	4. Prototype testing
	5. CONCLUSION
	6. REFERENCES

	E19-full.pdf
	INTRODUCTION
	PREVIOUS LITERATURE
	THE ALGORITHM
	THRESHOLDING
	EXPERIMENTAL RESULTS
	CONCLUSIONS
	REFERENCES

	E41-full.pdf
	INTRODUCTION
	PREVIOUS WORK
	DEFINITIONS AND CONDITIONS
	ALGORITHM
	RESULTS
	Sample shape
	Triangle prism
	Nine boxes
	Fish
	Results

	SUMMARY
	REFERENCES

	F41-full.pdf
	1. INTRODUCTION
	2. Virtual Manipulation
	2.1 Definition of VM
	1. Basic Definition
	2. Reality Condition

	2.2 VM for two-dimensional virtual space
	Events
	Reactions for a dial

	3. Objects virtual interface in VM
	3.1 A dial
	Physical specification
	Reactions
	Physical Reality

	3.2 A toggle switch
	Physical specification
	Reactions
	Physical Reality

	3.3 A spring
	Physical specification
	Reactions
	Physical Reality

	3.4 A pickable object
	Physical specification
	Reactions
	Physical Reality

	3.5 A bouncing object
	Physical specification
	Reactions
	Physical Reality

	4. Real System
	4.1 A dial
	4.2 A switch
	4.3 A spling
	4.4 A pickable object
	4.5 A bouncing object

	5. Application
	5.1 V-VolleyBall
	5.2 V-Rimokon

	6. Result
	6.1 Evaluation of Objects and V-VolleyBall
	6.2 Developer’s process

	7. Discussion
	Limitation
	Related Work
	Future Work
	Conclusion

	8. ACKNOWLEDGMENTS
	9. REFERENCES

	G17-full.pdf
	3.1A Mathematical Model for a Standard Prostate Shape Top Down Anterior To Posterior
	3.2Approach

	H37-full.pdf
	1. INTRODUCTION
	1.1 Visualization
	1.2 Line Visualization
	Lines have drawn much attention of visualization researchers, because of their simple but useful presentation ability for data and information. For instance, in information visualization, we could map month-long temperature data onto a line graph, with the x-axis representing date and the y-axis temperature, and then plot temperatures in different regions using various colourful or textured lines, in order to facilitate comparisons. In scientific visualization, lines are often used as, for example, streamlines portraying vectors in a flow field. Moreover other attributes, such as vector magnitude, can be mapped via colour on the line. However, many lines presented at the same time can result in visual clutter, and cause serious confusion. Under this circumstance, is there any other way to aid in displaying these lines? Haptic sensation has been revealed as an alternative. In this section, haptic line visualization methods are introduced, according to two main categories: implicit line mapping and explicit line mapping.
	1.2.1 Implicit Line
	1.2.2 Explicit Line

	1.3 Paper Outline
	2. VIBRATION MAGNITUDE MODEL
	The vibration magnitude model [Wan06] provides a basic mapping criterion for haptic visualization, and enables users to extract various vibration mapping tables. A PHANToM Desktop device (Figure 1), made by SensAble Technologies Inc., was adopted in the model construction experiments. As a single pointing handheld device, it allows 6 degree of freedom (DOF) input and provides 3 DOF output.
	2.1.1 Magnitude Estimation Experiment
	2.1.2 Intramodal Matching Experiment

	2.2 Vibration Magnitude Model

	3. LINE TRACKING EXPERIMENT
	3.1 Design
	3.2 Stimuli
	There were four lines in total. And each of them was 2.0 mm wide, 350 mm long, and contained three different rectangular grooves, which can be upward or downward. The two of them were the upside-down replicas of the other two. Thus the two lines respectively had two narrow grooves (20 mm width) and one wide groove (40 mm width), while each of others had one narrow groove and two wide grooves. Figure 4 gives an illustration of a trial line’s pattern.
	

	3.3 Procedure
	Four female and five male subjects, aged between 22 and 35, took part. To start a trial, the participant positioned the cursor (represented by a blue cone) in contact with the left sphere, and pressed the button on the stylus. Then he moved the cursor to track the line through vibration, or vision, or both, until reaching the right sphere. At this time, the participant pressed the button again, and the trial was ended.
	Each participant completed two practice trials and then 16 test trials. VibOnline and VibOffline modes were mixed during the experiment, but each of them was always applied into two trials in a row, the next two trials adopted the other mode. Except for this limitation, all the trials were presented at random. Participants were explicitly informed which vibration mode (VibOnline, VibOffline) would be used and whether vision would be provided. After each trial, the participant was asked to rate on a seven-level scale how difficult they thought the particular trial was. When all the trials were finished, they were required to answer the last question: “which vibration mode is more comfortable for completing the task? The options are: vibration Online, vibration Offline or both the same.”
	3.4 Results
	3.4.1 All Factor Comparison
	3.4.2 Vision-excluded Factor Comparison
	3.4.3 Vision-based Factor Comparison
	3.4.4 V+VibOnline & V+VibOffline Factor Comparison
	3.4.4 Comparison Summary

	4. CONCLUSIONS AND FURTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	A13-full.pdf
	1. INTRODUCTION
	2. PROBLEM DEFINITION
	3. RELATED WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	!SH-2.pdf
	E19-full.pdf
	E19-full.pdf

	E41-full.pdf
	A13-full.pdf
	D71-full.pdf
	1. INTRODUCTION
	Comparison for Collaborative Project
	Digital Archive for Comparison

	2. NAVIGATION FUNCTION FOR COMPARISON
	3. COMPARATIVE NAVIGATION SYSTEM
	Development
	System Outline
	Prototype
	Functions
	3.1.1 3D space move function
	3.1.2 Plug-in function
	3.1.3 Concurrent comparison navigation function
	3.1.3.1 One-screen mode
	3.1.3.2 Two-screen mode
	3.1.3.3 Four-screen mode

	3.1.4 Cross-section view function

	4. Prototype testing
	5. CONCLUSION
	6. REFERENCES

	F41-full.pdf
	1. INTRODUCTION
	2. Virtual Manipulation
	2.1 Definition of VM
	1. Basic Definition
	2. Reality Condition

	2.2 VM for two-dimensional virtual space
	Events
	Reactions for a dial

	3. Objects virtual interface in VM
	3.1 A dial
	Physical specification
	Reactions
	Physical Reality

	3.2 A toggle switch
	Physical specification
	Reactions
	Physical Reality

	3.3 A spring
	Physical specification
	Reactions
	Physical Reality

	3.4 A pickable object
	Physical specification
	Reactions
	Physical Reality

	3.5 A bouncing object
	Physical specification
	Reactions
	Physical Reality

	4. Real System
	4.1 A dial
	4.2 A switch
	4.3 A spling
	4.4 A pickable object
	4.5 A bouncing object

	5. Application
	5.1 V-VolleyBall
	5.2 V-Rimokon

	6. Result
	6.1 Evaluation of Objects and V-VolleyBall
	6.2 Developer’s process

	7. Discussion
	Limitation
	Related Work
	Future Work
	Conclusion

	8. ACKNOWLEDGMENTS
	9. REFERENCES

	G17-full.pdf
	3.1A Mathematical Model for a Standard Prostate Shape Top Down Anterior To Posterior
	3.2Approach

	H37-full.pdf
	1. INTRODUCTION
	1.1 Visualization
	1.2 Line Visualization
	Lines have drawn much attention of visualization researchers, because of their simple but useful presentation ability for data and information. For instance, in information visualization, we could map month-long temperature data onto a line graph, with the x-axis representing date and the y-axis temperature, and then plot temperatures in different regions using various colourful or textured lines, in order to facilitate comparisons. In scientific visualization, lines are often used as, for example, streamlines portraying vectors in a flow field. Moreover other attributes, such as vector magnitude, can be mapped via colour on the line. However, many lines presented at the same time can result in visual clutter, and cause serious confusion. Under this circumstance, is there any other way to aid in displaying these lines? Haptic sensation has been revealed as an alternative. In this section, haptic line visualization methods are introduced, according to two main categories: implicit line mapping and explicit line mapping.
	1.2.1 Implicit Line
	1.2.2 Explicit Line

	1.3 Paper Outline
	2. VIBRATION MAGNITUDE MODEL
	The vibration magnitude model [Wan06] provides a basic mapping criterion for haptic visualization, and enables users to extract various vibration mapping tables. A PHANToM Desktop device (Figure 1), made by SensAble Technologies Inc., was adopted in the model construction experiments. As a single pointing handheld device, it allows 6 degree of freedom (DOF) input and provides 3 DOF output.
	2.1.1 Magnitude Estimation Experiment
	2.1.2 Intramodal Matching Experiment

	2.2 Vibration Magnitude Model

	3. LINE TRACKING EXPERIMENT
	3.1 Design
	3.2 Stimuli
	There were four lines in total. And each of them was 2.0 mm wide, 350 mm long, and contained three different rectangular grooves, which can be upward or downward. The two of them were the upside-down replicas of the other two. Thus the two lines respectively had two narrow grooves (20 mm width) and one wide groove (40 mm width), while each of others had one narrow groove and two wide grooves. Figure 4 gives an illustration of a trial line’s pattern.
	

	3.3 Procedure
	Four female and five male subjects, aged between 22 and 35, took part. To start a trial, the participant positioned the cursor (represented by a blue cone) in contact with the left sphere, and pressed the button on the stylus. Then he moved the cursor to track the line through vibration, or vision, or both, until reaching the right sphere. At this time, the participant pressed the button again, and the trial was ended.
	Each participant completed two practice trials and then 16 test trials. VibOnline and VibOffline modes were mixed during the experiment, but each of them was always applied into two trials in a row, the next two trials adopted the other mode. Except for this limitation, all the trials were presented at random. Participants were explicitly informed which vibration mode (VibOnline, VibOffline) would be used and whether vision would be provided. After each trial, the participant was asked to rate on a seven-level scale how difficult they thought the particular trial was. When all the trials were finished, they were required to answer the last question: “which vibration mode is more comfortable for completing the task? The options are: vibration Online, vibration Offline or both the same.”
	3.4 Results
	3.4.1 All Factor Comparison
	3.4.2 Vision-excluded Factor Comparison
	3.4.3 Vision-based Factor Comparison
	3.4.4 V+VibOnline & V+VibOffline Factor Comparison
	3.4.4 Comparison Summary

	4. CONCLUSIONS AND FURTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	A13-full.pdf
	1. INTRODUCTION
	2. PROBLEM DEFINITION
	3. RELATED WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	!SH-3.pdf
	A03-full.pdf
	D71-full.pdf
	1. INTRODUCTION
	Comparison for Collaborative Project
	Digital Archive for Comparison

	2. NAVIGATION FUNCTION FOR COMPARISON
	3. COMPARATIVE NAVIGATION SYSTEM
	Development
	System Outline
	Prototype
	Functions
	3.1.1 3D space move function
	3.1.2 Plug-in function
	3.1.3 Concurrent comparison navigation function
	3.1.3.1 One-screen mode
	3.1.3.2 Two-screen mode
	3.1.3.3 Four-screen mode

	3.1.4 Cross-section view function

	4. Prototype testing
	5. CONCLUSION
	6. REFERENCES

	F41-full.pdf
	1. INTRODUCTION
	2. Virtual Manipulation
	2.1 Definition of VM
	1. Basic Definition
	2. Reality Condition

	2.2 VM for two-dimensional virtual space
	Events
	Reactions for a dial

	3. Objects virtual interface in VM
	3.1 A dial
	Physical specification
	Reactions
	Physical Reality

	3.2 A toggle switch
	Physical specification
	Reactions
	Physical Reality

	3.3 A spring
	Physical specification
	Reactions
	Physical Reality

	3.4 A pickable object
	Physical specification
	Reactions
	Physical Reality

	3.5 A bouncing object
	Physical specification
	Reactions
	Physical Reality

	4. Real System
	4.1 A dial
	4.2 A switch
	4.3 A spling
	4.4 A pickable object
	4.5 A bouncing object

	5. Application
	5.1 V-VolleyBall
	5.2 V-Rimokon

	6. Result
	6.1 Evaluation of Objects and V-VolleyBall
	6.2 Developer’s process

	7. Discussion
	Limitation
	Related Work
	Future Work
	Conclusion

	8. ACKNOWLEDGMENTS
	9. REFERENCES

	G17-full.pdf
	3.1A Mathematical Model for a Standard Prostate Shape Top Down Anterior To Posterior
	3.2Approach

	H37-full.pdf
	1. INTRODUCTION
	1.1 Visualization
	1.2 Line Visualization
	Lines have drawn much attention of visualization researchers, because of their simple but useful presentation ability for data and information. For instance, in information visualization, we could map month-long temperature data onto a line graph, with the x-axis representing date and the y-axis temperature, and then plot temperatures in different regions using various colourful or textured lines, in order to facilitate comparisons. In scientific visualization, lines are often used as, for example, streamlines portraying vectors in a flow field. Moreover other attributes, such as vector magnitude, can be mapped via colour on the line. However, many lines presented at the same time can result in visual clutter, and cause serious confusion. Under this circumstance, is there any other way to aid in displaying these lines? Haptic sensation has been revealed as an alternative. In this section, haptic line visualization methods are introduced, according to two main categories: implicit line mapping and explicit line mapping.
	1.2.1 Implicit Line
	1.2.2 Explicit Line

	1.3 Paper Outline
	2. VIBRATION MAGNITUDE MODEL
	The vibration magnitude model [Wan06] provides a basic mapping criterion for haptic visualization, and enables users to extract various vibration mapping tables. A PHANToM Desktop device (Figure 1), made by SensAble Technologies Inc., was adopted in the model construction experiments. As a single pointing handheld device, it allows 6 degree of freedom (DOF) input and provides 3 DOF output.
	2.1.1 Magnitude Estimation Experiment
	2.1.2 Intramodal Matching Experiment

	2.2 Vibration Magnitude Model

	3. LINE TRACKING EXPERIMENT
	3.1 Design
	3.2 Stimuli
	There were four lines in total. And each of them was 2.0 mm wide, 350 mm long, and contained three different rectangular grooves, which can be upward or downward. The two of them were the upside-down replicas of the other two. Thus the two lines respectively had two narrow grooves (20 mm width) and one wide groove (40 mm width), while each of others had one narrow groove and two wide grooves. Figure 4 gives an illustration of a trial line’s pattern.
	

	3.3 Procedure
	Four female and five male subjects, aged between 22 and 35, took part. To start a trial, the participant positioned the cursor (represented by a blue cone) in contact with the left sphere, and pressed the button on the stylus. Then he moved the cursor to track the line through vibration, or vision, or both, until reaching the right sphere. At this time, the participant pressed the button again, and the trial was ended.
	Each participant completed two practice trials and then 16 test trials. VibOnline and VibOffline modes were mixed during the experiment, but each of them was always applied into two trials in a row, the next two trials adopted the other mode. Except for this limitation, all the trials were presented at random. Participants were explicitly informed which vibration mode (VibOnline, VibOffline) would be used and whether vision would be provided. After each trial, the participant was asked to rate on a seven-level scale how difficult they thought the particular trial was. When all the trials were finished, they were required to answer the last question: “which vibration mode is more comfortable for completing the task? The options are: vibration Online, vibration Offline or both the same.”
	3.4 Results
	3.4.1 All Factor Comparison
	3.4.2 Vision-excluded Factor Comparison
	3.4.3 Vision-based Factor Comparison
	3.4.4 V+VibOnline & V+VibOffline Factor Comparison
	3.4.4 Comparison Summary

	4. CONCLUSIONS AND FURTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	A13-full.pdf
	1. INTRODUCTION
	2. PROBLEM DEFINITION
	3. RELATED WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	!SH-4.pdf
	G17-full.pdf
	G17-full.pdf
	3.1A Mathematical Model for a Standard Prostate Shape Top Down Anterior To Posterior
	3.2Approach

	H37-full.pdf
	1. INTRODUCTION
	1.1 Visualization
	1.2 Line Visualization
	Lines have drawn much attention of visualization researchers, because of their simple but useful presentation ability for data and information. For instance, in information visualization, we could map month-long temperature data onto a line graph, with the x-axis representing date and the y-axis temperature, and then plot temperatures in different regions using various colourful or textured lines, in order to facilitate comparisons. In scientific visualization, lines are often used as, for example, streamlines portraying vectors in a flow field. Moreover other attributes, such as vector magnitude, can be mapped via colour on the line. However, many lines presented at the same time can result in visual clutter, and cause serious confusion. Under this circumstance, is there any other way to aid in displaying these lines? Haptic sensation has been revealed as an alternative. In this section, haptic line visualization methods are introduced, according to two main categories: implicit line mapping and explicit line mapping.
	1.2.1 Implicit Line
	1.2.2 Explicit Line

	1.3 Paper Outline
	2. VIBRATION MAGNITUDE MODEL
	The vibration magnitude model [Wan06] provides a basic mapping criterion for haptic visualization, and enables users to extract various vibration mapping tables. A PHANToM Desktop device (Figure 1), made by SensAble Technologies Inc., was adopted in the model construction experiments. As a single pointing handheld device, it allows 6 degree of freedom (DOF) input and provides 3 DOF output.
	2.1.1 Magnitude Estimation Experiment
	2.1.2 Intramodal Matching Experiment

	2.2 Vibration Magnitude Model

	3. LINE TRACKING EXPERIMENT
	3.1 Design
	3.2 Stimuli
	There were four lines in total. And each of them was 2.0 mm wide, 350 mm long, and contained three different rectangular grooves, which can be upward or downward. The two of them were the upside-down replicas of the other two. Thus the two lines respectively had two narrow grooves (20 mm width) and one wide groove (40 mm width), while each of others had one narrow groove and two wide grooves. Figure 4 gives an illustration of a trial line’s pattern.
	

	3.3 Procedure
	Four female and five male subjects, aged between 22 and 35, took part. To start a trial, the participant positioned the cursor (represented by a blue cone) in contact with the left sphere, and pressed the button on the stylus. Then he moved the cursor to track the line through vibration, or vision, or both, until reaching the right sphere. At this time, the participant pressed the button again, and the trial was ended.
	Each participant completed two practice trials and then 16 test trials. VibOnline and VibOffline modes were mixed during the experiment, but each of them was always applied into two trials in a row, the next two trials adopted the other mode. Except for this limitation, all the trials were presented at random. Participants were explicitly informed which vibration mode (VibOnline, VibOffline) would be used and whether vision would be provided. After each trial, the participant was asked to rate on a seven-level scale how difficult they thought the particular trial was. When all the trials were finished, they were required to answer the last question: “which vibration mode is more comfortable for completing the task? The options are: vibration Online, vibration Offline or both the same.”
	3.4 Results
	3.4.1 All Factor Comparison
	3.4.2 Vision-excluded Factor Comparison
	3.4.3 Vision-based Factor Comparison
	3.4.4 V+VibOnline & V+VibOffline Factor Comparison
	3.4.4 Comparison Summary

	4. CONCLUSIONS AND FURTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	A13-full.pdf
	1. INTRODUCTION
	2. PROBLEM DEFINITION
	3. RELATED WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	!SH-5.pdf
	H37-full.pdf
	H37-full.pdf
	1. INTRODUCTION
	1.1 Visualization
	1.2 Line Visualization
	Lines have drawn much attention of visualization researchers, because of their simple but useful presentation ability for data and information. For instance, in information visualization, we could map month-long temperature data onto a line graph, with the x-axis representing date and the y-axis temperature, and then plot temperatures in different regions using various colourful or textured lines, in order to facilitate comparisons. In scientific visualization, lines are often used as, for example, streamlines portraying vectors in a flow field. Moreover other attributes, such as vector magnitude, can be mapped via colour on the line. However, many lines presented at the same time can result in visual clutter, and cause serious confusion. Under this circumstance, is there any other way to aid in displaying these lines? Haptic sensation has been revealed as an alternative. In this section, haptic line visualization methods are introduced, according to two main categories: implicit line mapping and explicit line mapping.
	1.2.1 Implicit Line
	1.2.2 Explicit Line

	1.3 Paper Outline
	2. VIBRATION MAGNITUDE MODEL
	The vibration magnitude model [Wan06] provides a basic mapping criterion for haptic visualization, and enables users to extract various vibration mapping tables. A PHANToM Desktop device (Figure 1), made by SensAble Technologies Inc., was adopted in the model construction experiments. As a single pointing handheld device, it allows 6 degree of freedom (DOF) input and provides 3 DOF output.
	2.1.1 Magnitude Estimation Experiment
	2.1.2 Intramodal Matching Experiment

	2.2 Vibration Magnitude Model

	3. LINE TRACKING EXPERIMENT
	3.1 Design
	3.2 Stimuli
	There were four lines in total. And each of them was 2.0 mm wide, 350 mm long, and contained three different rectangular grooves, which can be upward or downward. The two of them were the upside-down replicas of the other two. Thus the two lines respectively had two narrow grooves (20 mm width) and one wide groove (40 mm width), while each of others had one narrow groove and two wide grooves. Figure 4 gives an illustration of a trial line’s pattern.
	

	3.3 Procedure
	Four female and five male subjects, aged between 22 and 35, took part. To start a trial, the participant positioned the cursor (represented by a blue cone) in contact with the left sphere, and pressed the button on the stylus. Then he moved the cursor to track the line through vibration, or vision, or both, until reaching the right sphere. At this time, the participant pressed the button again, and the trial was ended.
	Each participant completed two practice trials and then 16 test trials. VibOnline and VibOffline modes were mixed during the experiment, but each of them was always applied into two trials in a row, the next two trials adopted the other mode. Except for this limitation, all the trials were presented at random. Participants were explicitly informed which vibration mode (VibOnline, VibOffline) would be used and whether vision would be provided. After each trial, the participant was asked to rate on a seven-level scale how difficult they thought the particular trial was. When all the trials were finished, they were required to answer the last question: “which vibration mode is more comfortable for completing the task? The options are: vibration Online, vibration Offline or both the same.”
	3.4 Results
	3.4.1 All Factor Comparison
	3.4.2 Vision-excluded Factor Comparison
	3.4.3 Vision-based Factor Comparison
	3.4.4 V+VibOnline & V+VibOffline Factor Comparison
	3.4.4 Comparison Summary

	4. CONCLUSIONS AND FURTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

