
De-noising and Recovering Images
 Based on Kernel PCA Theory

Pengcheng Xi
College of Information Science and Technology

Nanjing Univ. of Aeronautics & Astronautics
Nanjing, 210016 P.R. China
xipengchen@etang.com

Tao Xu
College of Information Science and Technology

Nanjing Univ. of Aeronautics & Astronautics
Nanjing, 210016 P.R. China

taoxucs@nuaa.edu.cn

ABSTRACT
Principal Component Analysis (PCA) is a basis transformation to diagonalize an estimate of the

covariance matrix of input data and, the new coordinates in the Eigenvector basis are called principal
components. Since Kernel PCA is just a PCA in feature space F , the projection of an image in input
space can be reconstructed from its principal components in feature space. This enables us to perform
several applications concerning de-noising and recovering images. Because of the superiority of Kernel
PCA over linear PCA, we also get satisfactory effects of de-noising images using Kernel PCA.

Keywords
Kernel PCA; principal components; feature space; de-noising and recovering

1. INTRODUCTION
PCA is one of the most important techniques for
feature extraction, and it has been widely used in
fields such as de-noising and classification [1][6].
Concerning PCA, one can make use of a linear
transformation to extract feature components. Kernel
PCA, one of the nonlinear variants of PCA, is a
generalization of linear PCA. Through a nonlinear
map , we can easily extract nonlinear features in
feature space F via kernel functions k (x,
y)= rather than performing
complicated calculations in input space [4].

Φ

() (Φ)x yΦ •

k

By projecting data onto principal subspaces and
thus dropping some components with small feature
value, both linear PCA and Kernel PCA can
reconstruct them with small variance.

2. PCA, Kernel PCA and de-noising
2.1 PCA
Principal Component Analysis (PCA) is a basis
transformation to diagonalize an estimate of the
covariance matrix of the data

1

, 1, . . . , , , 0
l

N
k k

k

x k l x R x
=

= ∈ =∑ , and

we define:

1

1 .
l

T
j j

j
C x

l =

= ∑ x (1)

The new coordinates in the Eigenvector basis, that is
the orthogonal projections onto the Eigenvectors,
are called principal components [2].

In practical experiments, training set should be
centered for processing:

1

1 () ()
l

T
i i

i

C x x
l

.µ µ
=

= − −∑ (2)

where µ is the average image of input image set.

To eigen-decompose this C matrix is always an
impractical task for high dimension of this matrix.
Fortunately, alternative method using Singular
Value Decomposition (SVD) is available to tackle
this problem.

Concerning an image f , which is to be
recognized or de-noised, we first get its projective
vector:

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
WSCG POSTERS proceedings
WSCG’2004, February 2-6, 2004, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

Ty U f= (3)

and then reconstruct it through:

f̂ Uy= (4)

where U is the eigenvector matrix of C.

To do linear PCA, we only need to keep those
eigenvectors in this matrix U corresponding to large
eigen-value.

Next we generalize this process to a nonlinear one
of the following kind. We first map the data in input
space nonlinearly into a feature space by F

: , . (5) NR F x XΦ → 6

} i

We know that mappings, which take us into a
higher dimensional space than the dimension of the
input space, provide us with greater classification
power. However, the problem of high
dimensionality is that this can seriously increase
computation time. To tackle this problem, it is
possible to take advantage of high dimensional
representations without actually having to work in
the high dimensional space [3].

2.2 Kernel PCA and de-noising
Let denote the input data.
Kernel PCA first map the data into some feature
space , as is related in the above PCA
descriptions. And then a standard PCA is performed
on the mapped data.

1{ N l
ix R =∈

F

Assume that our data mapped into feature space,

1(),..., (),lx xΦ Φ are centered. Then we can
perform PCA on the covariance matrix

1

1 () () ,
l

T
j j

j
C x x

l =

= Φ Φ∑ (6)

To find eigen-value 0λ ≥ and eigen-vector V,
which satisfies ,V CVλ = we find an alternative
method for this impractical computation because of
rather high dimension. Accordingly we may
consider the equivalent system

(()) (())k kx V x Cλ Φ • = Φ • V l for all (7) 1,..., ,k =

and there exist coefficients 1,..., lα α satisfying

1

().
l

i i
i

V α
−

= Φ∑ x (8)

Moreover we define a matrix K by
 then the above

eigen-decomposition problem can be reduced to
solve the following:

*l l
: (() ()) ((,)),ij i j i jK x x k x x= Φ •Φ =

 l Kλα α= (9)

where eigen-value λ , and eigen-vector 1(,...,)Tlα α α= .

Kernels include Gaussian kernel function:
 (10)

2 2(,) exp(|| || /(2)),k x y x y σ= − −

and polynomial kernel function ,
which compute dot products in feature space.

(,) ()dk x y x y= i

For principal component extraction, we compute
projections of the image of a test point onto

the Eigen-vectors in according to

()xΦ
kV F

1 1
: (()) (() ()) (,).

l l
k k k

k i i
i i

V x x x k xβ α
= =

= •Φ = Φ •Φ =∑ ∑ i i xα (11)

Thus we can perform PCA in the feature space
whether the corresponding map is known. Φ

Because Kernel PCA is a PCA in F , the
mapping data ()xΦ can be reconstructed from its
principal components. To prove this, we first define
an operator (assuming that the eigenvectors are
sorted so that the eigen-values decreased with k)

nP

1
() .

n
k

n
k

kP x β
=

Φ = ∑ V (12)

We would like to find approximate representations
of the data in input space rather than in . Thus we
are looking for a

F
Nz R∈ so that

2() || () () ||nz P x zσ = Φ − Φ (13)

2.3 Iterative De-noising with Gaussian Kernels
In order to perform de-noising, we need to

reconstruct mapped data in input space NR rather
than in feature space . F

Given x in input space, we first map it into ()xΦ ,
drop those components corresponding to small
eigen-value to achieve ()nP xΦ , and then compute
z. Such computation is at the aim of capturing the
main structure of the data set in the first n directions,
and the remaining components just pick up the noise.
Thus z can be regarded a de-noised version of x.

In practice, the equation of () ()nP xΦ =Φ x cannot
be well satisfied. Therefore, the existence of an
exact pre-image of a mapped one may not be
guaranteed. Under such circumstances, we use
gradient descent methods to minimize (13) over z.
Substituting (8) and (12) into (13), we can reduce
the above objective expression to the following:

 (14)
1 1

() (,)
n l

k
k i i

k i
z C k x zσ β α

= =

= − ∑ ∑
here C denotes a common value independent of z [3].
 To tackle the same problem, Mika et. al [5] also
proposed another method to approximate z by
minimizing . Since 2() || () () ||nz P x zσ = Φ − Φ

kernels satisfying (,)k x x cons≡ for all x, we can

maximize the following expression instead of ()zσ .

1
() (() ()) (,)

l

n i i
i

z z P x C k x zσ α
=

= Φ • Φ + = +∑� C (15)

3. Experiments
Our first experiment is based on the training set
composed of 12 images of a Chinese character of
different fonts (Fig 1).

 Fig 1: Set of training images

From this training set, we drew one image, to
which we added Gaussian noise (37.5%) as the one
to be de-noised. Furthermore, upon this noised
image, we re-added Gaussian noise (also 37.5%) as
the starting point of z in equation (14). Fig 2 shows
the noised image (left) and re-noised one (right)
respectively.

Fig 2: Testing & starting images

Fig 3 gives a comparison of de-noising effect
with different Gaussian factors and principal
components (with each team of four images’
comparison, the principal components are
correspondingly 11, 9, 4, 1 from left to right).

2(,) exp(|| || / 3000)K x y x y= − −

 2(,) exp(|| || /1000)K x y x y= − −

2(,) exp(|| || / 600)K x y x y= − −

2(,) exp(|| || / 300)K x y x y= − −

Fig 3: Effect of de-noising for different
Gaussian factors and principal components

During the process of iteration, another factor,
which may contribute to the velocity of processing,
is the pace we chose. Concerning this problem,
narrow pace may result in too many times of
iteration, while improperly large pace may lead to
no results. Thus iteration times are not suitable for
acting as the criteria of comparison.

Despite these details, we easily draw from the
above comparison that, with the decrement of
principal components, there is an increment of
background noise. Therefore, the indication that
principal components as many as possible are able to
maintain main constructions of an image is well
proved here. In addition, we find that, concerning
particular image set, there is a proper Gaussian
factor, which can contribute to the best effect of de-
noising and reconstructing images.

Another experiment is based on the same training
set as mentioned above; however, image to be de-
noised is replaced by a noised handwritten character.
Here two similar examples of different fonts are
shown in Fig 4.

Fig4: Noised handwritten image and de-noised
one

From the above two experiments concerning
handwritten images, we can learn the possibility that
we may not find an exact pre-image of that noised
one; nevertheless, we may find the original image in
the training set, which is most closest to the noised
one.

To prove that our method also works well on de-
noising gray level images, another experiment is
performed here on another training set, in which
images are different for their various gray level
distributions (Fig 5). Similarly an image is picked
out from the training set to add noise as the one to
be de-noised, and the effect of de-noising is shown
in Fig 6.

From the experiment above, we successfully tested
the quality of Kernel PCA method on gray level

images. Although the images we picked here are of
simple gray level distributions, we can optimistically
predict that our method also performs well in de-
noising more complicated gray level images.

Fig 5: Set of gray level images

Fig 6: Noised gray level image and de-noised one

To prove that our method out-performs linear PCA
in de-noising and reconstructing images, we did
another experiment with linear PCA based on
training set of Fig 1. From the comparison shown in
Fig 7, we find that although the Gaussian noise we
added was wiped out, the background was
simultaneously added with new noise.

Fig 7: De-noising images by linear PCA (first is
noised image, next four with principal
components of 11, 9, 4, 1 respectively)

Here we use the mean square error (MSE) as a
criterion for comparing the effect of de-noising
between our method and linear PCA (Table 1).

Principle components 11 9 4 1

Linear PCA 85.2383 85.2891 94.1005 94.3518

Kernel PCA 0.0036 0.0040 0.0051 0.0059

Table 1: Comparison of mean square error
between linear PCA and Kernel PCA

This comparison gives us a clear impression that the
Kernel PCA out-performs linear PCA in de-noising
and reconstructing images. Since the new
background noise is added as mentioned above, the

difference between MSE of PCA and Kernel PCA is
very significant.

4. Conclusion
Here we have studied the problem of finding pre-
image of vectors in feature spaces, and shown how it
is related to the problem of reconstructing data from
its nonlinear principal components as extracted by
the Kernel PCA algorithm. Through experiments on
de-noising different kinds of images and comparison
between Kernel PCA and linear PCA, we find some
interesting conclusions, which include that as many
as possible of principal components can keep main
images and that, Kernel PCA outmaneuvers linear
PCA in the application of de-noising and
reconstruction.

References
[1] Takashi Takahashi and Takio Kurita. Robust De-
noising by Kernel PCA. International Conference on
Artificial Neural Networks (ICANN2002), In
Artificial Neural Networks - ICANN2002, Springer,
pp. 739-744, 2002
[2] B. Scholkopf, A. J. Smola, and K.R. Muller.
Kernel Principal Component Analysis. In B.
Scholkopf, C. J. C. Burges, and A. J. Smola, editors,
advances in Kernel Methods - SV Learning, pp. 327-
352. MIT Press, Cambridge, MA,1999.
[3] B. Scholkopf, S. Mika, A. Smola, G. Ratsch, K.R.
Muller. Kernel PCA Pattern Reconstruction via
Approximate Pre-Images, In: Niklasson L., Boden M.
and Ziemke T. (eds.), Proceedings of the 8th
International Conference on Artificial Neural
Networks, Springer Verlag, Perspectives in Neural
Computing, pp. 147-152, 1998.
[4] B. Scholkopf, A. J. Smola, and K.R. Muller.
Nonlinear component analysis as a kernel eigen-
value problem. Neural Computation, 10: 1299-1319,
1998.
[5] B. Scholkopf, S. Mika, C.J.C. Burges, P. Knirsch,
K. –R. Muller, G. Raetsch and A. Smola. Input space
vs. feature space in kernel-based methods. IEEE
Transactions on Neural Networks, 1999, 10:5, pp.
1000-1017.
[6] A. M. Jade, B. Srikanth, V.K. Jayaraman, B. D.
Kulkarni, J.P. Jog, L. Priya. Feature extraction and
de-noising using kernel PCA. Chemical Engineering
Science 58 (2003) 4441-4448.

	INTRODUCTION
	PCA, Kernel PCA and de-noising
	2.1 PCA
	2.2 Kernel PCA and de-noising
	2.3 Iterative De-noising with Gaussian Kernels

	Experiments
	Conclusion
	References

