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Abstract:

This contribution deals with attitude estimatiogaithm based on measuring angular rate, earth etiegineld
and specific force and with the tuning of its pae#ens. At first, sensors and two main methods lisuakd for
attitude estimation are described. Subsequenthypéngcular form of complementary filter attitudstienator is
shown. Then the tuning of algorithm’s parametelisgubrute force simulation is described. For théectory
generated using precise model of multicopter wasl.uSesting trajectory reflects usual mission ofmanned
aerial vehicles called waypoint navigation. Userafectory generated by model is convenient becafitbe
knowledge of the true state variables, so the coisgra through RMSE (Root Mean Square Error) vakie i
possible.

grade gyroscopes, which can provide sufficient
1. INTRODUCTION attitude information (error less than 1° in eaclieEu
) o ) ) angle) for more than 10 hours after initialization
Attitude estimation is a crucial part of any (gepends on particular sensor and implementation of
autonomous aerial system. Usually a typical atéitud integration). Because of the noise and the biaghwhi
measuring device consists of cheap tri-axis MEMSjs more or less present in all angular rate sensors
gyroscope, accelerometer and magnetometer. Alhased on MEMS technology the error grows quickly
these sensors are usually noisy and highly biaseel.  (ysually more than 10°/min) in time. Using cheap

complex algorithms are needed for optimal attitudepmEMS gyroscopes alone for attitude determination is
estimate. Any existing method for attitude estimati  opviously insufficient.

has some parameters to set. These parameters are
usually determined by analytical computation or by 2.2 Accelerometers

try and error approach. Considering a real aerialthe gccelerometers measure specific force acting on
system try and error approach is useless, butwséh  he examined object. If the object is not moving (o

of mathematical model this approach can quicklglea yniformly moving), the accelerometers measure

to accurate results. vector of Earth gravitational field which shows us

In this paper the tuning of parameters is done ongcg| vertical direction. This information can bsed

of aerial system — waypoint navigation. The sensorgyler angles — one of the possible attitude
values are distorted by white noise and constaag bi representations [1]) or as a vector measurement

to simulate real sensor characteristics. This @sabl \nown in both reference and body frame. If any dorc

smooth transition of algorithm from simulation &af gjfferent from reaction to gravitational one actstbe

hardware with real sensors. examined body, the information is useless during th
eriod.

2. SENSORS USED FOR ATTITUDE 23 Magnetometer

ESTIMATION '

The magnetometer measures magnetic field, if there

Tri-axis MEMS gyroscopes, accelerometers andis g |ocal source of magnetic field, this sensor

magnetometers are the most widely used sensors fQheagyres Earth magnetic field which in short time
att!tude estimation. In next sub;ecuons the type 9 and position horizon provides constant vector. & w
attitude information available in each sensor is o the size and direction of the magnetic vegtor
mentioned. reference frame, then by measuring magnetic vector
2.1 Gyroscopes in body frame we get same type of information like

o accelerometer case. This information is relevant
The tri-axis gyroscope measures three components Qfjess the magnetic field is disturbed by local
angular rate with respect to inertial frame expedss magnetic sources.

in so called body frame (linked with examined

object_). If the_initial attitude is known, _the tim_e Each of above mentioned type of sensor provides
evolution of attitude can be computed by integ@®tin some kind of information regarding attitude.
the angular rate data. This is enough for navigatio



However this information alone is not usable fardo  Prediction step:

time attitude estimation with bounded error. Usguall x(k +1|k) = A (k) + B (k) )
these three_ types of sensors are used together and P(k+1|k)=APIA'+R. 3)
some sophisticated algorithm uses the advantages of

each sensor and combines the information to provid )

the best attitude estimate. The most used attitudj,'deate step: . .
estimation methods utilize some special type of K =(Pk+1KIC)lnv(CIP(k+1K)IC'+Q)  (4)
Kalman filter [2] or Complementary filter [3]. Each  X(k+1) =x(k +1|k) + K(z(k) - Cx(k + 1| k)) (5)
of these methods will be briefly introduced in the P(k +1)=(| -K g[;)up(k+1| k). (6)
following chapter.

Wherex(k) is a state vector at k-th iteratiof,is the

3. METHODS USED FOR system matrix,B is the input matrix,C is the
ESTIMATION — BASIC PRINCIPLES measurement matrix, is the vector of system inputs,

In this chapter only the basic principles of each? S the vector of measuremen,is the system

method will be described. These prinCipleS andcovarlance matrixR andQ are quarlance matrices

characteristics are more or less general and are n@' SYSIEM resp. measurement noises. ,

used only for attitude estimation. For attitude estimation the angular rate is usually
_ considered as an input to the system and

3.1 Complementary Filter accelerometer and magnetometer values as the

Complementary filter is a filtering technique in measurements. The system equations describing the

frequency domain. Two or more sensors WhiChattitude estimation problem are non-linear. Sirtee t

provide some state variables of measured system, aPriginal Kalman filter is designed only for linear

considered as an input. From each sensor, onlyta pasystems some suboptimal adaptation for non-linear

of frequency spectrum is used and all sensorsheget systems were developed. The.most common 1S EKF
cover all spectrum. This means that one senso Extended Kalman Filter) which uses first order

complements other in frequency domain, thus theRaonrdt-_:‘xpar;]smn n e(;/ery lteration. Kal filter i
name complementary. The block scheme of egarding the attitude estimation, Kalman filter is

complementary filter is depicted in Fig. 1. more difficult to use than the complementary filter
There are more parameters to tune (system and
measurement noise covariance matrices) and the

Sensor 1 Gi(s) ——_ whole algorithm is computationally very expensive
System +  out and the implementation to the target device with
Sensor (RO — microcontroller needs lot of effort in comparisoithw

complementary filter.

Fig. 1 Principle of Complementary filter
4, COMPLEMENTARY FILTER
If we have two sensors of the same state variddide t ATTITUDE ESTIMATOR

condition for filter G1 and G2 should be satisfied: ) o
If we take into account the principle of

G.(s)+G.(s)=1. pomplementary filter a!ong yvith charaqteristic _of
1(3) 2(5) (1) individual sensors mentioned in introduction settio
it is beneficial to use only high frequency compuine

The Complementary filter is widely used mainly o 4vroscope sensor and low frequency component of
because of the ease of implementation and for itg,o remaining sensors. The implementation of

simplicity (only one parameter — crossover freqyenc .,mnjlementary filter can have different forms, but

is required for two sensor case). the basic principle of frequency filtering is still
3.2 Kalman FEilter present. Hereafter mentioned algorithm is modified

) ) ) ) ) complementary filter attitude estimator from [3].
Kalman filter is a well known estimation technique The rotation matrix is used for internal attitude
developed in 1960 [4]. It is primarily developed 0 topresentation. Rotation matrix is the only unique
estimating the state of linear systems with adelitiv non gingular attitude representation [1]. The only
Gaussian white noise and with noisy measurementSyisadvantage is the number of elements - 9

If we know the characteristic of all noises, the (quaternion — 4, Euler angles - 3). There exisp&m
Kalman filter algorithm guarantee the optimality of rg|ations between all these attitude representtion
its state estimate. The iterative discrete algotith The core of the algorithm is the discrete equation

consists of two steps, the prediction step and thgniegrating the gyroscope sensor values compensated
correction step. The individual steps of Kalmatefil 5, so-called bias using the rotation matrix R:

are:
R.. =R, Ol +Q, [AT) (7)



0 ~(w,-b,) (@, -b,) One of the possible orthogonalization equations is
z z y y 5
Q=| (w,-b,) 0 — (o, =b,) |, (8) =
(@, =by) (@b 0 R=3R-YRR'R, (15)

whereAT is sampling periodq is iteration index] is
identity matrix ande is vector of angular rates
(expressed in body frame). The information from
accelerometer and magnetometer are passed to t
core of the algorithm through the bias estimate:

Equations (7)-(15) form the complete complementary
filter algorithm for attitude estimation using
[fyroscope accelerometer and magnetometer.

5. COMPLEMENTARY FILTER

b(n) =k, &, +k, e 9) PARAMETERS TUNING
e=vle, +k, [&, (10) The complete complementary filter algorithm has 4
a parameters in total. Using these parameters we can
e, = (R’ ﬁ%) x(58) (11) control the behavior of the filter, namely biastlgeg
g|| ||a|| time ( k, ), vector following speed (, ),
e, =(R'ﬁ‘ﬂ)x(&) (12) magnetometer weight &, ) and rejection of
m, " ||mB|| acceleration 6 ). If we set these values randomly, the
{_("a"_g)ZJ filler can operate unexpectedly and can diverge.
v=exg ———|, (13) Therefore it is convenient to do parameters turing
g simulation environment. For this purpose the filter

was tested in MATLAB environment.
Where k k

p o Ks
complementary filterg is gravitational acceleration
vector, a; is measured specific forcen is Earth

k, and ¢ are parameters of 5.1 Simulated sensors
To perform a simulation of complementary filter we

) ) need all filter inputs namely angular rate vector,
magnetic vector, subscriptmeans reference value gnecific force vector and magnetic field vectorl Al
expressed in inertial frame and subsciptmeans naqe values were generated using precise model of
measured value expressed in body frame. The termg, icopter. The reason for using this model is to
in (11) and (12) are angular rate vectors expressed n4ye 5 trajectory which is characteristic for tyige

body frame, which would lead to alignment of ot \nmanned aerial vehicle. The model outputs true
reference and measured vectors. Term (13) caus€syes of the variables needed for testing the

that specific force vector is used only when its ;o nniementary filter algorithm. Noise typical for

magnitude is close to value of Earth gravitational \jems sensors is added to these variables to
acce:eratlont, sohlt a_ltvpld_s :Jsmgt ITf?rmatltqn nfr:om precisely simulate the real world conditions. The
accelerometer when it Is irrelevant. information simulated sensor values are sampled with the fate o
magnetometer is considered to be relevant allithe t 165 Hz The static outputs of one axis of simulated

(this assumption can be violated easily in indoor gy roscone and real STMicroelectronics L3G4200
enwr_onment)_. As ter_m (9) is suggested direction _Ofgyroscope are compared on Fig. 2.

rotation leading to alignment (reference vectorthwi o simulated gyroscops data

measured vectors) multiplied by constant it is «clea z ' ‘ ‘ ‘ ‘

that this vector (bias estimate) is passed badkdo
core algorithm: 2omf |

L L L L L L L L
0 1 2 3 4 5 6 7 8 5

0 =0yb, (14)

real gyroscope data
T T

Where o is vector of angular rates from (8, is 2o WMMWMWWWWWWWMWM i

measured angular rate by gyroscope and bias | : . : . s . : . )
. H H Time ()

estimate fr.om (9). Sum of all previous errors in (9 Fig. 2 Simulated and real static gyroscope outputs

allows having zero stable error because of the same

principle as S term in PSD controller.

Since all computations are usually performed on5.2 Testing trajectory

computer, care _has to b? taken to rotation .matr'x’l'esting trajectory is based on a standard waypoint
Rotation matrix is a special orthonormal matrix (al navigation mission. This is the typical trajectory

rows ‘or colgmns are or_thog_onal ar_ld perpgndmularwhich will be flown by the system so it is reasoleab
vectors). This property is slightly violated in &ac

) : . . ’ to tune the parameters on this trajectory. The
Iteration. Without correction, this would Ieaq to trajectory waypoints are listed in the followindple:
divergence of rotation matrix and of whole algamith




Table 1: Waypoints of testing trajectory trajectory is computed and compared with true

Waypoint X[m] Y[m] h[m] Comment simulated Euler angles (which are known thanks to
Start 0 0 0 hover10s simulation).
1 25  -25 5 "
2. 30 30 10 30r —
3. 30 -30 30 sor —1
z 30 30 30 = I | 1
5. 30 40 30 = i H I A |
6. 30 40 15 Z L{l"l"'"*‘in"“‘“‘Iﬂﬂh'i-‘ “:::i\"'\'m IJ ”"'#'““l:i“i“-ql’-"ii'
Stop 0 0 5 hover 20s ;:3 / 1 ‘ ' 1
<
The top view and height profile of the trajectasyoin :3
Fig. 3 and Fig. 4 respectively. ool
-120

0 10 20 30 40 50 60 70 80 90
Time [s]
Fig. 5 Simulated gyroscope values for testing trajectory
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Fig. 3 Top view of testing trajectory
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Fig. 6 Simulated accelerometer values for testing trajgcto
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Simulated magnetometer values for testing trajgctor

Fig. 4 Height profile of testing trajectory

The simulated flight lasted 90 s. The coordinated':'g'7
system is defined as NED (x-North, y-East, z-Down). 1g getg of parameters are compared using RMSE
The magnetometer is in this simulation consideced t 5 .o This value is computed using the true and
measure only Earth’s magnetic field located nearygiinaied attitude for testing trajectory-

equator. No magnetic field disturbances are siradlat

in this trajectory. This should be taken into adwou N

since the Earth magnetic field can be easily distdr RMSE:Z[J(/(i Y +a8() + awli )2] (16)
mainly in indoor environment. The simulated sensor o i=1 ) .

values for gyroscope, accelerometer andWwherei is the sample indexp, ¢ andy are roll, pitch

magnetometer are on Fig. 5, Fig. 6 and Fig. 7and yaw Euler angles respectively and the error
respectively. operatow is defined as:

5.3 Tuning approach O¢=¢r — ¢y (17)

The tuning of parameters was performed usingand indexT denotes true value ard the estimated
brute-force. In three steps an arrays of parametergalue. The set of parameters with lowest RMSE value

was generated. In a given step for each combinatiomyre considered as the best from the particulayarra
of parameters the estimation of attitude for whole



The tuning is focused for all parameters except themiddle of their possible values which means that th
magnetometer weight K, ). This value is set to best set lies very close to the local minimum of

constant k, =1) for all tuning since large values RMSE.
gives better results because of the almost ideztbve  apje 6: values of parameters for third finest tuning

measurements but this can lead to very poor real™ pjZoer Values

world results when using in place with local magmet K 1312111090807
disturbances. The whole tuning is based on the P e e
assumption of the existence of one global minimum. k; 0.0035, 0.003, 0.0025, 0.00020,
This assumption cannot be guaranteed but the furthe 0.00015

mentioned results show very good performance with o (2,3,..7,810°

parameters tuned using this approach. The
complementary filter runs at the rate of 100 Hz theTable 7: The best parameters set
same rate the sensors outputs their values. Parameter k, k. c RMSE

In the first step the rough tuning was performed to

find the order of each parameter in which the filte Value 0.9 0002 0.0006 _6.05
operates well. The possible values for each paemet
are shown in the following table.

On Fig. 8, Fig. 9 and Fig. 10 there are comparisdns
true and estimated roll, pitch and yaw Euler angles
which were computed using the complementary filter

Table 2: Values of parameters for first rough tuning !
with the parameters from Table 7.

Parameter Values
k 100, 10, 1, 0.1, 0.01
p roll
40 : : ,
¢ 1, 0.1, 0.01, 0.001, 0.0001 Estimated
o 1, 0.1, 0.01, 0.001, 0.0001 30 —True

In the first step there are 125 possible combimnatio |
in total and for each combination estimated atétud
for whole trajectory is computed in order to obtain OM MW
RMSE value. The best parameter set with the lowes < .1 |
RMSE value is shown in Table 3.

Angle [’]

=20F

Table 3: First step best parameters set 30|
Parameter Kk k; c RMSE
P ' 40 ‘ ‘ ‘ ’
Value 1 0.001 0.001 10.63 0 20 b 50 80

Time [s]
Fig. 8 True and estimated roll Euler angle for testingettry
In the second step, the finer tuning with intervals using the best parameters set

around the best parameters from previous tuning is

done. Table 4 and Table 5 again show the paramete ‘ pitech .
values and best parameter set respectively. ——Estimated
30 —True
Table 4: Values of parameters for second finer tuning 20/
Parameter Values
K, 5,25, 1,05,0.25 =
k. 0.005, 0.0025, 0.001, 0.0005, 5 °
0.00025 < 1o}
o 0.005, 0.0025, 0.001, 0.0005, 200
0.00025
=301
Table 5: Second step best parameters set 40 s s s .
Parameter k,  k = RMSE I
Value 1 0.0025 0.0005 6.35 Fig. 9 True and estimated pitch Euler angle for testing

trajectory using the best parameters set

In the last step the finest tuning is performede Th
values chosen for individual parameters are listed
Table 6. As you can see in Table 7, where the best
parameter set is listed, the RMSE value decreased
slightly thus finer tuning is not necessary.
Additionally the values of parameters lie in the
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