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ABSTRACT 
This paper describes a procedure that synthesizes Level-of-Detail (LoD) meshes from a tree of mesh-patches. 
The patch tree stores the surface of the original mesh in different detail levels. The leaf patches represent the 
original detail, while lower levels in the tree represent the geometry of their child nodes with less detail. 
Such patch trees have a coarser granularity compared to basic approaches like “edge-collapse”. This is because 
only complete patches can switch their detail, instead of pairs of triangles. On the other hand, it can better utilize 
the graphics hardware, which is capable to render preloaded patches very fast. The problem of such a patch-
based LoD approach is to join the patches of different resolutions together in a smooth mesh. This problem is 
solved by the use of different versions of the patch borders that depend on the detail level of the neighbor 
patches. 
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1. INTRODUCTION 
The drastic increase in speed of graphics hardware 
demands new strategies for Level-of Detail algo-
rithms in order to make use of the GPU processing 
power. Common LoD algorithms, such as vertex-
trees or triangle-subdivision schemes, only add / re-
move two triangles in each refinement / simplification 
step. Used with many available large meshes, most of 
the frame time is spent for the frame-to-frame mesh 
update. This is due to the high CPU load of the up-
date process, compared to the GPU load. A coarser 
update granularity in LoD hierarchies enables gener-
ating a higher GPU load, together with a lower CPU 
load. The use of patches furthermore enables to store 
the geometry data in the GPU memory and to use 
efficient geometry descriptions, such as triangle-
strips.  

The approach in this paper describes the steps to cre-
ate a patch-tree and how to use it for LoD rendering.  

2. RELATED WORK 
For the online approximation of triangle meshes there 

exist many different techniques. All of them create a 
hierarchy in an offline process, which is used for a 
fast online approximation. Xia [Xia96] creates 
merge-trees, which are constructed by a sequence of 
merge operations on pairs of surface vertices. Each 
merge operation creates a new node in the merge-
tree, which also stores an error value to allow a selec-
tive refinement. The leaf-nodes of the tree represent 
the original vertices of the corresponding mesh. 
Hoppe [Hop97] independently extended his Progres-
sive Meshes [Hop96] in order to create a comparable 
hierarchical data structure. Both approaches have a 
granularity of two triangles per simplification / re-
finement operation and thus create high CPU loads. 
Furthermore, each update operation requires an adap-
tion of the triangles in the direct neighborhood and 
thus another increase in CPU load. 

Other algorithms avoid the neighborhood update by 
substituting the mesh patches. The MT-hierarchy 
method [Pup96] generates approximations from con-
strained cuttings through a previously constructed 
hierarchy. Each update operation in the hierarchy cut 
is equivalent to a merge of two surface vertices and 
thus the fine granularity still results in high CPU load. 
The same is true for the ROAM [Duc97] algorithm, 
where a hierarchy of right-angled triangles is used to 
approximate heightfield meshes with a constrained 
triangle substitution. 

The BDAM [Cig03] approach first used higher 
granularity primitives. It constructs a hierarchy of 
right-angled triangles like ROAM, but each node 
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represents a patch of triangles. With the Adaptive 
Tetra Puzzles [Cig04], the idea of BDAM was ported 
to arbitrary meshes. Both approaches enable the syn-
thesis of conformal (crack free) mesh approximations 
with constraints at the patch borders during the sim-
plification. The outer border of the patch which is 
simplified must not be changed. Thus, patches which 
differ by only one detail level can be placed side by 
side without mesh cracks. 

In [Cig05] the above approaches are generalized to 
Batched Multi Triangulations. A sequence of parti-
tions is created for the mesh with a descending num-
ber of patches. Each pair of successive partitions in 
the sequence is cut against each other, in order to 
determine the parent-child relations in the hierarchy 
of patches. The geometry in the partitions is simpli-
fied according to the number of patches, while the 
geometry along the cuts is preserved. This hierarchy 
is used to create approximations by stitching patches 
of the different partitions together. 

3. PATCH-TREE CONSTRUCTION 
In this section the basic steps of the patch tree con-
struction are described. A tree of triangle-patches has 
to be constructed, where each node contains a trian-
gle-patch with the simplified geometry of its child 
patches. The nodes are further enriched with informa-
tion about the change of their borders from lower to 
higher detail. 

Creating the Patch-Hierarchy 
To create the patch-tree, a greedy merge algorithm is 
used to create the initial patches. Therefore, all origi-
nal triangles are treated as patches. The patches are 
then iteratively merged according to the resulting 
shape, until a desired number of patches is reached. 
This number of patches depends on the average num-
ber of triangles per patch in the patch-tree. The prior-
ity of the merge operations is measured by the pe-
rimeter of the patch and its surface area: 

2
*42 areaoutline

priority
π+=  (1) 

This metrics prefers small and compact patches. To 
take only the patch perimeter into account, as done in 
[San01], leads to problems at mesh parts that are con-
nected to the rest of the mesh with thin transitions 
(e.g. neck connects head and body). 

Once the initial patches are created, their borders are 
smoothed with a local shortest path algorithm. This is 
done in order to facilitate stitching of patches with 
different triangle resolutions. The algorithm itera-
tively shortens the path between two patch corners. 
Therefore the path-vertices, and all vertices that are 

adjacent to them, are marked as optimization corri-
dor. Now the shortest possible path is found in this 
corridor and optimized again, as long as optimiza-
tions are possible. 

Figure 1 shows the result of the smoothing algorithm. 
The patches in the left image have rough borders. 
After straightening the borders, they are much 
smoother as visible in the right image. Furthermore 
the relatively compact shape of the patches can be 
recognized, which enables a good distribution of the 
image space error in later approximations. 

 

 

 

 

 

 

 

With the smoothed patches, a merge tree is created 
with a greedy algorithm again, using the same com-
pactness metrics. The resulting unbalanced binary 
merge tree is then transformed to a balanced final 
patch-tree. This step is necessary, because we need 
explicit neighbor info of the patches in each level of 
the final tree. The leaves of the patch-tree are identi-
cal to the leaves in the merge-tree, but all reside in 
the same level of the tree. The following levels in the 
patch-tree are extracted from the binary tree, accord-
ing to the compactness metrics and are provided with 
half the number of patches compared to the previous 
level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: initial (l.) and smoothed(r.) borders 

Figure 2: initial (t.) and final(b.) patch-tree 
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Figure 2 shows a small example. The binary tree 
(top) that was created by the patch merge algorithm is 
transformed into a general tree (bottom), whose leaf 
nodes are all situated on the same tree-level. Some 
merge tree nodes have been ignored (e.g. node 12) in 
this process, while other nodes appear multiple times 
(e.g. node 9). 

LOD Creation 
In order to enable an extraction of LoD approxima-
tions, the non-leaf nodes of the patch-tree have to be 
equipped with the simplified geometry of their child 
nodes. The construction of the LoD halves the num-
ber of triangles from each level to the next, starting at 
the leaf level. This ensures the same average number 
of triangles per patch in the whole patch-tree. 

The simplification process works as follows: 

• Initialize leaf patches with original geometry 

• For each lower level 

o Merge geometry of child patches 

o Halve number of triangles in level 

• Precompute patch border switches 

• Compute split weights for the patches 

In order to halve the number of triangles from level to 
level, an “half edge-collapse” [Kob98] algorithm is 
used. This ensures common vertices in child and par-
ent patches. The surface error is measured with the 
QEM [Gar97] and the shape of the patch borders is 
preserved during the simplification. The simplified 
geometry then remains in the patches of the actual 
tree level and is used to initialize the simplification of 
the next level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In figure 3, four different levels of the patch-tree are 
visible. The average surface area of the patches dou-
bles from level to level, while their shape remains 
compact. 

After the geometry of all levels was created, possible 
changes at the borders of all patches are computed. 
Therefore each patch references all of its adjacent 
patches (at least one common vertex). During the 
synthesis process, patch-refinement operations are 
applied to the approximated surface. The refinement-
operations are restricted, in order to keep the differ-
ence between detail levels of adjacent patches below 
two. This means that refinement-operations are only 
allowed if all patches in the neighborhood have a 
higher or the same level. If not, the corresponding 
patches have to be refined first (forced refinement). 
Due to the restricted difference in the levels of adja-
cent patches, only one additional version of each bor-
der between two patches must be computed. In this 
approach, the higher level patch has to adapt to the 
lower level. The indices of all border vertices of a 
patch that do not appear in the parent patch, can be 
changed to the closest border vertex that appears in 
the parent patch. This ensures a closed triangle mesh 
without cracks for each approximation. To determine 
the correct replacement index, the distance to the next 
left and right border vertex, which also belongs to the 
parent patch, is compared.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 shows an example for the border adaption. 
The indices of the yellow vertices in the high level 
patch have to be changed to match them with the 
border of the lower level patch. The arrows show the 
position of the according replacement targets. 

The last step computes view-independent refinement 
priorities, which measure the geometric distortion for 
a replacement of some child patches by their parent 
patch. The priority is measured with the average 
squared distance of the vertices in the child patches to 

Figure 3: different detail levels 

Figure 4: border versions 
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the parent patch. To compute this average value, all 
vertices of the child patches are mapped to their par-
ent patch. After that, the accumulated squared dis-
tance of all vertices is divided by the number of verti-
ces in the patch. The mapping is realized by locking 
all common vertices of  the child patches and the par-
ent patches. For all other vertices the “mean value 
coordinates” [Flo03] are determined and used to 
compute their mapping in the parent patch. 

4. LOD SYNTHESIS 
The patch-tree can now be used to synthesize ap-
proximations of the original mesh. A simple split-
only version of the approximation process first inserts 
the root patch into a priority queue. The priority of 
the patch is made view dependent by dividing the 
view independent priority by the squared distance 
between patch and viewer. Furthermore this first 
patch is marked and then stored in a list of  used 
patches. Now a loop is started that iteratively splits 
the patches in the approximation, if it is possible. 
Therefore the neighbors of the first patch  the queue 
are checked. If all neighbors in the same patch-level 
are marked, the first patch is removed from the queue 
and the list of used patches. Furthermore its child 
patches are marked and put into the list of used 
patches. If the child patches are not from the leaf 
level, they are also put into the priority queue, with 
their view dependent weights. 

If any of the neighbor patches in the same level of the 
patch-tree were not marked yet, the priority of their 
parent patches (which were surely marked) is lifted to 
a higher priority than the first patch in the queue. This 
ensures that patches can only be split if their 
neighborhood is at least at the same patch-tree level. 

The refinement process can be stopped by different 
events. For the tests in the next section, a triangle 
threshold was chosen. 

To waste less triangles in invisible regions, a view 
frustum culling has been implemented. Each priority 
computation also tests the bounding sphere of the 
patch against the planes of the view frustum. By 
means of the results, the patch is tagged as com-
pletely visible, partial visible or completely invisible. 
The priority of completely invisible patches is always 
set to zero. Completely visible or invisible patches 
can inherit this property to their child patches to save 
culling tests. This ensures the distribution of  most 
triangles within the view frustum. 

Frame-to-frame coherency can also be exploited by 
the help of  another priority queue, which stores pos-
sible merge operations of patches. But due to the low 
tree size, the split-only method works fast even for 
large meshes. 

5. RENDERING 
Before rendering, the borders of all used patches have 
to be adapted. Therefore all neighbors of each used 
patch in the same patch-tree level are checked for a 
mark. The correct border vertex indices are chosen 
according to the acquired neighbor information. If the 
neighbor patch is marked, the original indices are 
used. Else the previously determined parent versions 
must be used. The resulting mesh is crack free, be-
cause the possibly different triangulations on the 
patch borders have been repaired now. 

Figure 5 shows the “Bunny” mesh without (top) and 
with (bottom) crack removal. The holes in the upper 
image are colored in bright red. The bottom image 
does not show holes, because the patch borders which 
caused the holes were updated. 

The adapted patches can now efficiently be rendered 
as vertex-, normal- and triangle-arrays. This process 
can even be accelerated by dividing the patches into a 
constant partition, which remains in GPU memory, 
and the changeable parts. Thus only the few change-
able parts must be transferred to the GPU, while most 
of the mesh already resides in the GPU memory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. RESULTS 
The patch-tree based LoD synthesis has been tested 
with several meshes. The average patch size was ad-
justed to 100 triangles to avoid strong popping ef-
fects. All meshes were partitioned into compact 
patches. 

Figure 5: with cracks (l.)/removed cracks (r.) 
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The “Bunny” mesh consists of almost 70,000 trian-
gles, while the “Armadillo” mesh uses almost 
346,000 triangles and the “Rough Planet” even al-
most 2,1 Mio triangles. Figure 6 shows the leaf 
patches of the “Armadillo” and the “Rough Planet” 
mesh. 

 

 

 

 

 

 

 

 

 

 

All meshes are rendered with simple vertex-, normal- 
and triangle-arrays with approximately 15 Mio. trian-
gles per second, independent from the size of the 
approximated mesh (P4 – 2GHz, 1GB Ram, ATI 
Radeon 9800 Pro). With the use of  float-buffers on 
the GPU and a patch size of 1000 triangles, the ren-
dering throughput raised up to 25 Mio. trian-
gles/second. The number of triangles for the ap-
proximation was adjusted to 500,000 triangles at a 
frame rate of 50 fps. 

 

 

 

 

 

 

 

 

 

 

Figure 7 shows a 80,000 triangle approximation view 
(left) of the „Armadillo“ mesh and an overall view 
(right). The effect of the adaptive triangulation can be 
seen here. The left hand shows the highest detail, 
while the right part of the mesh, which has a higher 
distance to the viewer, is triangulated significantly 
coarser. Due to the low number of triangles per patch, 
the transition of detail is relatively smooth. 

7. CONCLUSION 
This paper introduced patch-trees, which can be used 
to synthesize LoD meshes. The algorithm is relatively 
easy to implement and shows good results.  Due to 

the selectable granularity (average patch size), it is 
possible to reduce the CPU load in the synthesis pe-
riod and thus enables highly detailed approximations. 
The results can still be improved with a more GPU 
oriented version of the rendering process. Further-
more a “Out of Core” version of the patch-trees 
should be easily implementable. 
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