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Abstract:  
Many applications exist that exploit Global Positioning System (GPS) as a source of position and velocity data. 
A main problem of the GPS data is its inconsistency on higher sampling frequencies. The usage of enhanced 
Kalman Filter usage to fill the gaps between the GPS data samples is presented. The presented Kalman filter is 
enhanced to contain the velocity data on the output. The output velocity data meet the condition of integration 
and differentiation between the values of the position and the velocity. 
 

INTRODUCTION 

Many technologies based on Global Position System 
(GPS) exist. They use the GPS as a source of position 
and velocity with respect to the Earth. However, GPS 
has relatively fairly low sampling frequency. 
Therefore, it is needed to use sophisticated filtering 
algorithms to fill the gaps between the GPS data 
samples. 
The measured data from a flight data acquisition 
system usually contains the GPS position and 
velocity with respect to the Earth. It is important to 
filter this raw measured data to enhance its 
information consistency.  
This filtration step is, for example, used in the Flight 
Path Reconstruction (FPR). FPR is a complex process 
intended for enhancement of information value of the 
measured flight data. This process uses kinematic 
equation of motion for description of the relations 
between variables measured during the flight. One of 
the best–known algorithms for the FPR is the Kalman 
Filter. 
It is not possible to use rolling median or mean filters 
because these filters significantly increase the delay 
between input and output. This delay is in matter of 
several samples. 
Three main algorithms to filter nonlinear differential–
equation–based systems are available. Gross et al. 
described in his summarizing article [1] Extended 
Kalman Filter, Unscented Kalman Filter, and Particle 
Filter. By his experiments, it is clear that Extended 
Kalman Filter has the biggest ratio between precision 
and computational cost.  
Particle Filter, unlike the Extended Kalman Filter, 
uses a random number generator to simulate the noise 
in the measurement. This approach simplifies the 
assumptions but the computational cost is rising 
rapidly and the precision rising slowly [1]. 
Unscented Kalman Filter (UKF) is a modification of 
the Kalman Filter [4]. UKF avoids the use of the 
Jacobian matrix of uncertainty, which is a major 
problem for EKF. UKF realizes modeling of 

uncertainty by manipulation with sigma points [2]. 
This approach slightly increases the computational 
cost in the comparison with EKF. 
This paper presents the enhancement of the Kalman 
Filter. The enhanced Kalman Filter enables a velocity 
data output based on the numerical differentiation. 
This enhancement of the Kalman Filter could be 
helpful to reduce artifacts in real–world applications. 
This filtering step is a prerequisite for the 
visualization of the position in the modern flight deck 
instruments onboard of the general aviation aircraft. 
This filtered data could be the source for a later 
processing or could be used in the identification of 
flight parameters. 
This paper is organized as follows. The following 
section shows the structure of general system and its 
discretization. Construction of the Kalman Filter is 
described in next section. The model of our system is 
described in following section. Next section presents 
the enhanced Kalman Filter. The tests results are 
presented in section Results of tests. 

MODEL OF GENERAL SYSTEM 

For further thoughts, we have to describe general 
system. The definition of continuous system is taken 
from [3]: 

&x = Fx+ Du+ w  (1) 

z = Hx+ v  (2) 

where &x  is a vector of a time derivative of the 
system state, z is a vector of the measured variables, 

F , D, and H  are matrices of coefficients, u  is a 
vector of system inputs, x  is a vector of the system 
state, w  is a vector of a process noise and v  is a 
vector of a measurement noise. These equations could 
be described by schema in Fig. 1: 
 



 

 
Fig. 1: Block diagram describing continuous system. 
 
After discretization, it is possible to use discrete 
linear equations to describe the system [5]: 

x k( ) = Ax k −1( )+ Bu k −1( )+ w k −1( ) (3) 

z k( ) = Hx k( )+ v k( ) (4) 

where A , B, and H  are matrices of coefficients. 
These equations could be described by a block 
diagram shown in Fig. 2: 
 

 
Fig. 2: Block diagram describing discrete system. 
 
A , B after the expansion in Taylor series are equal 
to [3]: 

A = eF∆t ≈ I + F∆t + F2 ∆t2
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B= D eFτ

0

∆t

� dτ ≈ D∆t +DF
∆t2
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where I  is an identity matrix and τ  is the 
integration step. 

KALMAN FILTER 

The Kalman Filter gives us opportunity to increase 
precision of state of the system by using input data 
and redundant measurements. Kalman Filter uses a 
discrete system. The Kalman Filter consists of two 
parts: a prediction part and a correction part. The 
prediction part is defined by the following equations: 

%x k+1( ) = Ax̂ k( )+ Bu k( ) (7) 

%P k+1( ) = AP̂ k( )AT + Q  (8) 

where %x  is an estimated value of x , x̂  is the 

corrected estimation of value x , %P is an estimated 

error covariance matrix, P̂  is the corrected 

estimation of the error covariance matrix, Q  is a 

covariance matrix of the process errors and AT
 is  

transposition of the matrixA . 
The initial conditions are: 

x̂ 0( ) = x0  (9) 

P̂ 0( ) = P0  (10) 

 
The Extended Kalman Filter uses the equations (7) 
and (8) with just first elements of Taylor series. This 
step simplifies the computing in the nonlinear 
Kalman Filtering.  
The correction part is defined by following equations: 

K k( ) = %P k( )HT H %P k( )HT + R ��
−1

 (11) 

x̂ k( ) = %x k( )+ K k( ) z k( ) − H %x k( ){ }   (12) 

P̂ k( ) = I − K k( )H{ } %P k( )  (13) 

where K  is a Kalman gain matrix, HT
 is a 

transposition of the matrix H  and R  is a covariance 
matrix of measurement errors. 
Kalman gain matrix computation is presented in 
Fig. 3. 
 

 
Fig. 3: Block diagram describing computing of Kalman gain 

matrix 
 
The “divide” component, shown in grey, is one of the 
most time consuming operation in Kalman Filter.  
The UKF uses slightly different equations. See [4] for 
further details.  

THE MODEL OF THE PROPOSED 
SYSTEM 

The proposed system could be simplified to a point 
near the Earth surface with the position and the 
velocity derived with respect to the Earth’s surface. 
The input data describing the system are based on the 
GPS measurements: 

z= l λ h


�
�

T

 (14) 

u= v
l

vλ vh



�
�

T
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where z  is a position vector, l  is the terrestrial 
latitude, λ  is the terrestrial longitude, h  is the 

geodetic height over the geoid, u  is a velocity 

vector, v
l

 is the terrestrial latitude speed, vλ  is the 

terrestrial longitude speed and vh  is the vertical 

geodetic speed over the geoid. 



 

The GPS data representation is based on a EGM96 
geoid [6], which is de facto a WGS84 ellipsoid with a 
correction grid. The WGS84 ellipsoid has been used 
for simplification of our estimations. The difference 
between the WGS84 and the EGM96 is less than 
107 m [6], which is significantly less than semi–
major axis of the Earth (a). The WGS84 is used for 
position transformation from the polar (terrestrial 
latitude and longitude) coordinates to the Cartesian 
coordinates and for the definition of the radius of 
curvature in the prime vertical N  is represented by 
the equation [6]: 

N =
a

1− e2sin l( )2
 (16) 

where a  is the semi–major axis of the Earth (by the 
definition of WGS84, it is equal to 6,378,137.0 m) 
and e is the first eccentricity of the Earth which is 
defined by following equation [6]: 

e=
2

1/ f
− 1

1/ f( )2  (17) 

where 1/ f  is a flattening (it is equal to 

298.257223563 by the definition of WGS84). 
The continuous model of the system can be described 
by a following set of differential equations: 

&l= v
l

a+ h( )  (18) 

&λ = vλ N+ h( )   (19) 

&h= vh  (20) 

where &l  is a time derivative of the terrestrial latitude, 
&λ  is a time derivative of the terrestrial longitude, &h  

is a time derivative of the geodetic height over the 
geoid. 
Using continuous system equations (1) and (2), we 
can rewrite equations (18), (19) and (20) to form, 
where F  matrix is zero matrix, H  matrix is identity 
matrix and D are equal to: 

D = a+ h N + h 1


�
�

T

 (21) 

 
Using discretization by equations (5) and (6), it is 
possible to express EKF matrices A  and B  much 
simpler and allows us to express them as: 

A = I  (22) 

B= D∆t  (23) 
 
This simplification changes the Kalman Filter to a 
form, which is equal to the Extended Kalman Filter. 

ENHANCED KALMAN FILTER 

The Extended Kalman Filter uses the velocity as 
input variable. The output of the Extended Kalman 
Filter is the position vector. For our purposes, it is 
necessary to filter velocity as well. The numerical 

differentiation can produce the velocity data on the 
output. This solution could be used in the real–time 
applications. For these purposes, the usage of a 
causality system is needed. One of the numerical 
differentiation methods compliant with the causal 
system is the finite backward differentiation. It is 
described by the following equation [7]: 

&z' k( ) =
z' k( ) − z' k −1( )

∆t
 (24) 

 
The equation (24), in combination with the equations 
(18), (19), and (20) could be used for the 
enhancement of the Extended Kalman Filter to reveal 
the velocity data from the filtered position data.  
This enhancement of the Extended Kalman Filter can 
be described by the following set of equations: 

v
l
=
l k( ) − l k −1( )

∆t a+ h( )  (25) 

vλ =
λ k( ) − λ k −1( )

∆t N + h( )   (26) 

vh =
h k( ) − h k −1( )

∆t
 (27) 

 
This enhancement of the Extended Kalman Filter is 
shown in grey color in Fig. 4: 
 

 
Fig. 4: Block diagram representation of the eKF. The grayed part 

is the added enhancement to the EKF. 
 
After application of the enhanced Kalman Filter 
(eKF), the measured data fulfills the condition of the 
differentiation and integration, e.g. v = &p  and 

p ≈ vdt� . The using of position data and internal 

delay in Extended Kalman Filter to realize numerical 
differentiation ensures this condition. This 
differentiation increases computational cost 
minimally (by less than 20%). 

RESULTS OF TESTS 

Firstly, the enhanced Kalman Filter has been tested 
on a generated signal with amplitude equal to 1.0 and 
frequency equal to 0.1 rad/s. The derivative of this 
signal is used as a velocity data and the generated 
signal as a position data. This signals are sampled on 
frequency 1 Hz and later oversampled to 5 Hz. 
Results of such sampling are showed in Fig. 5: 



 

 
Fig. 5: Raw generated and oversampled data 
 

 
Fig. 6: Generated data after eKF 
 
In Fig. 5 and Fig. 6, the dark line represents the 
position. The light line represents the velocity, which 
is the position time derivative. It is possible to see a 
significant improvement of the position data quality 
and serrate deformation of velocity data in Fig. 6. 
This serrate deformation is caused by reconstruction 
of the oversampled data. This result fulfills the 
condition of the differentiation and integration, which 
is the important quality for the further processing. 
The enhanced Kalman Filter has been also tested on 
samples of the measured data. 
 

 
Fig. 7: Raw measured data. 
 
In Fig. 7 and Fig. 8, the bold line represents the 
height above the mean sea level (altitude). The thin 
line represents the vertical speed, which is an altitude 
(position) time derivative. It is possible to see a 
significant improvement of the position data 

smoothness and very small deformation of velocity 
data in Fig. 8. 
 

 
Fig. 8: Measured data after eKF. 
 
To decrease deformation, it is possible to use a 
dynamic change of the covariance matrix Q  in order 

to reflect the frequency of updating of the measured 
samples from the GPS. The GPS has much lower 
frequency of updating with comparison to frequency 
of output data. 

CONCLUSION 

In this paper, the enhancement of the Extended 
Kalman Filter is proposed to derive the velocity data 
from the filtered position data. The major advantage 
of the presented solution is the consistency between 
the position data and the velocity data so that data 
fulfill the condition of the differentiation and 
integration. 
Proposed enhanced Kalman Filter could be used for 
the enhancement of the consistency and the precision 
of the GPS data sampled on the higher frequencies. 
The presented approach could be used as an out-of-
the-box solution. The filtered GPS data can then be 
used as an input for visualization in MEDS 
(Multifunction Electronic Display Subsystem) with 
higher frequency data for the smoother animation; or 
can decrease the lags of FMS (Flight Management 
System).  
For the purposes of the performance evaluation, it is 
necessary to test the algorithm in real–time 
applications. For the future research, it is envisioned 
to measure the performance and precision changes 
from a dynamic extension of the Extended Kalman 
Filter. This dynamic extension could decrease the 
deformation of the velocity data. The deformation of 
velocity intervention is the biggest disadvantage of 
presented algorithm. 
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