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ABSTRACT
In interactive physical simulation, contact forces are ap-
plied to prevent rigid bodies from penetrating and con-
trol slipping between bodies. Accurate contact force
determination is a computationally hard problem. Thus,
in practice one trades accuracy for performance. The
result is visual artifacts such as viscous or damped con-
tact response. In this paper, we present heuristics for
improving performance for solving contact force prob-
lems in interactive rigid body simulation. We formulate
the contact force problem as a nonlinear complementar-
ity problem, and discretize the problem using a splitting
method and a minimum map reformulation. The result-
ing model is called the Projected Gauss–Seidel method.
Quantitative research results are presented and can be
used as a taxonomy for selecting a suitable heuristic
when using the Projected Gauss–Seidel method.

Keywords: Nonlinear Complementarity Problem,
Contact Forces, Convergence Rate, Projected Gauss–
Seidel.

1 SLOW CONVERGENCE RATES
Most open source software for interactive real time
rigid body simulation uses the Projected Gauss–Seidel
(PGS) method for computing contact forces. This in-
cludes the two most popular open source simulators
Bullet and Open Dynamics Engine. However, the PGS
method is not always satisfactory as it suffers from two
major problems: a linear convergence rate [4] and in-
accurate friction forces in stacks [9]. The linear con-
vergence rate results in viscous motion at contacts, as
well as loss of high frequency effects. The viscous ap-
pearance results in a delayed contact response which re-
duces plausibility [15]. Improving convergence might
lead to increased animation quality and higher fidelity.
The prospect of improving a state-of-the-art method –
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the PGS method – has motivated this study of heuris-
tics, aimed at improving convergence.

With this paper, we present a rigorous novel math-
ematical derivation of the PGS method as well as ex-
perience gained from quantitative research results. The
results can be used as a taxonomy for selecting a suit-
able heuristic when using the PGS method.

2 PREVIOUS WORK

Rigid body simulation was introduced to the graphics
community in the late 1980’s [8, 12], using penalty
based and impulse based approaches to describe physi-
cal interactions. Penalty based simulation is not easily
adopted to different simulations. Mirtich [11] presented
an extended and improved impulse based formulation,
however stacking was a problem and it suffered from
creeping. These problems has since been rectified [7].
Constraint based simulation [2] has received much at-
tention as an alternative to penalty based and impulse
based simulation. Constraint based simulation can be
divided into two groups: maximal coordinate and min-
imal coordinate methods [6]. The focus of this paper is
maximal coordinate methods, which are dominated by
complementarity formulations. Alternatives to comple-
mentarity formulations are based on kinetic energy [10]
and motion space [16]. However, the former solves
a more general problem and is not attractive for per-
formance reasons, the latter does not include frictional
forces.

Complementarity formulations are either accelera-
tion based formulations [20] or velocity based formu-
lations [19]. Acceleration based formulations can not
handle collisions [1], in addition they suffer from inde-
terminacy and inconsistency [18]. Velocity based for-
mulations suffer from none of these problems, for this
reason we use a velocity based formulation for this pa-
per. The approach we present here is based on a refor-
mulation of the frictional problem as a nonlinear com-
plementarity problem. This results in a slightly inac-
curate model with relatively few variables to solve for.
This makes it advantageous in interactive simulations
from a performance viewpoint.

The state-of-the-art method for solving complemen-
tarity formulations in interactive rigid body simulation,
is the projected Gauss–Seidel method. To our knowl-
edge, no mathematical derivation of the PGS method
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Figure 1: Renderings of selected setups from the test data sets used to examine the performance achieved by using
different heuristics for the projected Gauss–Seidel method. The setups varies from 100-10000 interacting rigid
bodies in varying degrees of structured configurations.

for interactive rigid body simulation has been presented
in the Computer Graphics literature, nor has any studies
on its convergence behavior or rates been published.

3 THE NONLINEAR COMPLEMEN-
TARITY PROBLEM FORMULATION

The frictional contact force problem can be stated as
a linear complementarity problem (LCP) [19]. How-
ever, a slightly different formulation is used in interac-
tive physical simulations, we will derive this formula-
tion. Without loss of generality, we will only consider
a single contact point. The focus of this paper is on the
contact force model, so the time stepping scheme and
matrix layouts are based on the velocity-based formu-
lation in [5]. We have the Newton–Euler equations,

Mu−JT
n λn−JT

t λt = F, (1)

where Jn is the Jacobian corresponding to normal con-
straints and Jt is the Jacobian corresponding to the tan-
gential contact impulses. M is the generalized mass ma-
trix and u is the generalized velocity vector. We wish to
solve for u in order to compute a position update. For
clarity and readability we have, without loss of gener-
ality, abstracted the discretization details within the La-
grange multipliers λn, λt and generalized external im-
pulses F. Since the contact plane is two dimensional,
we span this plane by two orthogonal unit vectors, t1

and t2. Any vector in this plane can be written as a lin-
ear combination of these two vectors. Thus, J t has only
two rows corresponding to the two directions. From (1)
we can obtain the generalized velocities,

u = M−1F+M−1JT
n λn +M−1JT

t λt . (2)

Let the Lagrange multipliers λ =
[
λn λ T

t

]T
and con-

tact Jacobian J =
[
Jn Jt

]T
, then we write the relative

contact velocities y =
[
yn yT

t

]T
such that,

y = Ju = JM−1JT
︸ ︷︷ ︸

A

λ +JM−1F︸ ︷︷ ︸
b

. (3)

To compute the frictional component of the contact
impulse, we need a model of friction. We base our
model on Coulomb’s friction law. In one dimension,
Coulomb’s friction law can be written as [2],

y < 0⇒ λt = μλn, (4a)

y > 0⇒ λt =−μλn, (4b)

y = 0⇒−μλn ≤ λt ≤ μλn. (4c)

For the full contact problem, we split y into positive and
negative components,

y = y+−y−, (5)

where

y+ ≥ 0, y− ≥ 0 and
(
y+

)T (
y−

)
= 0. (6)

For a frictional contact problem, we define the bounds
−lt(λ ) = ut(λ ) = μλn and for normal impulse ln(λ ) =
0 and un(λ ) = ∞. Combining the bounds with (4), (5)
and (6), we reach the final nonlinear complementarity
problem (NCP) formulation,
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y+−y− = Aλ +b, (7a)

y+ ≥ 0, (7b)

y− ≥ 0, (7c)

u(λ )−λ ≥ 0, (7d)

λ − l(λ )≥ 0, (7e)
(
y+

)T
(λ − l(λ )) = 0, (7f)

(
y−

)T
(u(λ )−λ ) = 0, (7g)
(
y+

)T (
y−

)
= 0, (7h)

where l(λ ) = [ln(λ ) lt(λ )]T and u(λ ) =
[un(λ ) ut(λ )]T . The advantage of the NCP for-
mulation is a much lower memory footprint than the
LCP formulation. The disadvantage is solving the
friction problem as two decoupled one dimensional
Coulomb friction models.

4 THE PROJECTED GAUSS–SEIDEL
METHOD

The following is a derivation of the PGS method for
solving the frictional contact force problem, stated as
the NCP (7). Using a minimum map reformulation, the
ith component of (7) can be written as

(Aλ +b)i = y+
i −y−i , (8a)

min(λi− li,y+
i ) = 0, (8b)

min(ui−λi,y−i ) = 0. (8c)

where li = li(λ ) and ui = ui(λ ). Note, when y−i > 0 we
have y+

i = 0 which in turn means that λi− li ≥ 0. In this
case, (8b) is equivalent to

min(λi− li,y+
i −y−i ) =−(y−)i. (9)

If y−i = 0 then λi − li = 0 and complementarity con-
straint (8b) is trivially satisfied. Substituting (9) for y−i
in (8c) yields,

min(ui−λi,max(li−λi,−(y+−y−)i)) = 0. (10)

This is a more compact reformulation than (7) and elim-
inates the need for auxiliary variables y+ and y−. By
adding λi we get a fixed point formulation

min(ui,max(li,λi− (Aλ +b)i)) = λi. (11)

We introduce the splitting A = M−N and an iteration
index k. Then we define ck = b−Nλ k, lk = l(λ k) and
uk = u(λ k). Using this we have

min(uk
i ,max(lk

i ,(λ k+1−Mλ k+1−ck)i)) = λ k+1
i . (12)

When limk→∞ λ k = λ ∗ then (12) is equivalent to (7).
Next we perform a case-by-case analysis. Three cases
are possible,

(λ k+1−Mλ k+1− ck)i < li⇒ λ k+1
i = li, (13a)

(λ k+1−Mλ k+1− ck)i > ui⇒ λ k+1
i = ui, (13b)

li ≤ (λ k+1−Mλ k+1− ck)i ≤ ui⇒
λ k+1

i = (λ k+1−Mλ k+1− ck)i. (13c)

Case (13c) reduces to,

(Mλ k+1)i =−ck
i , (14)

which for a suitable choice of M and back substitution
of ck gives,

λ k+1
i = (M−1(Nλ k−b))i. (15)

Thus, our iterative splitting method becomes,

min(uk
i ,max(lk

i ,(M
−1(Nλ k−b))i)) = λ k+1

i . (16)

This is termed a projection method. To realize this, let
λ ′ = M−1(Nλ k−b) then,

λ k+1 = min(uk,max(lk,λ ′)), (17)

is the (k + 1)th iterate obtained by projecting the vector
λ ′ onto the box given by lk and uk. Valid splittings of
A are

M = D ∧ N =−D−U, (18a)

M = D+L ∧ N =−U, (18b)

M = D+ ωL ∧ N =(1−ω)D−ωU, (18c)

for ≤ ω ≤ 2. L, D and U are strict lower triangular,
diagonal, and strict upper triangular parts of A. These
choices results in the projected versions of the Jacobi,
Gauss–Seidel and Successive Over Relaxation (SOR)
methods respectively. When using the Gauss–Seidel
splitting (18b), the resulting PGS method (16) can be
efficiently implemented by a forward loop over the
components and a component wise projection. Pseu-
docode for this is,

1 : for k = 1 to kmax do
2 : for i = 1 to n do

3 : λ ′i ←
−∑i−1

j=1 Ai, jλ j−∑n
j=i+1 Ai, jλ j−bi

Ai,i

4 : λi←min(ui,max(li,λ ′i ))
5 : for all j dependent on i do
6 : (l j,u j)← update(λi)
7 : next j
8 : next i
9 : next k
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To our knowledge no known convergence theorems ex-
ist for (16) in the case of variable bounds l(λ ) and u(λ ).
However, for fixed constant bounds the formulation can
be algebraically reduced to that of a LCP formulation.
In general, LCP formulations can be shown to have lin-
ear convergence rate and unique solutions, when A is
symmetric positive definite [4]. However, the A matrix
equivalent of our frictional contact model is positive
symmetric semi definite and uniqueness is no longer
guaranteed, but existence of solutions are [4].

5 HEURISTICS FOR CONVERGENCE
IMPROVEMENTS

If permutations to the ordering of contacts are made
prior to (7) then this is equivalent to use a different sort-
ing order in the splitting (16). Adding a permutation Π
to the PGS method alters line 2 of the pseudocode,

2a : for p = 1 to n do
2b : i←Π(p)

There exists a sorting which yields substantial improve-
ments in convergence behavior [3]. Knowing the opti-
mal sorting heuristic for a given problem will improve
overall performance.

We have researched numerous heuristics, measuring
improvements in convergence, speedup and accuracy.
In an effort not to obfuscate the interesting and impor-
tant results, we will only present the most interesting
or promising heuristics. We have divided the heuris-
tics into three groups, physics-based, geometry-based
and splitting-based. To represent physics-based heuris-
tics, we have chosen an impulse propagation permuta-
tion (IPP) heuristic. This is interesting as it is based on
the impulse-based formulation of rigid body dynamics.
From the group of geometry-based heuristics, a coordi-
nate permutation (CP) heuristic is examined. Inspired
by [9], the splitting-based heuristics are represented by
both an extreme staggered permutation (ESP) heuristic
as well as a greedy staggered permutation (GSP) heuris-
tic.

Impulse Propagation Permutations: The PGS
method solves the contact problem sequentially,
which is numerically similar to sequential impulse
propagation methods [11]. However, the basis of the
PGS method is a simultaneous contact model, while
a sequential model is used for impulse propagation
methods. Impulse propagation methods attempt to
model the propagation of collision impulses through
rigid bodies, so perhaps a similar physical principle is
beneficial with the PGS method. The idea is to apply
a permutation of the problem, mimicking impulse
propagation. We base the permutation on a sorting
of the relative contact velocities y. The sorting is
performed as a preprocessing step, the same sorting
is used throughout the PGS method. The permutation

could be incrementally updated, possibly improving
the convergence. This increases the time complexity of
each Gauss–Seidel iteration by O(nlgn). Experience
showed that this was to costly, so we only performed
an ascending and decreasing pre-processing sorting.
Results are presented for an ascending ordering
permutation heuristic.

Coordinate Permutations: Consider computing
contact impulses for a stack of boxes, this problem
has a distinctly dominating up/down direction. If one
solves for contacts from bottommost boxes before
uppermost boxes, then the solution may propagate
in a bottom-up fashion similar to [5]. This indicates
there might be certain directions, where shocks can be
propagated and vanish in a single sweep. We sort the
contact points by their position along each coordinate
axis, considering both ascending and descending order-
ing. Different choices for coordinate axes has also been
examined. We also considered a symmetric blocked
approach. Blocking was introduced to make sure
normal impulses where solved prior to the dependent
friction impulses. This set of heuristics are represented
by a descending ordering by y coordinates.

Staggered Permutations: A simple adaption of the
staggered approach consists in a permutation such that
the normal and frictional impulses are separated into
two disjoint sequences. There are two approaches, ei-
ther one alternates between normal impulse and friction
impulse at each iteration or one could perform a num-
ber of iterations on one set of impulses before switching
to iterating a number of times on the other set of im-
pulses. The number of iterations between the switches
is determined by a given rule. The latter principle is
adopted for the GSP heuristic. The GSP heuristic com-
putes an error measure for the normal impulses and fric-
tional impulses, and the set with the largest error mea-
sure is the next to be iterated over. In some cases this
heuristic would iterate over one set of impulses until
convergence, before moving on to the other set.

As in [9], the full problem can also be split into
two coupled subproblems, where one alternate between
solving normal and friction impulses in each iteration.
To realize the benefit of this extreme staggered ap-
proach, let us first split (3) into two coupled subprob-
lems by partitioning the matrix-vector equation into two
coupled equations according to the normal and friction
sequences such that,

[
JT

n u
JT

t u

]
=

[
Annλn +Antλt +bn

Attλt +Atnλn +bt

]
, (19)

where Aab = JaM−1JT
b , where a,b∈ n,t. This problem

can be decoupled into two subproblems,

JT
n u = [Annλn +Antλt +bn] (20)

and
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JT
t u = [Att λt +Atnλn +bn] . (21)

Assuming that λt is constant in (20) and λn is constant
in (21), we can define the constants b ′n = Antλt +bn and
b′t = Atnλn +bt , who are updated when we change sub-
problem. Instead of solving one problem A ∈R

n×n, we
solve two subproblems Ann ∈R

n
3× n

3 and Att ∈ R
2n
3 × 2n

3 .

6 EXPERIMENTS AND RESULTS
We define a residual function from (10) as,

H(λ ) = min(u(λ )−λ ,−min(λ − l(λ ),y)) (22)

The natural merit function of (22) is,

Θ(λ ) =
1
2

H(λ )T H(λ ), (23)

which we use as an absolute error measure for the
PGS method. We use Q-convergence measures for
our analysis [13]. A comparison of convergence rates
is done by visual inspections of logarithmic plots of
(iteration, log(Θ)), observe Figure 2.

The test data has been generated using a number of
setups from [14]. The setups uses the negative z-axis
for the direction of gravity and the x-axis and y-axis
span the horizontal plane. The only exception is the
diku-setup, where the negative y-axis is the direction of
gravity. For each setup, A has been examined by plot-
ting nonzero elements and eigenvalues. Many setups
have a spectral radius ρ(M−1N)≥ 1, which is cause for
concern when considering convergence proofs for the
Gauss–Seidel method for linear equation systems. The
A-matrices are positive semi definite, having a large
ratio of zero valued eigenvalues, ranging from (50%-
90%) – only the diku-setup has no zero valued eigen-
values.

To clarify the experimental results, the test data has
been partitioned into equivalency classes [5]. For this
paper, only one representative data set from each class
is presented.

Non-structured: Few contacts are present, J is small.

Loose structured: Large number of contacts without
too much structure. This means that normal and tan-
gent directions will be varied. This results in a large
J with some redundancy.

Dense structured: Large number of contacts with
similar normal and tangent directions. This results
in a large J with a high degree of redundancy. This
increases the number of zero valued eigenvalues in
A.

All tests were performed on a system with Intel Core 2
Duo P8600 2.4GHz CPU and 3GB RAM, running Win-
dows XP SP 3 after a clean boot. In total, 35 heuristics

Setup Type # Contacts # Bodies
diku Non-structured 105 1001
card Loose structured 154 43
box stack Dense structured 68 10

Table 1: Sample setups and their complexity.

were examined using 10 data sets. The heuristics were
implemented and evaluated using MatLab. For each it-
eration, the error (23) and computation time were mea-
sured. Most of the plots exhibit piecewise linear conver-
gence, and seem to converge towards some local min-
imum of the error function. The time measurements
have been used to compute the time speedup

Speedup =
tPGS

theuristic
. (24)

Table 3 and 2 show the speedups that were significantly
different from 1.

Impulse Propagation Permutation: Inspection of
Figure 2 shows that the IPP heuristics performs similar
to the pure PGS method. There seems to be no benefit
from using this heuristic.

Coordinate Permutation: A number of CP heuris-
tic variations have been investigated sorting by x, y, and
z coordinates. The most interesting results arose when
sorting descending by y coordinate, which is shown on
Figure 2. This particular permutation performs well
on dense and non-structured setups, but badly on loose
structured setups. While not shown, sorting by de-
scending y coordinates performs better than sorting by
the direction of gravity.

Extreme Staggered Permutation: The ESP heuris-
tic performs similar to the pure PGS method. However,
it uses much less time per iteration than the pure PGS
method, see Table 2. The speedup is more pronounced
for the larger data sets than for the smaller data sets.

Setup Type Time Speedup
diku Non-structured 1.4
card Loose structured 2.2
box stack Dense structured 1.9

Table 2: Speedup measures of the extreme staggered
permutation heuristic compared to the pure projected
Gauss–Seidel method. Numbers larger than 1 indicate
smaller time usage per iteration.

Greedy Staggered Permutation: As Figure 2
shows, the GSP heuristic performs at least as well
as the pure PGS method, and often better. When
changing from normal iterations to friction iterations
(or vice versa), a short burst in the rate of convergence
is experienced. This causes the jagged shape of the
convergence plots. Another noticeable feature of the
GSP heuristic is the speedup. As Table 3 shows, the
GSP heuristic is roughly twice as fast as the pure PGS
method.
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(a) Non-structured setup.
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(b) Loose structured setup.
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(c) Dense structured setup.

Figure 2: Comparative convergence plots for four dif-
ferent heuristics. Convergence for the PGS method
without heuristics is included as a baseline for the com-
parison. In some cases, PGS is obfuscated by the im-
pulse propagation permutation heuristic.

Setup Type Time Speedup
diku Non-structured 1.7
card Loose structured 2.0
box stack Dense structured 2.7

Table 3: Speedup measures of the greedy staggered
heuristic compared to the pure projected Gauss–Seidel
method. Numbers larger than 1 indicate smaller time
usage per iteration.

The GSP heuristic has been implemented in Open-
Tissue [14]. A comparison of the visual improvement
over the PGS method, when used on the box stack-setup
is shown in Figure 3. Note that the box stack is more
stable when using the GSP heuristic, compared to using
the pure PGS method.

7 CONCLUSION AND DISCUSSION

Based on our test data, using a greedy choice for decid-
ing between performing a normal or friction iteration
results in an improved convergence rate in most cases,
but consistently lower time usage per iteration. The ex-
treme staggered permutation (ESP) heuristic splits the
problem into two sub problems, thereby reducing the
time usage per iteration.

Sorting by the y-axis yields improvements in the rate
of convergence. We believe this is due to contact points
of each sub sequence being spread over the entire prob-
lem. It is not surprising that exploiting geometry in-
formation can improve convergence rate. However, the
problem lies in obtaining this prior knowledge at run
time, unless such information is given at design time.
Therefore, as a general heuristic coordinate permuta-
tion seem to have only little practical usage. Another
interesting result is that any of the symmetric coordi-
nate permutations seems to perform worse than the pure
projected Gauss–Seidel (PGS) method.

In our opinion, staggered permutations are the most
promising heuristics. It is interesting to hypothesize
on why this is so. Are their success the result of im-
proved numerical behavior of the method when decou-
pling normal impulses from friction impulses? Normal
impulses control the bounds of the friction impulses,
whereas the friction impulses have an indirect, yet sig-
nificant, effect on normal impulses through the dynam-
ics of multiple contacts. Or is it because the friction
model used in the nonlinear complementarity problem
(NCP) formulation is too poor a model? Should future
work focus on creating improved contact models for
interactive simulation that has a better friction model
component? Or should future numerical schemes be
based on the splitting idea? The results by [17] sug-
gest that convergence rate for the friction component of
the NCP formulation is much slower than for the nor-
mal component, This indicates to us that the NCP for-
mulation is a poor friction model. In [9] an accurate
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(a) 1.0 secs (b) 1.0 secs

(c) 2.0 secs (d) 2.0 secs

(e) 4.0 secs (f) 4.0 secs

(g) 10.0 secs (h) 10.0 secs

Figure 3: The box stack handled by pure projected Gauss–Seidel on the left and using the greedy staggered heuristic
on the right. Note that using the greedy staggered heuristic makes the box stack more stable. After 10 seconds, the
bottom three boxes are still stacked when using the GSP heuristic.
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linear complementarity problem (LCP) formulation is
used to model friction, and they obtain nice results for
friction. This again indicates that the current friction
model widely used in interactive rigid body simulators
is too poor. We will leave these questions open for fu-
ture work on interactive rigid body simulation.
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