
Patch-Trees for Fast Level-of-Detail Synthesis
Hermann Birkholz
Research Assistant

Albert-Einstein-Str. 21
Germany, 18059, Rostock

hb01@informatik.uni-rostock.de

ABSTRACT
This paper describes a procedure that synthesizes Level-of-Detail (LoD) meshes from a tree of mesh-patches.
The patch tree stores the surface of the original mesh in different detail levels. The leaf patches represent the
original detail, while lower levels in the tree represent the geometry of their child nodes with less detail.
Such patch trees have a coarser granularity compared to basic approaches like “edge-collapse”. This is because
only complete patches can switch their detail, instead of pairs of triangles. On the other hand, it can better utilize
the graphics hardware, which is capable to render preloaded patches very fast. The problem of such a patch-
based LoD approach is to join the patches of different resolutions together in a smooth mesh. This problem is
solved by the use of different versions of the patch borders that depend on the detail level of the neighbor
patches.

Keywords
Level-of-Detail, Batched Dynamic Mesh.

1. INTRODUCTION
The drastic increase in speed of graphics hardware
demands new strategies for Level-of Detail algo-
rithms in order to make use of the GPU processing
power. Common LoD algorithms, such as vertex-
trees or triangle-subdivision schemes, only add / re-
move two triangles in each refinement / simplification
step. Used with many available large meshes, most of
the frame time is spent for the frame-to-frame mesh
update. This is due to the high CPU load of the up-
date process, compared to the GPU load. A coarser
update granularity in LoD hierarchies enables gener-
ating a higher GPU load, together with a lower CPU
load. The use of patches furthermore enables to store
the geometry data in the GPU memory and to use
efficient geometry descriptions, such as triangle-
strips.

The approach in this paper describes the steps to cre-
ate a patch-tree and how to use it for LoD rendering.

2. RELATED WORK
For the online approximation of triangle meshes there

exist many different techniques. All of them create a
hierarchy in an offline process, which is used for a
fast online approximation. Xia [Xia96] creates
merge-trees, which are constructed by a sequence of
merge operations on pairs of surface vertices. Each
merge operation creates a new node in the merge-
tree, which also stores an error value to allow a selec-
tive refinement. The leaf-nodes of the tree represent
the original vertices of the corresponding mesh.
Hoppe [Hop97] independently extended his Progres-
sive Meshes [Hop96] in order to create a comparable
hierarchical data structure. Both approaches have a
granularity of two triangles per simplification / re-
finement operation and thus create high CPU loads.
Furthermore, each update operation requires an adap-
tion of the triangles in the direct neighborhood and
thus another increase in CPU load.

Other algorithms avoid the neighborhood update by
substituting the mesh patches. The MT-hierarchy
method [Pup96] generates approximations from con-
strained cuttings through a previously constructed
hierarchy. Each update operation in the hierarchy cut
is equivalent to a merge of two surface vertices and
thus the fine granularity still results in high CPU load.
The same is true for the ROAM [Duc97] algorithm,
where a hierarchy of right-angled triangles is used to
approximate heightfield meshes with a constrained
triangle substitution.

The BDAM [Cig03] approach first used higher
granularity primitives. It constructs a hierarchy of
right-angled triangles like ROAM, but each node

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech
Republic.

Short Communication papers 1 ISBN 978-80-86943-02-2

represents a patch of triangles. With the Adaptive
Tetra Puzzles [Cig04], the idea of BDAM was ported
to arbitrary meshes. Both approaches enable the syn-
thesis of conformal (crack free) mesh approximations
with constraints at the patch borders during the sim-
plification. The outer border of the patch which is
simplified must not be changed. Thus, patches which
differ by only one detail level can be placed side by
side without mesh cracks.

In [Cig05] the above approaches are generalized to
Batched Multi Triangulations. A sequence of parti-
tions is created for the mesh with a descending num-
ber of patches. Each pair of successive partitions in
the sequence is cut against each other, in order to
determine the parent-child relations in the hierarchy
of patches. The geometry in the partitions is simpli-
fied according to the number of patches, while the
geometry along the cuts is preserved. This hierarchy
is used to create approximations by stitching patches
of the different partitions together.

3. PATCH-TREE CONSTRUCTION
In this section the basic steps of the patch tree con-
struction are described. A tree of triangle-patches has
to be constructed, where each node contains a trian-
gle-patch with the simplified geometry of its child
patches. The nodes are further enriched with informa-
tion about the change of their borders from lower to
higher detail.

Creating the Patch-Hierarchy
To create the patch-tree, a greedy merge algorithm is
used to create the initial patches. Therefore, all origi-
nal triangles are treated as patches. The patches are
then iteratively merged according to the resulting
shape, until a desired number of patches is reached.
This number of patches depends on the average num-
ber of triangles per patch in the patch-tree. The prior-
ity of the merge operations is measured by the pe-
rimeter of the patch and its surface area:

2
*42 areaoutline

priority
π+= (1)

This metrics prefers small and compact patches. To
take only the patch perimeter into account, as done in
[San01], leads to problems at mesh parts that are con-
nected to the rest of the mesh with thin transitions
(e.g. neck connects head and body).

Once the initial patches are created, their borders are
smoothed with a local shortest path algorithm. This is
done in order to facilitate stitching of patches with
different triangle resolutions. The algorithm itera-
tively shortens the path between two patch corners.
Therefore the path-vertices, and all vertices that are

adjacent to them, are marked as optimization corri-
dor. Now the shortest possible path is found in this
corridor and optimized again, as long as optimiza-
tions are possible.

Figure 1 shows the result of the smoothing algorithm.
The patches in the left image have rough borders.
After straightening the borders, they are much
smoother as visible in the right image. Furthermore
the relatively compact shape of the patches can be
recognized, which enables a good distribution of the
image space error in later approximations.

With the smoothed patches, a merge tree is created
with a greedy algorithm again, using the same com-
pactness metrics. The resulting unbalanced binary
merge tree is then transformed to a balanced final
patch-tree. This step is necessary, because we need
explicit neighbor info of the patches in each level of
the final tree. The leaves of the patch-tree are identi-
cal to the leaves in the merge-tree, but all reside in
the same level of the tree. The following levels in the
patch-tree are extracted from the binary tree, accord-
ing to the compactness metrics and are provided with
half the number of patches compared to the previous
level.

Figure 1: initial (l.) and smoothed(r.) borders

Figure 2: initial (t.) and final(b.) patch-tree

Short Communication papers 2 ISBN 978-80-86943-02-2

Figure 2 shows a small example. The binary tree
(top) that was created by the patch merge algorithm is
transformed into a general tree (bottom), whose leaf
nodes are all situated on the same tree-level. Some
merge tree nodes have been ignored (e.g. node 12) in
this process, while other nodes appear multiple times
(e.g. node 9).

LOD Creation
In order to enable an extraction of LoD approxima-
tions, the non-leaf nodes of the patch-tree have to be
equipped with the simplified geometry of their child
nodes. The construction of the LoD halves the num-
ber of triangles from each level to the next, starting at
the leaf level. This ensures the same average number
of triangles per patch in the whole patch-tree.

The simplification process works as follows:

• Initialize leaf patches with original geometry

• For each lower level

o Merge geometry of child patches

o Halve number of triangles in level

• Precompute patch border switches

• Compute split weights for the patches

In order to halve the number of triangles from level to
level, an “half edge-collapse” [Kob98] algorithm is
used. This ensures common vertices in child and par-
ent patches. The surface error is measured with the
QEM [Gar97] and the shape of the patch borders is
preserved during the simplification. The simplified
geometry then remains in the patches of the actual
tree level and is used to initialize the simplification of
the next level.

In figure 3, four different levels of the patch-tree are
visible. The average surface area of the patches dou-
bles from level to level, while their shape remains
compact.

After the geometry of all levels was created, possible
changes at the borders of all patches are computed.
Therefore each patch references all of its adjacent
patches (at least one common vertex). During the
synthesis process, patch-refinement operations are
applied to the approximated surface. The refinement-
operations are restricted, in order to keep the differ-
ence between detail levels of adjacent patches below
two. This means that refinement-operations are only
allowed if all patches in the neighborhood have a
higher or the same level. If not, the corresponding
patches have to be refined first (forced refinement).
Due to the restricted difference in the levels of adja-
cent patches, only one additional version of each bor-
der between two patches must be computed. In this
approach, the higher level patch has to adapt to the
lower level. The indices of all border vertices of a
patch that do not appear in the parent patch, can be
changed to the closest border vertex that appears in
the parent patch. This ensures a closed triangle mesh
without cracks for each approximation. To determine
the correct replacement index, the distance to the next
left and right border vertex, which also belongs to the
parent patch, is compared.

Figure 4 shows an example for the border adaption.
The indices of the yellow vertices in the high level
patch have to be changed to match them with the
border of the lower level patch. The arrows show the
position of the according replacement targets.

The last step computes view-independent refinement
priorities, which measure the geometric distortion for
a replacement of some child patches by their parent
patch. The priority is measured with the average
squared distance of the vertices in the child patches to

Figure 3: different detail levels

Figure 4: border versions

Short Communication papers 3 ISBN 978-80-86943-02-2

the parent patch. To compute this average value, all
vertices of the child patches are mapped to their par-
ent patch. After that, the accumulated squared dis-
tance of all vertices is divided by the number of verti-
ces in the patch. The mapping is realized by locking
all common vertices of the child patches and the par-
ent patches. For all other vertices the “mean value
coordinates” [Flo03] are determined and used to
compute their mapping in the parent patch.

4. LOD SYNTHESIS
The patch-tree can now be used to synthesize ap-
proximations of the original mesh. A simple split-
only version of the approximation process first inserts
the root patch into a priority queue. The priority of
the patch is made view dependent by dividing the
view independent priority by the squared distance
between patch and viewer. Furthermore this first
patch is marked and then stored in a list of used
patches. Now a loop is started that iteratively splits
the patches in the approximation, if it is possible.
Therefore the neighbors of the first patch the queue
are checked. If all neighbors in the same patch-level
are marked, the first patch is removed from the queue
and the list of used patches. Furthermore its child
patches are marked and put into the list of used
patches. If the child patches are not from the leaf
level, they are also put into the priority queue, with
their view dependent weights.

If any of the neighbor patches in the same level of the
patch-tree were not marked yet, the priority of their
parent patches (which were surely marked) is lifted to
a higher priority than the first patch in the queue. This
ensures that patches can only be split if their
neighborhood is at least at the same patch-tree level.

The refinement process can be stopped by different
events. For the tests in the next section, a triangle
threshold was chosen.

To waste less triangles in invisible regions, a view
frustum culling has been implemented. Each priority
computation also tests the bounding sphere of the
patch against the planes of the view frustum. By
means of the results, the patch is tagged as com-
pletely visible, partial visible or completely invisible.
The priority of completely invisible patches is always
set to zero. Completely visible or invisible patches
can inherit this property to their child patches to save
culling tests. This ensures the distribution of most
triangles within the view frustum.

Frame-to-frame coherency can also be exploited by
the help of another priority queue, which stores pos-
sible merge operations of patches. But due to the low
tree size, the split-only method works fast even for
large meshes.

5. RENDERING
Before rendering, the borders of all used patches have
to be adapted. Therefore all neighbors of each used
patch in the same patch-tree level are checked for a
mark. The correct border vertex indices are chosen
according to the acquired neighbor information. If the
neighbor patch is marked, the original indices are
used. Else the previously determined parent versions
must be used. The resulting mesh is crack free, be-
cause the possibly different triangulations on the
patch borders have been repaired now.

Figure 5 shows the “Bunny” mesh without (top) and
with (bottom) crack removal. The holes in the upper
image are colored in bright red. The bottom image
does not show holes, because the patch borders which
caused the holes were updated.

The adapted patches can now efficiently be rendered
as vertex-, normal- and triangle-arrays. This process
can even be accelerated by dividing the patches into a
constant partition, which remains in GPU memory,
and the changeable parts. Thus only the few change-
able parts must be transferred to the GPU, while most
of the mesh already resides in the GPU memory.

6. RESULTS
The patch-tree based LoD synthesis has been tested
with several meshes. The average patch size was ad-
justed to 100 triangles to avoid strong popping ef-
fects. All meshes were partitioned into compact
patches.

Figure 5: with cracks (l.)/removed cracks (r.)

Short Communication papers 4 ISBN 978-80-86943-02-2

The “Bunny” mesh consists of almost 70,000 trian-
gles, while the “Armadillo” mesh uses almost
346,000 triangles and the “Rough Planet” even al-
most 2,1 Mio triangles. Figure 6 shows the leaf
patches of the “Armadillo” and the “Rough Planet”
mesh.

All meshes are rendered with simple vertex-, normal-
and triangle-arrays with approximately 15 Mio. trian-
gles per second, independent from the size of the
approximated mesh (P4 – 2GHz, 1GB Ram, ATI
Radeon 9800 Pro). With the use of float-buffers on
the GPU and a patch size of 1000 triangles, the ren-
dering throughput raised up to 25 Mio. trian-
gles/second. The number of triangles for the ap-
proximation was adjusted to 500,000 triangles at a
frame rate of 50 fps.

Figure 7 shows a 80,000 triangle approximation view
(left) of the „Armadillo“ mesh and an overall view
(right). The effect of the adaptive triangulation can be
seen here. The left hand shows the highest detail,
while the right part of the mesh, which has a higher
distance to the viewer, is triangulated significantly
coarser. Due to the low number of triangles per patch,
the transition of detail is relatively smooth.

7. CONCLUSION
This paper introduced patch-trees, which can be used
to synthesize LoD meshes. The algorithm is relatively
easy to implement and shows good results. Due to

the selectable granularity (average patch size), it is
possible to reduce the CPU load in the synthesis pe-
riod and thus enables highly detailed approximations.
The results can still be improved with a more GPU
oriented version of the rendering process. Further-
more a “Out of Core” version of the patch-trees
should be easily implementable.

8. REFERENCES
[Cig03] Cignoni, P., Ganovelli, F., Gobbetti, E., Mar-

ton, F., Ponchio, F., and Scopino, R. BDAM:
Batched dynamic adaptive meshes for high per-
formance terrain visualization. Computer Gra-
phics Forum, 22(3):pp.505–514, Sept. 2003.

[Cig04] Cignoni, P., Ganovelli, F., Gobbetti, E., Mar-
ton, F., Ponchio, F., and Scopino, R. Adaptive
tetrapuzzles: efficient out-of-core construction
and visualization of gigantic multiresolution po-
lygonal models. ACM Trans. Graph.,
23(3):pp.796–803, 2004.

[Cig05] Cignoni, P., Ganovelli, F., Gobbetti, E., Mar-
ton, F., Ponchio, F., and Scopino, R., Batched
Multi Triangulation, Proceedings IEEE Visualiza-
tion, IEEE Computer Society Press, 2005.

[Duc97] Duchaineau, M.A., Wolinsky, M., Sigeti,
D.E., Miller, M.C., Aldrich, C., and Mineev-
Weinstein, M.B. ROAMing terrain: Real-time op-
timally adapting meshes. Proceedings IEEE Visu-
alization, IEEE Computer Society Press, 1997.

[Flo03] Floater, M.S., Mean value coordinates. Com-
puter Aided Geometric Design, Elsevier Science
Publishers B. V., 2003

[Gar97] Garland, M., Heckbert, P.S., Surface Simpli-
fication Using Quadric Error Metrics, SIG-
GRAPH ’97 Conf. Proc., pp. 209-216, 1997

[Hop96] Hoppe, H., Progressive Meshes, Computer
Graphics:pp.99-108, 1996

[Hop97] Hoppe, H. View Dependent Refinement of
Progressive Meshes, Computer Graphics, 1997

[Kob98] Kobbelt, L., Campagna,, S., Vorsatz, J., and
Seidel, H.-P., Interactive multi-resolution model-
ing on arbitrary meshes, In Proceedings of the
25th annual conference on Computer graphics and
interactive techniques, pp. 105-114, 1998

[Pup96] Puppo, E. Variable Resolution terrain sur-
faces, Proc. Of 8th Canadian Conference of Com-
putational Geometry, 1996

[San01] Sander, P.V., Snyder, J., Gortler, S.J., and
Hoppe, H. Texture Mapping Progressive Meshes,
Computer Graphics Proceedings, ACM Press,
2001

[Xia96] Xia, J.C. and Varshney, A. Dynamic view-
dependent simplification for polygonal models.
Proceedings IEEE Visualization, IEEE Computer
Society Press, 1996

Figure 6: leaf patches of other test meshes

Figure 7: view dependent approximation

Short Communication papers 5 ISBN 978-80-86943-02-2

Short Communication papers 6 ISBN 978-80-86943-02-2

	!WSCG2007_Short_Proceedings_Numbered.pdf
	!SH-1.pdf
	D97-full.pdf
	D97-full.pdf

	D71-full.pdf
	1. INTRODUCTION
	Comparison for Collaborative Project
	Digital Archive for Comparison

	2. NAVIGATION FUNCTION FOR COMPARISON
	3. COMPARATIVE NAVIGATION SYSTEM
	Development
	System Outline
	Prototype
	Functions
	3.1.1 3D space move function
	3.1.2 Plug-in function
	3.1.3 Concurrent comparison navigation function
	3.1.3.1 One-screen mode
	3.1.3.2 Two-screen mode
	3.1.3.3 Four-screen mode

	3.1.4 Cross-section view function

	4. Prototype testing
	5. CONCLUSION
	6. REFERENCES

	E19-full.pdf
	INTRODUCTION
	PREVIOUS LITERATURE
	THE ALGORITHM
	THRESHOLDING
	EXPERIMENTAL RESULTS
	CONCLUSIONS
	REFERENCES

	E41-full.pdf
	INTRODUCTION
	PREVIOUS WORK
	DEFINITIONS AND CONDITIONS
	ALGORITHM
	RESULTS
	Sample shape
	Triangle prism
	Nine boxes
	Fish
	Results

	SUMMARY
	REFERENCES

	F41-full.pdf
	1. INTRODUCTION
	2. Virtual Manipulation
	2.1 Definition of VM
	1. Basic Definition
	2. Reality Condition

	2.2 VM for two-dimensional virtual space
	Events
	Reactions for a dial

	3. Objects virtual interface in VM
	3.1 A dial
	Physical specification
	Reactions
	Physical Reality

	3.2 A toggle switch
	Physical specification
	Reactions
	Physical Reality

	3.3 A spring
	Physical specification
	Reactions
	Physical Reality

	3.4 A pickable object
	Physical specification
	Reactions
	Physical Reality

	3.5 A bouncing object
	Physical specification
	Reactions
	Physical Reality

	4. Real System
	4.1 A dial
	4.2 A switch
	4.3 A spling
	4.4 A pickable object
	4.5 A bouncing object

	5. Application
	5.1 V-VolleyBall
	5.2 V-Rimokon

	6. Result
	6.1 Evaluation of Objects and V-VolleyBall
	6.2 Developer’s process

	7. Discussion
	Limitation
	Related Work
	Future Work
	Conclusion

	8. ACKNOWLEDGMENTS
	9. REFERENCES

	G17-full.pdf
	3.1A Mathematical Model for a Standard Prostate Shape Top Down Anterior To Posterior
	3.2Approach

	H37-full.pdf
	1. INTRODUCTION
	1.1 Visualization
	1.2 Line Visualization
	Lines have drawn much attention of visualization researchers, because of their simple but useful presentation ability for data and information. For instance, in information visualization, we could map month-long temperature data onto a line graph, with the x-axis representing date and the y-axis temperature, and then plot temperatures in different regions using various colourful or textured lines, in order to facilitate comparisons. In scientific visualization, lines are often used as, for example, streamlines portraying vectors in a flow field. Moreover other attributes, such as vector magnitude, can be mapped via colour on the line. However, many lines presented at the same time can result in visual clutter, and cause serious confusion. Under this circumstance, is there any other way to aid in displaying these lines? Haptic sensation has been revealed as an alternative. In this section, haptic line visualization methods are introduced, according to two main categories: implicit line mapping and explicit line mapping.
	1.2.1 Implicit Line
	1.2.2 Explicit Line

	1.3 Paper Outline
	2. VIBRATION MAGNITUDE MODEL
	The vibration magnitude model [Wan06] provides a basic mapping criterion for haptic visualization, and enables users to extract various vibration mapping tables. A PHANToM Desktop device (Figure 1), made by SensAble Technologies Inc., was adopted in the model construction experiments. As a single pointing handheld device, it allows 6 degree of freedom (DOF) input and provides 3 DOF output.
	2.1.1 Magnitude Estimation Experiment
	2.1.2 Intramodal Matching Experiment

	2.2 Vibration Magnitude Model

	3. LINE TRACKING EXPERIMENT
	3.1 Design
	3.2 Stimuli
	There were four lines in total. And each of them was 2.0 mm wide, 350 mm long, and contained three different rectangular grooves, which can be upward or downward. The two of them were the upside-down replicas of the other two. Thus the two lines respectively had two narrow grooves (20 mm width) and one wide groove (40 mm width), while each of others had one narrow groove and two wide grooves. Figure 4 gives an illustration of a trial line’s pattern.
	

	3.3 Procedure
	Four female and five male subjects, aged between 22 and 35, took part. To start a trial, the participant positioned the cursor (represented by a blue cone) in contact with the left sphere, and pressed the button on the stylus. Then he moved the cursor to track the line through vibration, or vision, or both, until reaching the right sphere. At this time, the participant pressed the button again, and the trial was ended.
	Each participant completed two practice trials and then 16 test trials. VibOnline and VibOffline modes were mixed during the experiment, but each of them was always applied into two trials in a row, the next two trials adopted the other mode. Except for this limitation, all the trials were presented at random. Participants were explicitly informed which vibration mode (VibOnline, VibOffline) would be used and whether vision would be provided. After each trial, the participant was asked to rate on a seven-level scale how difficult they thought the particular trial was. When all the trials were finished, they were required to answer the last question: “which vibration mode is more comfortable for completing the task? The options are: vibration Online, vibration Offline or both the same.”
	3.4 Results
	3.4.1 All Factor Comparison
	3.4.2 Vision-excluded Factor Comparison
	3.4.3 Vision-based Factor Comparison
	3.4.4 V+VibOnline & V+VibOffline Factor Comparison
	3.4.4 Comparison Summary

	4. CONCLUSIONS AND FURTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	A13-full.pdf
	1. INTRODUCTION
	2. PROBLEM DEFINITION
	3. RELATED WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	!SH-2.pdf
	E19-full.pdf
	E19-full.pdf

	E41-full.pdf
	A13-full.pdf
	D71-full.pdf
	1. INTRODUCTION
	Comparison for Collaborative Project
	Digital Archive for Comparison

	2. NAVIGATION FUNCTION FOR COMPARISON
	3. COMPARATIVE NAVIGATION SYSTEM
	Development
	System Outline
	Prototype
	Functions
	3.1.1 3D space move function
	3.1.2 Plug-in function
	3.1.3 Concurrent comparison navigation function
	3.1.3.1 One-screen mode
	3.1.3.2 Two-screen mode
	3.1.3.3 Four-screen mode

	3.1.4 Cross-section view function

	4. Prototype testing
	5. CONCLUSION
	6. REFERENCES

	F41-full.pdf
	1. INTRODUCTION
	2. Virtual Manipulation
	2.1 Definition of VM
	1. Basic Definition
	2. Reality Condition

	2.2 VM for two-dimensional virtual space
	Events
	Reactions for a dial

	3. Objects virtual interface in VM
	3.1 A dial
	Physical specification
	Reactions
	Physical Reality

	3.2 A toggle switch
	Physical specification
	Reactions
	Physical Reality

	3.3 A spring
	Physical specification
	Reactions
	Physical Reality

	3.4 A pickable object
	Physical specification
	Reactions
	Physical Reality

	3.5 A bouncing object
	Physical specification
	Reactions
	Physical Reality

	4. Real System
	4.1 A dial
	4.2 A switch
	4.3 A spling
	4.4 A pickable object
	4.5 A bouncing object

	5. Application
	5.1 V-VolleyBall
	5.2 V-Rimokon

	6. Result
	6.1 Evaluation of Objects and V-VolleyBall
	6.2 Developer’s process

	7. Discussion
	Limitation
	Related Work
	Future Work
	Conclusion

	8. ACKNOWLEDGMENTS
	9. REFERENCES

	G17-full.pdf
	3.1A Mathematical Model for a Standard Prostate Shape Top Down Anterior To Posterior
	3.2Approach

	H37-full.pdf
	1. INTRODUCTION
	1.1 Visualization
	1.2 Line Visualization
	Lines have drawn much attention of visualization researchers, because of their simple but useful presentation ability for data and information. For instance, in information visualization, we could map month-long temperature data onto a line graph, with the x-axis representing date and the y-axis temperature, and then plot temperatures in different regions using various colourful or textured lines, in order to facilitate comparisons. In scientific visualization, lines are often used as, for example, streamlines portraying vectors in a flow field. Moreover other attributes, such as vector magnitude, can be mapped via colour on the line. However, many lines presented at the same time can result in visual clutter, and cause serious confusion. Under this circumstance, is there any other way to aid in displaying these lines? Haptic sensation has been revealed as an alternative. In this section, haptic line visualization methods are introduced, according to two main categories: implicit line mapping and explicit line mapping.
	1.2.1 Implicit Line
	1.2.2 Explicit Line

	1.3 Paper Outline
	2. VIBRATION MAGNITUDE MODEL
	The vibration magnitude model [Wan06] provides a basic mapping criterion for haptic visualization, and enables users to extract various vibration mapping tables. A PHANToM Desktop device (Figure 1), made by SensAble Technologies Inc., was adopted in the model construction experiments. As a single pointing handheld device, it allows 6 degree of freedom (DOF) input and provides 3 DOF output.
	2.1.1 Magnitude Estimation Experiment
	2.1.2 Intramodal Matching Experiment

	2.2 Vibration Magnitude Model

	3. LINE TRACKING EXPERIMENT
	3.1 Design
	3.2 Stimuli
	There were four lines in total. And each of them was 2.0 mm wide, 350 mm long, and contained three different rectangular grooves, which can be upward or downward. The two of them were the upside-down replicas of the other two. Thus the two lines respectively had two narrow grooves (20 mm width) and one wide groove (40 mm width), while each of others had one narrow groove and two wide grooves. Figure 4 gives an illustration of a trial line’s pattern.
	

	3.3 Procedure
	Four female and five male subjects, aged between 22 and 35, took part. To start a trial, the participant positioned the cursor (represented by a blue cone) in contact with the left sphere, and pressed the button on the stylus. Then he moved the cursor to track the line through vibration, or vision, or both, until reaching the right sphere. At this time, the participant pressed the button again, and the trial was ended.
	Each participant completed two practice trials and then 16 test trials. VibOnline and VibOffline modes were mixed during the experiment, but each of them was always applied into two trials in a row, the next two trials adopted the other mode. Except for this limitation, all the trials were presented at random. Participants were explicitly informed which vibration mode (VibOnline, VibOffline) would be used and whether vision would be provided. After each trial, the participant was asked to rate on a seven-level scale how difficult they thought the particular trial was. When all the trials were finished, they were required to answer the last question: “which vibration mode is more comfortable for completing the task? The options are: vibration Online, vibration Offline or both the same.”
	3.4 Results
	3.4.1 All Factor Comparison
	3.4.2 Vision-excluded Factor Comparison
	3.4.3 Vision-based Factor Comparison
	3.4.4 V+VibOnline & V+VibOffline Factor Comparison
	3.4.4 Comparison Summary

	4. CONCLUSIONS AND FURTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	A13-full.pdf
	1. INTRODUCTION
	2. PROBLEM DEFINITION
	3. RELATED WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	!SH-3.pdf
	A03-full.pdf
	D71-full.pdf
	1. INTRODUCTION
	Comparison for Collaborative Project
	Digital Archive for Comparison

	2. NAVIGATION FUNCTION FOR COMPARISON
	3. COMPARATIVE NAVIGATION SYSTEM
	Development
	System Outline
	Prototype
	Functions
	3.1.1 3D space move function
	3.1.2 Plug-in function
	3.1.3 Concurrent comparison navigation function
	3.1.3.1 One-screen mode
	3.1.3.2 Two-screen mode
	3.1.3.3 Four-screen mode

	3.1.4 Cross-section view function

	4. Prototype testing
	5. CONCLUSION
	6. REFERENCES

	F41-full.pdf
	1. INTRODUCTION
	2. Virtual Manipulation
	2.1 Definition of VM
	1. Basic Definition
	2. Reality Condition

	2.2 VM for two-dimensional virtual space
	Events
	Reactions for a dial

	3. Objects virtual interface in VM
	3.1 A dial
	Physical specification
	Reactions
	Physical Reality

	3.2 A toggle switch
	Physical specification
	Reactions
	Physical Reality

	3.3 A spring
	Physical specification
	Reactions
	Physical Reality

	3.4 A pickable object
	Physical specification
	Reactions
	Physical Reality

	3.5 A bouncing object
	Physical specification
	Reactions
	Physical Reality

	4. Real System
	4.1 A dial
	4.2 A switch
	4.3 A spling
	4.4 A pickable object
	4.5 A bouncing object

	5. Application
	5.1 V-VolleyBall
	5.2 V-Rimokon

	6. Result
	6.1 Evaluation of Objects and V-VolleyBall
	6.2 Developer’s process

	7. Discussion
	Limitation
	Related Work
	Future Work
	Conclusion

	8. ACKNOWLEDGMENTS
	9. REFERENCES

	G17-full.pdf
	3.1A Mathematical Model for a Standard Prostate Shape Top Down Anterior To Posterior
	3.2Approach

	H37-full.pdf
	1. INTRODUCTION
	1.1 Visualization
	1.2 Line Visualization
	Lines have drawn much attention of visualization researchers, because of their simple but useful presentation ability for data and information. For instance, in information visualization, we could map month-long temperature data onto a line graph, with the x-axis representing date and the y-axis temperature, and then plot temperatures in different regions using various colourful or textured lines, in order to facilitate comparisons. In scientific visualization, lines are often used as, for example, streamlines portraying vectors in a flow field. Moreover other attributes, such as vector magnitude, can be mapped via colour on the line. However, many lines presented at the same time can result in visual clutter, and cause serious confusion. Under this circumstance, is there any other way to aid in displaying these lines? Haptic sensation has been revealed as an alternative. In this section, haptic line visualization methods are introduced, according to two main categories: implicit line mapping and explicit line mapping.
	1.2.1 Implicit Line
	1.2.2 Explicit Line

	1.3 Paper Outline
	2. VIBRATION MAGNITUDE MODEL
	The vibration magnitude model [Wan06] provides a basic mapping criterion for haptic visualization, and enables users to extract various vibration mapping tables. A PHANToM Desktop device (Figure 1), made by SensAble Technologies Inc., was adopted in the model construction experiments. As a single pointing handheld device, it allows 6 degree of freedom (DOF) input and provides 3 DOF output.
	2.1.1 Magnitude Estimation Experiment
	2.1.2 Intramodal Matching Experiment

	2.2 Vibration Magnitude Model

	3. LINE TRACKING EXPERIMENT
	3.1 Design
	3.2 Stimuli
	There were four lines in total. And each of them was 2.0 mm wide, 350 mm long, and contained three different rectangular grooves, which can be upward or downward. The two of them were the upside-down replicas of the other two. Thus the two lines respectively had two narrow grooves (20 mm width) and one wide groove (40 mm width), while each of others had one narrow groove and two wide grooves. Figure 4 gives an illustration of a trial line’s pattern.
	

	3.3 Procedure
	Four female and five male subjects, aged between 22 and 35, took part. To start a trial, the participant positioned the cursor (represented by a blue cone) in contact with the left sphere, and pressed the button on the stylus. Then he moved the cursor to track the line through vibration, or vision, or both, until reaching the right sphere. At this time, the participant pressed the button again, and the trial was ended.
	Each participant completed two practice trials and then 16 test trials. VibOnline and VibOffline modes were mixed during the experiment, but each of them was always applied into two trials in a row, the next two trials adopted the other mode. Except for this limitation, all the trials were presented at random. Participants were explicitly informed which vibration mode (VibOnline, VibOffline) would be used and whether vision would be provided. After each trial, the participant was asked to rate on a seven-level scale how difficult they thought the particular trial was. When all the trials were finished, they were required to answer the last question: “which vibration mode is more comfortable for completing the task? The options are: vibration Online, vibration Offline or both the same.”
	3.4 Results
	3.4.1 All Factor Comparison
	3.4.2 Vision-excluded Factor Comparison
	3.4.3 Vision-based Factor Comparison
	3.4.4 V+VibOnline & V+VibOffline Factor Comparison
	3.4.4 Comparison Summary

	4. CONCLUSIONS AND FURTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	A13-full.pdf
	1. INTRODUCTION
	2. PROBLEM DEFINITION
	3. RELATED WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	!SH-4.pdf
	G17-full.pdf
	G17-full.pdf
	3.1A Mathematical Model for a Standard Prostate Shape Top Down Anterior To Posterior
	3.2Approach

	H37-full.pdf
	1. INTRODUCTION
	1.1 Visualization
	1.2 Line Visualization
	Lines have drawn much attention of visualization researchers, because of their simple but useful presentation ability for data and information. For instance, in information visualization, we could map month-long temperature data onto a line graph, with the x-axis representing date and the y-axis temperature, and then plot temperatures in different regions using various colourful or textured lines, in order to facilitate comparisons. In scientific visualization, lines are often used as, for example, streamlines portraying vectors in a flow field. Moreover other attributes, such as vector magnitude, can be mapped via colour on the line. However, many lines presented at the same time can result in visual clutter, and cause serious confusion. Under this circumstance, is there any other way to aid in displaying these lines? Haptic sensation has been revealed as an alternative. In this section, haptic line visualization methods are introduced, according to two main categories: implicit line mapping and explicit line mapping.
	1.2.1 Implicit Line
	1.2.2 Explicit Line

	1.3 Paper Outline
	2. VIBRATION MAGNITUDE MODEL
	The vibration magnitude model [Wan06] provides a basic mapping criterion for haptic visualization, and enables users to extract various vibration mapping tables. A PHANToM Desktop device (Figure 1), made by SensAble Technologies Inc., was adopted in the model construction experiments. As a single pointing handheld device, it allows 6 degree of freedom (DOF) input and provides 3 DOF output.
	2.1.1 Magnitude Estimation Experiment
	2.1.2 Intramodal Matching Experiment

	2.2 Vibration Magnitude Model

	3. LINE TRACKING EXPERIMENT
	3.1 Design
	3.2 Stimuli
	There were four lines in total. And each of them was 2.0 mm wide, 350 mm long, and contained three different rectangular grooves, which can be upward or downward. The two of them were the upside-down replicas of the other two. Thus the two lines respectively had two narrow grooves (20 mm width) and one wide groove (40 mm width), while each of others had one narrow groove and two wide grooves. Figure 4 gives an illustration of a trial line’s pattern.
	

	3.3 Procedure
	Four female and five male subjects, aged between 22 and 35, took part. To start a trial, the participant positioned the cursor (represented by a blue cone) in contact with the left sphere, and pressed the button on the stylus. Then he moved the cursor to track the line through vibration, or vision, or both, until reaching the right sphere. At this time, the participant pressed the button again, and the trial was ended.
	Each participant completed two practice trials and then 16 test trials. VibOnline and VibOffline modes were mixed during the experiment, but each of them was always applied into two trials in a row, the next two trials adopted the other mode. Except for this limitation, all the trials were presented at random. Participants were explicitly informed which vibration mode (VibOnline, VibOffline) would be used and whether vision would be provided. After each trial, the participant was asked to rate on a seven-level scale how difficult they thought the particular trial was. When all the trials were finished, they were required to answer the last question: “which vibration mode is more comfortable for completing the task? The options are: vibration Online, vibration Offline or both the same.”
	3.4 Results
	3.4.1 All Factor Comparison
	3.4.2 Vision-excluded Factor Comparison
	3.4.3 Vision-based Factor Comparison
	3.4.4 V+VibOnline & V+VibOffline Factor Comparison
	3.4.4 Comparison Summary

	4. CONCLUSIONS AND FURTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	A13-full.pdf
	1. INTRODUCTION
	2. PROBLEM DEFINITION
	3. RELATED WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	!SH-5.pdf
	H37-full.pdf
	H37-full.pdf
	1. INTRODUCTION
	1.1 Visualization
	1.2 Line Visualization
	Lines have drawn much attention of visualization researchers, because of their simple but useful presentation ability for data and information. For instance, in information visualization, we could map month-long temperature data onto a line graph, with the x-axis representing date and the y-axis temperature, and then plot temperatures in different regions using various colourful or textured lines, in order to facilitate comparisons. In scientific visualization, lines are often used as, for example, streamlines portraying vectors in a flow field. Moreover other attributes, such as vector magnitude, can be mapped via colour on the line. However, many lines presented at the same time can result in visual clutter, and cause serious confusion. Under this circumstance, is there any other way to aid in displaying these lines? Haptic sensation has been revealed as an alternative. In this section, haptic line visualization methods are introduced, according to two main categories: implicit line mapping and explicit line mapping.
	1.2.1 Implicit Line
	1.2.2 Explicit Line

	1.3 Paper Outline
	2. VIBRATION MAGNITUDE MODEL
	The vibration magnitude model [Wan06] provides a basic mapping criterion for haptic visualization, and enables users to extract various vibration mapping tables. A PHANToM Desktop device (Figure 1), made by SensAble Technologies Inc., was adopted in the model construction experiments. As a single pointing handheld device, it allows 6 degree of freedom (DOF) input and provides 3 DOF output.
	2.1.1 Magnitude Estimation Experiment
	2.1.2 Intramodal Matching Experiment

	2.2 Vibration Magnitude Model

	3. LINE TRACKING EXPERIMENT
	3.1 Design
	3.2 Stimuli
	There were four lines in total. And each of them was 2.0 mm wide, 350 mm long, and contained three different rectangular grooves, which can be upward or downward. The two of them were the upside-down replicas of the other two. Thus the two lines respectively had two narrow grooves (20 mm width) and one wide groove (40 mm width), while each of others had one narrow groove and two wide grooves. Figure 4 gives an illustration of a trial line’s pattern.
	

	3.3 Procedure
	Four female and five male subjects, aged between 22 and 35, took part. To start a trial, the participant positioned the cursor (represented by a blue cone) in contact with the left sphere, and pressed the button on the stylus. Then he moved the cursor to track the line through vibration, or vision, or both, until reaching the right sphere. At this time, the participant pressed the button again, and the trial was ended.
	Each participant completed two practice trials and then 16 test trials. VibOnline and VibOffline modes were mixed during the experiment, but each of them was always applied into two trials in a row, the next two trials adopted the other mode. Except for this limitation, all the trials were presented at random. Participants were explicitly informed which vibration mode (VibOnline, VibOffline) would be used and whether vision would be provided. After each trial, the participant was asked to rate on a seven-level scale how difficult they thought the particular trial was. When all the trials were finished, they were required to answer the last question: “which vibration mode is more comfortable for completing the task? The options are: vibration Online, vibration Offline or both the same.”
	3.4 Results
	3.4.1 All Factor Comparison
	3.4.2 Vision-excluded Factor Comparison
	3.4.3 Vision-based Factor Comparison
	3.4.4 V+VibOnline & V+VibOffline Factor Comparison
	3.4.4 Comparison Summary

	4. CONCLUSIONS AND FURTURE WORK
	5. ACKNOWLEDGMENTS
	6. REFERENCES

