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ABSTRACT 
Principal Component Analysis (PCA) is a basis transformation to diagonalize an estimate of the 

covariance matrix of input data and, the new coordinates in the Eigenvector basis are called principal 
components. Since Kernel PCA is just a PCA in feature space F , the projection of an image in input 
space can be reconstructed from its principal components in feature space. This enables us to perform 
several applications concerning de-noising and recovering images. Because of the superiority of Kernel 
PCA over linear PCA, we also get satisfactory effects of de-noising images using Kernel PCA. 
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1. INTRODUCTION 
PCA is one of the most important techniques for 
feature extraction, and it has been widely used in 
fields such as de-noising and classification [1][6]. 
Concerning PCA, one can make use of a linear 
transformation to extract feature components. Kernel 
PCA, one of the nonlinear variants of PCA, is a 
generalization of linear PCA. Through a nonlinear 
map , we can easily extract nonlinear features in 
feature space F  via kernel functions k (x, 
y)=  rather than performing 
complicated calculations in input space [4]. 
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By projecting data onto principal subspaces and 
thus dropping some components with small feature 
value, both linear PCA and Kernel PCA can 
reconstruct them with small variance. 

2. PCA, Kernel PCA and de-noising 
2.1 PCA 
Principal Component Analysis (PCA) is a basis 
transformation to diagonalize an estimate of the 
covariance matrix of the data 
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The new coordinates in the Eigenvector basis, that is 
the orthogonal projections onto the Eigenvectors, 
are called principal components [2]. 

In practical experiments, training set should be 
centered for processing:  
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where µ  is the average image of input image set. 

To eigen-decompose this C matrix is always an 
impractical task for high dimension of this matrix. 
Fortunately, alternative method using Singular 
Value Decomposition (SVD) is available to tackle 
this problem. 

Concerning an image f , which is to be 
recognized or de-noised, we first get its projective 
vector: 
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Ty U f=                          (3) 

and then reconstruct it through: 

f̂ Uy=                              (4) 

where U is the eigenvector matrix of C. 



To do linear PCA, we only need to keep those 
eigenvectors in this matrix U corresponding to large 
eigen-value. 

Next we generalize this process to a nonlinear one 
of the following kind. We first map the data in input 
space nonlinearly into a feature space by F

: , .                (5) NR F x XΦ → 6

} i

We know that mappings, which take us into a 
higher dimensional space than the dimension of the 
input space, provide us with greater classification 
power. However, the problem of high 
dimensionality is that this can seriously increase 
computation time. To tackle this problem, it is 
possible to take advantage of high dimensional 
representations without actually having to work in 
the high dimensional space [3]. 

2.2 Kernel PCA and de-noising 
Let  denote the input data. 
Kernel PCA first map the data into some feature 
space , as is related in the above PCA 
descriptions. And then a standard PCA is performed 
on the mapped data.  
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Assume that our data mapped into feature space, 

1( ),..., ( ),lx xΦ Φ are centered. Then we can 
perform PCA on the covariance matrix 
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To find eigen-value 0λ ≥  and eigen-vector V, 
which satisfies ,V CVλ = we find an alternative 
method for this impractical computation because of 
rather high dimension. Accordingly we may 
consider the equivalent system 

( ( )) ( ( ) )k kx V x Cλ Φ • = Φ • V l for all       (7) 1,..., ,k =

and there exist coefficients 1,..., lα α  satisfying  
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Moreover we define a  matrix K by 
 then the above 

eigen-decomposition problem can be reduced to 
solve the following: 
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where eigen-value λ , and eigen-vector 1( ,..., )Tlα α α= .  

Kernels include Gaussian kernel function:         
       (10) 

   
2 2( , ) exp( || || /(2 )),k x y x y σ= − −

and polynomial kernel function , 
which compute dot products in feature space. 

( , ) ( )dk x y x y= i

For principal component extraction, we compute 
projections of the image of a test point  onto 

the Eigen-vectors  in  according to  
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Thus we can perform PCA in the feature space 
whether the corresponding map  is known. Φ

Because Kernel PCA is a PCA in F , the 
mapping data ( )xΦ  can be reconstructed from its 
principal components. To prove this, we first define 
an operator  (assuming that the eigenvectors are 
sorted so that the eigen-values decreased with k)  
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We would like to find approximate representations 
of the data in input space rather than in . Thus we 
are looking for a 

F
Nz R∈  so that  

2( ) || ( ) ( ) ||nz P x zσ = Φ − Φ        (13) 

2.3 Iterative De-noising with Gaussian Kernels 
In order to perform de-noising, we need to 

reconstruct mapped data in input space NR rather 
than in feature space .  F

Given x in input space, we first map it into ( )xΦ , 
drop those components corresponding to small 
eigen-value to achieve ( )nP xΦ , and then compute 
z. Such computation is at the aim of capturing the 
main structure of the data set in the first n directions, 
and the remaining components just pick up the noise. 
Thus z can be regarded a de-noised version of x. 

In practice, the equation of ( ) ( )nP xΦ =Φ x cannot 
be well satisfied. Therefore, the existence of an 
exact pre-image of a mapped one may not be 
guaranteed. Under such circumstances, we use 
gradient descent methods to minimize (13) over z. 
Substituting (8) and (12) into (13), we can reduce 
the above objective expression to the following: 
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here C denotes a common value independent of z [3]. 
  To tackle the same problem, Mika et. al [5] also 
proposed another method to approximate z by 
minimizing . Since 2( ) || ( ) ( ) ||nz P x zσ = Φ − Φ



kernels satisfying ( , )k x x cons≡  for all x, we can 

maximize the following expression instead of ( )zσ . 
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3. Experiments 
Our first experiment is based on the training set 
composed of 12 images of a Chinese character of 
different fonts (Fig 1). 

 

 

 
                   Fig 1: Set of training images 

From this training set, we drew one image, to 
which we added Gaussian noise (37.5%) as the one 
to be de-noised. Furthermore, upon this noised 
image, we re-added Gaussian noise (also 37.5%) as 
the starting point of z in equation (14). Fig 2 shows 
the noised image (left) and re-noised one (right) 
respectively. 

     
Fig 2: Testing & starting images 

Fig 3 gives a comparison of de-noising effect 
with different Gaussian factors and principal 
components (with each team of four images’ 
comparison, the principal components are 
correspondingly 11, 9, 4, 1 from left to right). 

 
2( , ) exp( || || / 3000)K x y x y= − −    

 
  2( , ) exp( || || /1000)K x y x y= − −

 
2( , ) exp( || || / 600)K x y x y= − −   

 
2( , ) exp( || || / 300)K x y x y= − −  

Fig 3: Effect of de-noising for different 
Gaussian factors and principal components 

 

During the process of iteration, another factor, 
which may contribute to the velocity of processing, 
is the pace we chose. Concerning this problem, 
narrow pace may result in too many times of 
iteration, while improperly large pace may lead to 
no results. Thus iteration times are not suitable for 
acting as the criteria of comparison. 

Despite these details, we easily draw from the 
above comparison that, with the decrement of 
principal components, there is an increment of 
background noise. Therefore, the indication that 
principal components as many as possible are able to 
maintain main constructions of an image is well 
proved here. In addition, we find that, concerning 
particular image set, there is a proper Gaussian 
factor, which can contribute to the best effect of de-
noising and reconstructing images. 

Another experiment is based on the same training 
set as mentioned above; however, image to be de-
noised is replaced by a noised handwritten character. 
Here two similar examples of different fonts are 
shown in Fig 4. 

                       
Fig4: Noised handwritten image and de-noised 
one 

From the above two experiments concerning 
handwritten images, we can learn the possibility that 
we may not find an exact pre-image of that noised 
one; nevertheless, we may find the original image in 
the training set, which is most closest to the noised 
one. 

To prove that our method also works well on de-
noising gray level images, another experiment is 
performed here on another training set, in which 
images are different for their various gray level 
distributions (Fig 5). Similarly an image is picked 
out from the training set to add noise as the one to 
be de-noised, and the effect of de-noising is shown 
in Fig 6. 

From the experiment above, we successfully tested 
the quality of Kernel PCA method on gray level 



images. Although the images we picked here are of 
simple gray level distributions, we can optimistically 
predict that our method also performs well in de-
noising more complicated gray level images. 

 

   
Fig 5: Set of gray level images   

          
Fig 6: Noised gray level image and de-noised one 

To prove that our method out-performs linear PCA 
in de-noising and reconstructing images, we did 
another experiment with linear PCA based on 
training set of Fig 1. From the comparison shown in 
Fig 7, we find that although the Gaussian noise we 
added was wiped out, the background was 
simultaneously added with new noise. 

          
Fig 7: De-noising images by linear PCA (first is 
noised image, next four with principal 
components of 11, 9, 4, 1 respectively) 

Here we use the mean square error (MSE) as a 
criterion for comparing the effect of de-noising 
between our method and linear PCA (Table 1). 

Principle components   11           9             4              1 

Linear PCA      85.2383  85.2891  94.1005 94.3518 

Kernel PCA        0.0036   0.0040    0.0051    0.0059 

Table 1: Comparison of mean square error 
between linear PCA and Kernel PCA 

This comparison gives us a clear impression that the 
Kernel PCA out-performs linear PCA in de-noising 
and reconstructing images. Since the new 
background noise is added as mentioned above, the 

difference between MSE of PCA and Kernel PCA is 
very significant. 

4. Conclusion 
Here we have studied the problem of finding pre-
image of vectors in feature spaces, and shown how it 
is related to the problem of reconstructing data from 
its nonlinear principal components as extracted by 
the Kernel PCA algorithm. Through experiments on 
de-noising different kinds of images and comparison 
between Kernel PCA and linear PCA, we find some 
interesting conclusions, which include that as many 
as possible of principal components can keep main 
images and that, Kernel PCA outmaneuvers linear 
PCA in the application of de-noising and 
reconstruction. 
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