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ABSTRACT 
A plausible rendering of metallic effects on a computer display is of high importance for 3D representations—as 

used in advertising and sales—and for pre-visualizing print designs that include special inks such as gold and/or 

silver. A human viewer recognizes these materials by their specific reflection properties. Hence, simulating them 

requires taking the illumination from the environment and the position of the viewer’s head into account. We 

demonstrate that this can be achieved in a Web-based application that leverages the webcam installed on the 

user’s computer. Thus, metallic color effects can be made available almost ubiquitously, in particular in Web 

shops. 
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1. INTRODUCTION 

A car manufacturer’s Web site may show the newest 

model of that brand as an almost photorealistically 

rendered 3D object. Typically, a canned environment 

map is employed to simulate the look of parts made 

of chrome. The rendered image does not depend, 

however, on the viewer’s position so that the illusion 

breaks down when the user moves his or her head. 

The reproduction of metallic effects has been ad-

dressed even less in prepress applications, that is: 

applications that deal with simulating the look of a 

printed sheet of paper. Color management systems 

have been employed for more than a decade to ensure 

the optimal simulation of matte color prints on com-

puter displays. Current color management systems do 

not, however, simulate metallic printing inks. 

With 3D catalogs and 2D prepress as two fields of 

application in mind we have developed a Web-based 

system (see Figure 1) to address these issues in the 

reproduction of metallic colors. The system reads 

data from the user’s webcam, leveraging the fact that 

webcams have become household items and mostly 

are already integrated in the screen bezels of note-

book computers. Thus, the method cannot solely be 

used in software locally installed on the computer. 

Rather, it is also available to electronic product cata-

logs as used by Web shops and to online print ser-

vices that want to show the effect of non-standard 

printing inks in advance. The contributions of this 

work to the state of the art comprise 

• the use of the webcam to track the position 

of the viewer’s head—in addition to captur-

ing the illumination—and 

• the integration of all components into a 

Web-based application. 

This paper is structured as follows: Section 2 outlines 

relevant related work on displays for virtual and aug-

mented reality and on color reproduction. Section 3 

describes the architecture of the prototype system, the 

implementation of which is covered by Section 4. 

Section 5 reports the results achieved; and Section 6 

concludes the paper, indicating directions for future 

research. 

2. RELATED WORK 

Displays that react to their environment have been 

proposed at highly different levels of complexity: 

Ropinski et al. [Rop04] create an environment map 

from the camera image to improve the look of 3D 

objects inserted into augmented reality displays, a 
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technique that was already outlined by Miller 

[Mil95]. Daniel [Dan05a] employs a camera with a 

fisheye lens to capture an environment map and illu-

minate 3D objects displayed on the screen through 

pre-computed radiance transfer. This is limited to 

diffuse lighting. The exposure time of the camera 

alternates between a long and a short setting to syn-

thesize a higher dynamic range. Nayar et al. [Nay04a] 

describe a display that makes similar use of a fisheye 

lens but employs a large data-compressed collection 

of pre-rendered or pre-captured images for full re-

lighting including specular highlights. 

Fuchs et al. [Fuc08a] discuss options to build passive 

reflectance field displays, that is: displays that react 

to illumination—in this case illumination from be-

hind. Using microlens arrays and LC display panels 

in a similar fashion, Koike and Naemura [Koi08a] 

demonstrate a “BRDF display,” in which the direc-

tional response to the incoming illumination can be 

controlled digitally. Reproducing metallic effects 

with such a system would, however, require a huge 

angular resolution to produce appropriately sharp 

reflections. 

In a patent application [Ker09] that has been pub-

lished after the submission of this paper, Kerr and 

King of Apple, Inc., propose to track the user’s 

head—for instance through a camera—to simulate 

3D effects on a 2D screen. The user may for instance 

“look around” the edges of window in the foreground 

to see what is behind; including reflections of the 

environment is mentioned, too. Mannerheim and Nel-

son [Man08] propose using a camera to track the 

location of the user’s head in order to adjust a binau-

ral audio signal presented through loudspeakers. 

Many goggle-free (i.e., autostereoscopic) 3D virtual 

reality displays employ head-tracking to project the 

left and right partial images onto the respective eye of 

the user; for an example, see [San05a]. The data thus 

gained can in principle be employed to render specu-

lar and mirroring reflections based on the actual posi-

tion of the viewer. 

Color management systems [Sto04a] are a standard 

amenity of current computer operating systems. They 

operate on the basic principle of converting colors 

from device-dependent spaces such as RGB and 

CMYK to device-independent spaces such as XYZ or 

CIELAB. This conversion is described through pro-

files for each input and output device such as camera, 

scanner, display, or printer. Current color manage-

ment systems only support perfectly diffuse reflection 

        

Figure 1. The system takes the position of the viewer’s head (two positions shown) and the illumination 

into account to simulate metallic effects. 
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Figure 3. The environment cube map is built from 

the camera’s input through cropping, the repeti-

tion of the final rows and columns, and feathering. 

models. Whereas color models for metallic inks have 

been researched into [Her03a], they have not yet 

found their way into off-the-shelf prepress software 

solutions. 

3. ARCHITECTURE 

This work focuses on rendering a sheet of paper or a 

single view of an object and trying to create as lean 

and hence Web-compliant a system as possible. 

Hence, we confine ourselves to working with two-

dimensional maps instead of operating on complete 

three-dimensional meshes as has been done in former 

work on Mixed Reality. The input to the system con-

sists of several maps, which typically are stored on 

the server side: the color data for diffuse reflection (a 

standard RGB image), a normal map (encoded as 

RGB image), and a specularity map (encoded as 

grayscale image) that defines the blend between matte 

and metallic behavior per pixel. 

The non-metallic part of the model is rendered with 

the Lambertian model [Bli77]. The metallic part em-

ploys the Cook-Torrance model [Coo82] with fully 

editable parameters. In the software prototype, these 

are offered as controls on the graphical user interface. 

In an actual application, however, they would be set 

and frozen during the authoring phase and then be 

stored as part of the media file or in a configuration 

file. 

To adapt the sharpness of the reflected environment 

to the selected sharpness of the highlights, the envi-

ronment map can be sampled down by an adjustable 

power of two. Figure 2 shows the overall architec-

ture. 

To provide a system that works over the Web with a 

typical computer on the client side we elected to em-

ploy a standard webcam image instead of an image 

shot through a fisheye lens. The image taken by the 

webcam is used for three purposes: 

First, a cube map of a plausible environment is build 

from the image. The front face of the cube is formed 

by the camera image as such, cropped from both the 

left and right side by the eighth part of its width. The 

remaining parts on the left and right are put into the 

left and right faces of the cube map and extended 

through repetition of the last pixel column. The bot-

tom and the top face of the cube map are formed 

through repetition of the first row or the last row of 

the camera image, respectively. To partially hide the 

repetitions, the lateral faces are feathered toward 

black at their ends, see Figure 3. 

Second, a coarse-grained version of the camera image 

is searched for the brightest spot. For the rendering, a 

light source with this color is placed accordingly. 

Thus, one strong specular reflection is taken into ac-

count without high dynamic range imaging and with-

out complex rendering algorithms, see Figure 4. 

Third, the user’s head is found in the camera image 

using an existing software library (see Section 4). The 

center of the head is used to define the view direction 

for the rendering, see Figure 5. In case no webcam is 

available—for example, out of privacy concerns—, 

the user can choose to steer the viewing position 

Figure 2. The system reads three two-dimensional 

maps and the image stream from the webcam to 

feed the pixel shader used for rendering. 
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Figure 5. A point slightly above the centroid of the 

largest rectangle returned by the face detector 

controls the view direction of the lighting model. 

 

Figure 4. To determine a position for a single 

dominant light source, the camera image (left) is 

sampled down to large blocks (right). 

 

through the mouse and apply one of several environ-

ment maps included with the software. 

4. IMPLEMENTATION 

The prototype has been developed in ActionScript 3 

using the Adobe Flex Builder 3 development envi-

ronment based on the Flex software development kit 

3.4 targeting Adobe Flash Player version 10 or 

newer. 

The face-tracking component employs the “Marilena” 

port [Mas09a] of the face detection in the OpenCV 

library. This detector [Vio01] employs a cascade of 

simple classifiers that use the contrast between aver-

ages over rectangular parts of the image. These aver-

ages can be computed quickly through a summed-

area table. Consequently, the features being detected 

resemble Haar wavelets. The training data that has 

been generated upfront is based on a variant of the 

AdaBoost. In this case, during training the best fea-

tures (that is: sets of rectangles) are found and the 

classifiers are adjusted, whereas a classical AdaBoost 

would only concern the latter step. 

The rendering has been realized through a shader 

routine developed with Adobe’s Pixel Bender Toolkit 

1.5 [Ado09a]. PixelBender comprises of a basic in-

teractive development environment to build image 

processing routines (called “kernels”) in a program-

ming language resembling the OpenGL Shading Lan-

guage GLSL. The range of available functions corre-

sponds to a pixel shader in standard GPU program-

ming. The kernels thus created can be connected into 

dataflow graphs and can be compiled to byte-code to 

be loaded and executed in Flash Player 10. 

As the Pixel Bender Toolkit as such offers GPU ac-

celeration for the kernels, it is foreseeable that future 

versions of Flash Player also execute kernels on the 

GPU instead of running them on the CPU as the cur-

rent version does. Then a vital part of the acceleration 

offered by the graphics processor can be leveraged 

even in this Web-based software. The circumstance 

that Pixel Bender only targets pixel processing but 

not mesh processing fits nicely to the scope of our 

application. 

5. RESULTS 

We measured the performance of the system on an 

Apple MacBook computer, which runs Mac OS X 

10.5.8., is equipped with an Intel Core 2 Duo proces-

sor running at 2.2 GHz and an integrated webcam, It 

does not contain a dedicated graphics chip but uses 

the Intel GMA X3100 chipset graphics instead. 

At an image size of 512 x 384 pixels, the software 

prototype with all functions applied runs at 15 frames 

per second; at an image size of 615 x 461 pixels, this 

rate decreases to 8 frames per seconds. With all cam-

era functions switched off, the rendering alone easily 

achieves 30 frames or more per second. This shows 

that the processing of the camera image is the step 

that limits the performance. 

One may hope that future application frameworks 

grant direct access to head-tracking data and thus 

relieve the application from such computations. Most 

popular webcams already come with robust and com-

putationally lean integrated head-tracking to add 3D 

items such as hats or sunglasses to the user’s face. 

Currently, however, there is no official way to access 

these head-tracking data from other software. 

The .swf file that is transferred to the client computer 

and contains the complete code of the application 

possesses a size of 260 KB. The three maps (diffuse 
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color, normal, specularity) add to this size; their byte 

count depends heavily on the compression used. 

The pixel repetitions used to build the environment 

cube map (see Figure 3) may become visible in ex-

treme situations, namely if large, flat and perfectly 

mirroring surfaces are viewed from head positions 

that are strongly off-center. In all other cases, the 

details of the texture and specularity maps and/or the 

blurriness of the reflection hide these artifacts. This 

becomes apparent in Figure 6, which also demon-

strates the use of our system with two-dimensional 

normal maps of three-dimensional meshes: Even 

though the object does not rotate, the look of polished 

metal is reproduced faithfully. 

For speed and simplicity, the color computations are 

executed in RGB space and employ the automatic 

clamping of the RGB components. Thus, bright high-

lights—as they are more or less required for metallic 

effects—appear color-shifted toward white. For in-

stance, the internally computed color (1.9, 1.5, 0.9) 

does not appear on the display screen as reddish or-

ange but as (1.0, 1.0, 0.9), which is a slightly yellow-

ish white. Even though this effect is only apparent to 

the trained eye, a color clamping that restricts the hue 

of the color to its original value could suppress it, at 

the cost of less brighter highlights. 

6. CONCLUSION AND OUTLOOK 

We have demonstrated a system that plausibly simu-

lates of metallic colors but remains inexpensive in 

terms of computer hardware and computational ef-

fort. In particular, the system leverages standard In-

ternet technology and can thus be employed in Web 

shops, electronic advertisements, etc. 

Future developments can target the precision of the 

simulation of the lighting, possibly turning the plau-

sible result into an almost visually exact one. Doing 

so would require dealing with camera calibration, 

generating environment maps with a high dynamic 

range from a standard camera [Dan05a], and creating 

cheap but precise ancillary lenses to turn a standard 

webcam into a fisheye camera. The reproduction of 

perfectly mirrored reflections on extended flat sur-

faces could be improved through replacing the pixel 

repetition in the cube map by a synthesized texture. 

Strong highlights would benefit from bloom effects 

based on high-dynamic range computations of the 

colors. 

An integration of 3D meshes looks straightforward 

from the algorithmic side. In terms of performance, 

however, Adobe Flash—running on the computer’s 

CPU—may be overcharged with such a task. In fu-

ture, a more general approach that requires no 

browser plug-in may become possible through the 

advent of WebGL [Mar09]. 

A second avenue of development would be to focus 

on strengthening the connection to color management 

systems in their present form. A standard color man-

agement system could handle the diffuse illumination 

and a system similar to the prototype we have de-

scribed could add gloss and mirror effects. 
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Figure 6. In addition to visualizing two-dimensional relief prints on paper, the system can also plausibly 

convey the look of metallic 3D objects as described through a 2D normal map. In this image sequence, the 

user’s head has moved from left to right. For demonstration, a specularity map with less metallicity below 

the diagonal has been applied. (Stanford Bunny courtesy of http://graphics.stanford.edu/data/3Dscanrep/) 
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