
University of West Bohemia

Faculty of Applied Sciences

Department of Cybernetics

DIPLOMA THESIS
Data and Hybrid Models of Dynamical

Systems

Pilsen, 2023 Šmíd Matěj

D E C L A R A T I O N

I hereby present this diploma thesis for evaluation and defence, for the completion of
my studies at the Faculty of Applied Sciences, University of West Bohemia in Pilsen.

I declare, that I have written this thesis by myself and used scholarly sources of infor-
mation exclusively, all of which are listed in the bibliography.

In Pilsen, May 16, 2023

..

author’s signature

Abstract

This thesis presents a hybrid approach for modeling and of dynamics by combining
first principles modeling and data-driven modeling. An unique property of the RGP is
exploited, namely that it is able to fit the dynamics online, without the need for a train-
ing run, to fit time-varying aerodynamics. We propose a method RGP−MPC, which
uses the hybrid model in a MPC controller, while changing the data-driven component
of the hybrid model to account for model discrepancies. We demonstrate our method
on a model of a quadrotor in simulation, using the Gazebo simulator. The RGP−MPC
is able to track the desired trajectory and adapt to the changing drag forces present.
This simulation experiment provides a proof of concept that the RGP−MPC method
is able to improve the performance of the MPC controller in the presence of unknown
discrepancies in the model.

Keywords – Model Predictive Control, Gaussian Process regression, recursive Gaus-
sian Process regression, quadrotor, hybrid model, data-driven Model, first principles
model, Gazebo, simulation, adaptive control, online learning, time-varying Systems

Tato práce prezentuje hybridní přístup k modelování dynamiky pomocí kombinace
modelování prvních principů a modelování založeného na datech. Využita je unikátní
vlastnost RGP, a to že je schopen přizpůsobit svojí dynamiku online, bez nutnosti
předsběru dat během trénování, na časově proměnné aerodynamické síly. Navrhujeme
metodu RGP−MPC, která používá hybridní model v MPC regulátoru, přičemž mění
datově založenou složku hybridního modelu tak, aby zohledňovala rozdíly mezi mod-
elem a reálným systémem. Metoda je demonstrována na modelu quadrotoru v simulaci,
pomocí simulátoru Gazebo. RGP−MPC je schopen sledovat požadovanou trajektorii a
přizpůsobit se měnícím se aerodynamickým silám. Tento simulační experiment posky-
tuje důkaz, že metoda RGP−MPC je schopna zlepšit výkon MPC regulátoru v přítom-
nosti neznámých rozdílů mezi modelem a reálným systémem.

Klíčová slova – Model Predictive Control, Gaussovské procesy, rekurzivní Gausovské
procesy, dron, hybridní model, modelování vedené daty, modelování z prvních principů,
Gazebo, simulace, adaptivní řízení, online učení, časově proměnné systémy

5

Dedication

I would like to dedicate this work to the many people I have had the good fortune of
meeting during my studies at the University of West Bohemia. I would like to thank my
supervisor, Ing. Jindřich Duník, Ph.D., for his guidance during the writing this thesis.
I would also like to thank my family and friends for their support and encouragement.

6

Contents

1 Introduction 9

2 Modeling Approaches 11
2.1 White Box, Black Box . 12
2.2 First Principles Modeling . 13
2.3 Data-driven Modeling . 13
2.4 Hybrid Models . 14
2.5 A Short History of the Two Approaches 16

2.5.1 Kepler v. Ptolemy . 16
2.5.2 Galileo v. Aristotle . 17

2.6 All Models Are Wrong . 18

3 Mathematical Optimization 19
3.1 Quadratic Programming . 19

3.1.1 Nonlinear Programming . 20
3.2 Model Predictive Control . 22
3.3 Programming Methods . 23

3.3.1 Newton’s Method . 24
3.3.2 Sequential Quadratic Programming 25
3.3.3 CasADi and acados . 27

4 Gaussian Process Regression 28
4.1 Gaussian Process Regression . 28

4.1.1 Maximum Likelihood Estimation 30
4.2 Recursive Gaussian Process . 32

5 Simulation Environments 36
5.1 Robot Operating System . 37
5.2 Gazebo Simulator . 38

5.2.1 Physics Engine . 38
5.2.2 RotorS Simulator . 38

7

Data and Hybrid Models of Dynamical Systems

6 Experiment 39
6.1 First Principles Quadrotor Modeling 40

6.1.1 Quadrotor Model . 40
6.2 Data-driven Drag Model . 42

6.2.1 General Drag Model . 42
6.2.2 Drag Estimation . 43
6.2.3 Drag Modeling by Recursive Gaussian Process 43
6.2.4 Model Learning, Utilization, and Properties 45

6.3 Hybridized Quadrotor Model . 46
6.3.1 Model Predictive Control for the Hybridized Model 46

6.4 Simulation . 47
6.4.1 Trajectory Generation . 48
6.4.2 Nonlinear Model Predictive Control Implementation 48
6.4.3 Simplified Python Simulation 49
6.4.4 Gazebo Simulation . 50
6.4.5 Experimental Setup . 50
6.4.6 Results . 51
6.4.7 Observations, Notes, and Future Work 52

7 Conclusion 54

Symbols 60

CONTENTS 8

Chapter 1

Introduction

Accurate models are a necessity for precise control of dynamical systems. In
general, modeling approaches can be divided into two. First approach consists of

using known physics of the studied system, perhaps using measurements of the system
to identify the model parameters. The other approach is to use data-driven models,
such as machine learning (ML) models, to describe the system. A general model with
little inductive bias (the apriori information about the system encoded in the model
structure) is fit to the data measured on the system. Both these approaches provide
unique benefits to the modeling process, but also have their own drawbacks. This thesis
deals with the problem of combining the two approaches to create a hybrid model that
balances the properties of both approaches.

We present an approach to control a quadrotor using a first principles model aug-
mented with an Recursive Gaussian Process (RGP) [18, 37] model that serves to de-
scribe the quadrotor’s air drag characteristics. The augmented model is employed in
a Model Predictive Control (MPC) framework allowing for precise trajectory tracking
accounting for the quadrotor’s air drag without assuming a priori knowledge of the
air drag form or coefficients. The ML augmented models typically require a training
dataset to be collected in a separate run which is then used to fit the ML model [33, 26].
In contrast, we fit the RGP model online at each time step in a recursive fashion. This
allows us to adapt to changing environmental conditions without the need to collect a
new training dataset.

We investigate the notion of discrepancy modeling to create a hybrid model, that
minimizes the observed discrepancy between the model and the system. To this end,
we seek to find discrepancies between the model and the actual system. This is a
common problem in control theory, where the dynamics model is often a simplification
of the actual system. The ability to adapt to changing conditions is a key feature of a
successful autonomous system. ML models are a popular choice for data-augmenting
a physics-based dynamics model [7, 21, 17, 33].

This thesis is organized as follows. The split between the two modeling approaches

9

Data and Hybrid Models of Dynamical Systems

is discussed in chapter 2. Gaussian process regression is discussed in chapter 4 as our
data-driven model of choice. Chapter 3 discusses the background theory on optimal
control, in particular on MPC and its usege in trajectory tracking. In chapter 5 we
discuss the simulation environment Gazebo used to test the proposed methods. Finally,
in chapter 6 we present our method RGP−MPC [32] for combining the two modeling
approaches and evaluate it in simulation.

CHAPTER 1. INTRODUCTION 10

Chapter 2

Modeling Approaches

Modeling approaches

First principles

ODEs

PDEs

Data-driven

AI approaches

Statistical approaches

Hybrid approach

First principles
+ Data-driven

Figure 2.1: Taxonomy of the three modeling approaches discussed in this thesis

Models are abstract representations of reality, created using reasoning about said
reality, that are used to explain and predict phenomena. They can take the form

of mathematical equations, logical statements, computer programs. Using a model
allows one to consider only those aspects of reality that are relevant to the problem at
hand, and to ignore the rest.

First principles modeling and data-driven modeling are two different approaches to
modeling physical systems. First-principles modeling involves using the fundamental
laws and principles of physics to develop a mathematical model that describes the be-
havior of the system. This approach is based on a deep understanding of the underlying
physics of the system and has the distinct advantage in that its generally transparent
and such can be understood easier by users [24], which is why they tend toward the
white side of the white-grey-black box scale discussed in section 2.1.

On the other hand, data-driven modeling involves acquiring input-output data from

11

Data and Hybrid Models of Dynamical Systems

the system and using it to develop a model that can make predictions about the sys-
tem’s behavior. This approach does not require a deep understanding of the underlying
physics of the system, but instead relies on data to uncover relationships between in-
puts and outputs, which leads to opaque models, falling into the category of black-box
models, which represents a roadblock in their widespread application [38].

In general, first principles modeling tend to be more accurate than data-driven
modeling, but at the cost of being more computationally expensive.

In summary, first-principles modeling is based on a deep understanding of the
underlying physics of the system, while data-driven modeling relies on data to uncover
relationships between inputs and outputs.

2.1 White Box, Black Box

All models can be assigned position on the white-grey-black box scale according to
the amount of a priori information about the system that is encoded into the model
structure. Black box models are constructed without any a priori information, leaving
the structure free to fit the data. They are not concerned with the internal workings
of the system, only with its input-output relationship. In contrast to this, white box
models are constructed in such a way as to incorporate all the a priori information
into the model structure, fully describing the system’s interior. All models lie on a
spectrum between these two extremes as seen in Fig. 2.2.

White box Grey box Black box

Figure 2.2: Different modeling approaches lie on the white-black box spectrum.

There is a distinction to be made between the a priori information available and
the data available. Where the a priori information refers information about the model
structure, the data available is only the observations made of the modeled system.

The available a priori information can be in terms of the type of function capable
of capturing the behavior of the system, for example a second order linear ordinary
differential equation. Since such a model’s parameters still need to be identified we
would not classify it as a strictly white box model. When no a priori information
is available, a general model structure can be chosen, yielding an opaque, black box
model.

CHAPTER 2. MODELING APPROACHES 12

Data and Hybrid Models of Dynamical Systems

Note that where a model lies on the white-black box spectrum is not directly related
to the model’s usefulness or validity. An unwieldy, opaque, black box model can be
very useful in practice, while a white box model can be too complex to be of any use.

2.2 First Principles Modeling

Modeling from first principles involves using the fundamental laws and principles
of physics to develop a mathematical model that describes the behavior of the system.
Such a model is usually in the form of a set of differential equations that describe
the evolution of the system over time, as is discussed in this thesis. A model created
from first principles most often is not fully set, but rather contains parameters (mass,
inertia, etc.) that need to be identified. This identification can be done either offline
(gather data→ identification) or online (real-time, recursive identification). Generally,
as model complexity increases, the identification process becomes more difficult.

Identification Identification of model parameters can be either a complex or a simple
process. If the model designer is able to measure the model parameters directly using
sensors, then the identification process is simple. For example, the mass of a body
can be measured using a scale. Many other parameters can be measured in this way,
such as the dimensions, the density, the viscosity, etc. However, in many cases, it
is not possible to measure the parameters directly. For example, the air resistance
parameter of a body can be measured using wind tunnel experiments, but this can
be very expensive and time consuming. In such cases, the parameters are estimated
using indirect measurements using statistical methods such as by finding the parameters
minimizing the least squares criterion [23], using predictive error minimization methods
(PEM), the Kalman filter (KF) [22], the extended Kalman filter (EKF) [4], the particle
filter (PF) [34] and the unscented Kalman filter (UKF) [20].

2.3 Data-driven Modeling

Data-driven models are made up of a general structure, that is restructured, or
learned, using observed data from a system to build a model that can be used to predict
the behavior of the system. The models employed do not require a deep understanding
of the underlying physics of the system, but instead use mathematical models which
can be fit to the observed data [2]. Often, they rely on minimizing the model prediction
error in various ways, which can lead to potentially greater accuracy than their first
principles counterparts, however, they are prone to overfitting to the observed data,
leading to loss of generalization outside of the observed domain.

13 CHAPTER 2. MODELING APPROACHES

Data and Hybrid Models of Dynamical Systems

They can be generally divided into two categories: (1) machine learning approaches,
such as neural networks [31] (NN) and (2) statistical approaches like Gaussian process
(GP) regression [29] and recursive Gaussian process (RGP) regression [18] discussed in
chapter 4.

2.4 Hybrid Models

The two modeling approaches described above can be combined, hybridized to
create a model that is able to take advantage of the strengths of both approaches.
Given a first principles model 𝑓phys and a data-driven model 𝑓data we can combine
them to create a hybrid model 𝑓hybrid.

The most general hybridization of two mathematical models is using an arbitrary
function ℎ to combine the two models like so:

General Model Hybridization

¤𝑥 = 𝑓phys(𝑥)
¤𝑥 = 𝑓data(𝑥),

where 𝑥 is the current state of the model, ¤𝑥 is the state’s time derivative.

¤𝑥 = 𝑓hybrid(𝑥) = ℎ(𝑓phys(𝑥), 𝑓data(𝑥))

The most straightforward approach is to choose ℎ in additive form as

¤𝑥 = 𝑓hybrid(𝑥) = 𝑓phys(𝑥) + 𝑓data(𝑥). (2.1)

This choice is has many advantages, one of which is that it conserves the units of both
submodels.

In the chapter 6, we develop a hybrid model of a quadrotor using this approach
with 𝑓phys describing the rigid body dynamics and 𝑓data describing the body’s drag.

System

Model

system output x

model prediction x̂

-
model discrepancy x̃input u

Figure 2.3: Discrepancy modeling allows for
accuracy when the system under study has
both the idealized known physics and hard
to model disturbances.

Discrepancy Modeling Discrepancy
modeling [10] is an approach for devel-
oping a data-driven model to augment
an known first principles model. The
idea is to use the first principles model
of the system’s dynamics and the data-
driven model as a model of the measured
discrepancy between the idealized model
and the actual system as illustrated in fig-
ure 2.3. The discrepancy model is then

CHAPTER 2. MODELING APPROACHES 14

Data and Hybrid Models of Dynamical Systems

used to correct the idealized model to obtain a more accurate model of the system’s
dynamics.

Easy Hard

Hard

Data-driven

First principles

Hybrid

Modeling disturbances and unknown physics

In
co
rp
or
a
ti
n
g
k
n
ow

n
p
h
y
si
cs

Figure 2.4: Discrepancy modeling allows for accu-
racy when the system under study has both the
idealized known physics and hard to model distur-
bances.

Oftentimes the model de-
signer has access to an idealized
a priori physics model 𝑓phys, that
fails to capture some of the be-
havior of the system. The hard-
to-model disturbances present
can be prohibitively complex to
model using the first principles
approach. Therefore the data-
driven approach can be used to
create a comparatively simple
model 𝑓data of the discrepancy
between the idealized model and
the actual system. Ideally, we
imagine the modeling problem to
lie on a knee-shaped graph as
shown in fig. 2.4, where we op-
timize the model to lie on the
knee.

The physics model 𝑓phys can be derived from first principles as described in section
2.2 while discrepancy model model 𝑓data can be derived using the data-driven approach
described in section 2.3.

There are many systems that can benefit from discrepancy modeling. For example,
a robotic arm can measure the discrepancy resulting from the friction in the arm joints.
This friction is difficult to model, since it changes due to the deterioration of the arm’s
components as a result of aging and changing environmental conditions.

Another example can be a discrepancy model of the air resistance on a moving body,
supplementing a model of the aerodynamics of the body. Air resistance is a complex
phenomenon that is difficult to model, usually requiring wind tunnel experiments to
model. Using a machine learning model to fit the air resistance from the data can be
a more efficient approach. This example is explored in chapter 6.

Another use is a discrepancy model of bearing chatter in rotating machinery. Bear-
ing chatter is a complex phenomenon that is difficult to model, usually requiring ex-
pensive and time consuming experiments to model. Using a machine learning model
to fit the bearing chatter from the data can be a more efficient approach.

15 CHAPTER 2. MODELING APPROACHES

Data and Hybrid Models of Dynamical Systems

2.5 A Short History of the Two Approaches

The split between the first-principle and data-driven modeling approaches is not
new. It has been present in the scientific discourse for centuries. In this thesis, we
examine two historical clashes between the antecedents of these approaches, namely
from the discourse on the Heliocentric and Geocentric models of the solar system, as
well as on the models of gravity and celestial bodies.

2.5.1 Kepler v. Ptolemy

The difference in the first principles and the data-driven modeling approaches can
be illustrated with a historical excursion into the discourse on Heliocentrism and Geo-
centrism.

Figure 2.5: Orbits of the planets as seen
from the Heliocentric and Geocentric coor-
dinate frames [9]. The heliocentric model
offers a simpler view of the phenomena,
even if it was, at the time of its inception,
less accurate than its geocentric counter-
part.

During Kepler’s lifetime, the heliocen-
tric model of the solar system was less
accurate than the geocentric model, be-
cause of the presence of unmeasured dis-
turbances, since many significant bodies
were yet to be discovered: Uranus, Pluto,
Saturn’s moons, etc [10].

These unmeasured disturbances, seen
in both the "correct" heliocentric and the
"incorrect", were not as significant when
seen from the perspective of the geocen-
tric coordinate frame. The greater accu-
racy of the "incorrect" geocentric model
was essentially a result of overfitting to
the measured data.

Here, the "correct" heliocentric model
was the first principles model, while
the "incorrect" geocentric model was the
data-driven model fitting better to the
available data. The difference between these is illustrated in fig. 2.5. This historical
discourse illustrates the roots of both approaches and the trade-off between accuracy
and generalizability. Hybrid models of the solar system are not in use today, since the
PBM model used nowadays, General Relativity, provides discrepancy-less accuracy.

CHAPTER 2. MODELING APPROACHES 16

Data and Hybrid Models of Dynamical Systems

2.5.2 Galileo v. Aristotle

In physics folklore, Galileo’s ball drop experiment from the leaning tower of Pisa is
often used to illustrate that the acceleration experienced by a falling body is constant,
thus disproving Aristotle’s theory of gravity, that states that objects fall at different
speeds depending on their mass.

However, if we were to perform the experiment, we would find that the acceleration
of the ball is not constant, but rather depends on the mass of the ball, much closer to
Aristotle’s theory. This is so, because the air resistance experienced by the ball changes
with its Reynolds number, which depends on the mass of the ball.

Figure 2.6: Artistic depiction of Galileo’s
ball drop experiment. The experiment was
most likely a thought experiment, and not
an actual experiment

Galileo’s most significant contribution
was not the measurement and fitting of
the data, but instead the position of the
idea of a fixed acceleration, which was a
conclusion that would have been excep-
tionally difficult to come to from such
measurement data alone [10].

Both examples, i.e., Kepler v. Ptolemy
and Galileo v. Aristotle illustrate the dif-
ference between the first principles and
the data-driven modeling approaches.
Where the first principles approach at-
tempts to find parsimonious models that
explain the data, the data-driven ap-
proach attempts to find models that fit
the data as well as possible, without try-
ing to understand the underlying princi-
ples. Aristotle’s model fits the data well,
but tells us little about the underlying
physics. Galileo’s model does not fit the
data as well, but it does tell us something
about the underlying physics.

The parsimony of the first principles approach is critical when using the philosophy
of Occam’s razor [11]: The simplest explanation is the most likely explanation; the
simplest set of explanatory variables is the most suitable.

17 CHAPTER 2. MODELING APPROACHES

Data and Hybrid Models of Dynamical Systems

2.6 All Models Are Wrong

The phrase “All Models Are Wrong” originates from a 1976 aphorism by the late
American statistician George Box [6]. The full quote is:

All models are wrong, but some are useful.

This aphorism stresses that even though statistical models are fundamentally wrong,
they can still be useful in practice. The search for the "correct" model is a futile one, as
there is no such thing as a "correct" model. The model designer should instead focus
on choosing a model based on two criteria: parsimony and worrying selectively.

Parsimony stresses the importance of Occam’s razor in model selection. The model
designer should choose the simplest model that is able to explain the natural phenom-
ena without excessive elaboration. Worrying selectively concerns the awareness of the
limitations of the model. Since all models are wrong, the model designer must be aware
of what is importantly wrong.

The idea of the aphorism predates Box’s work, it was articulated decades earlier
both by scientists such as John von Neumann and by artists:

We all know that art is not truth. Art is a lie that makes us realize truth,
at least the truth that is given us to understand. The artist must know the
manner whereby to convince others of the truthfulness of his lies.
— Pablo Picasso

CHAPTER 2. MODELING APPROACHES 18

Chapter 3

Mathematical Optimization

Mathematical optimization deals with finding the best solution from a set of all
feasible solutions. It consists of maximizing or minimizing a criterion (objective)

function 𝑓 : X → R by systematically choosing an input 𝑥 from within a allowed set
X and determining the value of the criterion.

In this thesis we deal with optimizing a continuous function evaluating the state
of a model, but there exists a separate branch of optimization dealing with discrete
functions. This branch is called combinatorial optimization and is not covered in this
thesis.

We can further divide the optimization problems into two categories: constrained
and unconstrained. In constrained optimization, the set X ⊂ R𝑛 and is defined by a
set of constraints. In unconstrained optimization, the set X is the whole R𝑛. We will
focus on constrained optimization in this thesis which can be formulated as

where 𝑥 ∈ X is the vector of variables, 𝑓 : X → R is the objective function,
ℎ𝑖 : R𝑛 → R are the equality constraints and 𝑔 𝑗 : R𝑛 → R are the inequality constraints
which constrain 𝑥 to the allowed inputs X.

3.1 Quadratic Programming

Quadratic programming (QP) is the process solving optimization problems where
the criterion function 𝑓 is quadratic, subject to linear equality and inequality constraints
defined as

Quadratic Optimization Problem

min
𝑥

1
2𝑥𝑇𝑄𝑥 + 𝑐𝑇𝑥 (3.1)

subject to 𝐴𝑥 ⪯ 𝑏, (3.2)

19

Data and Hybrid Models of Dynamical Systems

where 𝑄 is a symmetric matrix representing the quadratic weights, 𝑐 is a vector rep-
resenting the linear weights, 𝐴 is a matrix and 𝑏 is a vector representing the linear
inequality constraints.

IPOPT and HPIPM Solving QP problems numerically is a non-trivial task. Sev-
eral algorithms have been developed to solve QP problems, such as the interior-point
method, active-set method, and the augmented Lagrangian method. The interior-
point method is the most popular method for solving QP problems. The interior-point
method is implemented in the IPOPT1 [36] package, instead the acados package uses
the HPIPM solver2 [12], since it is better suited to solving optimal control problems.

3.1.1 Nonlinear Programming

A nonlinear constrained optimization problem is an optimization problem, where
the objective function and/or the constraints are nonlinear. The process of solving a
nonlinear constrained optimization problem is called nonlinear programming (NLP).
A constrained optimization problem can be posed in the following form

Nonlinear Constrained Optimization Problem

min
𝑥

𝑓 (𝑥), (3.3)

subject to ℎ𝑖 (𝑥) = 0 𝑖 = 1, . . . 𝑛ℎ, (3.4)
and 𝑔 𝑗 (𝑥) ≤ 0 𝑗 = 1, . . . 𝑛𝑔, (3.5)

where 𝑓 is the nonlinear objective function, ℎ𝑖 are the equality constraints, and 𝑔 𝑗 are
the inequality constraints.

Transformation into an unconstrained optimization problem To move from
the constrained optimization problem to the unconstrained optimization problem, we
transform the constraints to the objective function. This is done by introducing a linear
penalty function 𝑃, that is large when the constraints are violated defined as

𝑃 =
∑︁
𝑖

𝜆𝑖ℎ𝑖 (𝑥) +
∑︁
𝑗

𝜇 𝑗𝑔 𝑗 (𝑥) = 𝜆𝑇ℎ(𝑥) + 𝜇𝑇𝑔(𝑥), (3.6)

where 𝜆 and 𝜇 are the penalty weights (also called the Lagrange multipliers) for the
equality and inequality constraints respectively. The constraints ℎ𝑖 and 𝑔 𝑗 can be

1IPOPT source code: https://github.com/coin-or/Ipopt
2HPIPM source code: https://github.com/giaf/hpipm

CHAPTER 3. MATHEMATICAL OPTIMIZATION 20

https://github.com/coin-or/Ipopt
https://github.com/giaf/hpipm

Data and Hybrid Models of Dynamical Systems

aggregated into a single vector ℎ and 𝑔 as

ℎ(𝑥) =


ℎ1(𝑥)
ℎ2(𝑥)
...

ℎ𝑛ℎ (𝑥)


, 𝑔(𝑥) =


𝑔1(𝑥)
𝑔2(𝑥)
...

𝑔𝑛𝑔 (𝑥)


. (3.7)

By combining the objective function 𝑓 and the penalty function 𝑃 we obtain the
Lagrangian 𝐿 of the constrained optimization problem

𝐿 (𝑥,𝜆,𝜇) = 𝑓 (𝑥) + 𝜆ℎ(𝑥) + 𝜇𝑔(𝑥). (3.8)

The penalty function is then added to the objective function and we find the optimum
by first maximizing over the Lagrange multipliers 𝜆,𝜇 and then minimizing over 𝑥

while keeping the multipliers non-negative to get

min
𝑥∈R𝑛

, max
𝜆,𝜇

𝐿 (𝑥,𝜆,𝜇)

subject to 𝜆 ≧ 0,
and 𝜇 ≧ 0.

(3.9)

The optimization problem as defined in (3.9) is called the primal problem. The dual
problem is obtained by switching the order of the maximization and minimization.

max
𝜆,𝜇

min
𝑥∈R𝑛

𝐿 (𝑥,𝜆,𝜇),

subject to 𝜆 ≥ 0,
and 𝜇 ≥ 0.

(3.10)

In general, the optimal solutions to a primal problem is not equal to the equivalent
dual problem solution, instead being separated by the duality gap. As such, the dual
problem (3.10) gives us the lower bound on the optimal value of the primal (3.9)
problem. However, under specific conditions the duality gap is zero, referred to as
strong duality.

Karush–Kuhn–Tucker conditions The Karush–Kuhn–Tucker (KKT) conditions
are the necessary conditions that for 𝑥 to be a critical point. Since the Lagrangian
function combines all the information about the optimization problem into a single
function using the Lagrange multipliers 𝜆 and 𝜇, the Lagrangian function 𝐿 can be
optimized by finding critical points where its gradient is zero. Since the Lagrangian
function is a function of 𝑥, 𝜆 and 𝜇, the gradient is a vector of partial derivatives with
respect to each of these variables. The critical point of this problem must necessarily

21 CHAPTER 3. MATHEMATICAL OPTIMIZATION

Data and Hybrid Models of Dynamical Systems

satisfy the KKT conditions defined as

KKT conditions

∇𝐿 (𝑥,𝜆,𝜇) =

𝜕𝐿
𝜕𝑥
𝜕𝐿
𝜕𝜆
𝜕𝐿
𝜕𝜇

 =

∇ 𝑓 + 𝜆∇ℎ + 𝜇∇𝑔∗

ℎ

𝑔∗

 = 0. (3.11)

Since the inequality constraints are only active when 𝑔(𝑥) → 0 we only need to
consider the active inequality constraints, since those that are inactive do not partic-
ipate in the solution and 𝜇 = 0 for them. The active set of inequality constraints is
denoted by 𝑔∗.

The active set method The active set method involves solving the KKT conditions
while guessing which inequality constraints are active (and are hence are in the active
set) if the solution. They typically start by assuming that all inequality constraints
are inactive, finding a solution in 𝑥 and then checking for feasibility. If the solution
is feasible, then the solution is optimal. If the solution is not feasible, then the active
set is updated by adding the violated constraints to the active set and repeating the
process. This is repeated until the solution is feasible.

3.2 Model Predictive Control

Model Predictive Control (MPC) [16, 25] is a control scheme used to control a
system described by a system of ordinary differential equations ¤𝑥 = 𝑓C(𝑥,𝑢) around
a desired state 𝑥∗ using a computed control input 𝑢∗. The state of the system is a
vector 𝑥 ∈ X and the control input is a vector 𝑢 ∈ U.

To quantify the optimality of a solution we define a cost function L that penalizes
deviations from the desired state 𝑥∗. In addition, it is often desirable to penalize
the 𝑢, for computational reason, since a penalty on 𝑢 may make the problem easier
to solve, but also for reasons of modeling, since we want to avoid values of 𝑢 that
result in excessive usage of energy. For these reasons, we define the cost function as :
L : X × U→ R+0.

We require of this cost function to be 0 when the system is in the desired state
𝑥∗ and 𝑢∗, i.e. L(𝑥∗,𝑢∗) = 0 and to be positive otherwise. We also require that the
cost function is continuous and differentiable. A common choice of cost function is the
quadratic cost function defined as

L(𝑥,𝑢) = (𝑥 − 𝑥∗)𝑇𝑄(𝑥 − 𝑥∗) + (𝑢 − 𝑢∗)𝑇𝑅(𝑢 − 𝑢∗). (3.12)

CHAPTER 3. MATHEMATICAL OPTIMIZATION 22

Data and Hybrid Models of Dynamical Systems

Given a cost function L and a prediction horizon length 𝑁 ≥ 2, we can define a
optimal control problem (OCP𝑁) as

OCP𝑁 problem

𝐽𝑁 (𝑥0) ≜ min
𝑢0:𝑁−1

𝑁−1∑︁
𝑘=0
L(𝑥𝑘 ,𝑢𝑘), (3.13)

with respect to 𝑢0:𝑁−1 ∈ U𝑁 , 𝑥0:𝑁−1 ∈ X𝑁 , (3.14)
subject to 𝑥𝑘+1 = 𝑓D(𝑥𝑘 ,𝑢𝑘), (3.15)

where U𝑁 ≜ ∪𝑁
𝑘=0U is a set of control inputs to optimize over, X𝑁 ≜ ∪𝑁

𝑘=0X is a set of
admissible states to optimize over and 𝑓D is the function 𝑓C discretized, for example
using the equation (6.4). Solving this OCP allows us to find the optimal control input
𝑢∗0:𝑁−1 for the next 𝑁 time steps. This, however, is not enough to control the system
effectively, since it does not take into account the state measurements of the system.
To extend the OCP𝑁 with feedback we define a MPC feedback control law 𝜇𝑁 that
uses the current state of the system to compute the optimal control input 𝑢∗0:𝑁−1 for
the next 𝑁 time steps at each control interval. This feedback control is defined as:

Algorithm 1 Basic MPC algorithm for constant reference 𝑥ref = 𝑥∗ for time samples
𝑡𝑛; 𝑛 = 0, 1, 2, . . .

1: Measure the state 𝑥(𝑡𝑛) ∈ X
2: Set 𝑥0 ← 𝑥(𝑡𝑛)
3: Solve the OCP𝑁 and denote the obtained solution as 𝑢∗0:𝑁−1 ∈ U𝑁
4: Define the MPC feedback value 𝜇𝑁 (𝑥(𝑡𝑛)) ≜ 𝑢∗0

Running the algorithm 1 in a loop allows one to control the controlled plant in a
receding horizon fashion. MPC has been historically used primarily in the process and
chemical industries, where the system dynamics are slow enough to make the MPC
computations feasible in real time. However, with the advent of faster, more available
compute and automatic differential tools like CasADi, MPC has become more popular
in the field of robotics and in recent years have been used in the automotive industry,
for instance in gasoline engines mass produced by General Motors as of 2018 [5].

3.3 Programming Methods

To solve the optimization problem, we need to find the optimal value of the decision
variables 𝑥. This can be done using a variety of methods. The most common methods
we will discuss here are the Newton’s method and sequential quadratic programming.

23 CHAPTER 3. MATHEMATICAL OPTIMIZATION

Data and Hybrid Models of Dynamical Systems

3.3.1 Newton’s Method

Newton’s method, also known as Newton–Raphson method, is a iterative method
for unconstrained optimization. The method can be used to find critical points of a fuc-
tion 𝜙 : R → R of 𝑥 by finding the roots of its derivative 𝜙′ = 0.

Figure 3.1: A comparison of
gradient descent (green) and
Newton’s method (red) for
minimizing a function (with
small step sizes). Newton’s
method uses curvature in-
formation using the second
derivative of 𝜙 to take a more
direct route.

In comparison to other methods, particularly gradi-
ent descent, Newton’s method converges faster, since
it uses the second derivative of 𝜙 to take a more di-
rect route to the minimum as illustrated in figure 3.1.
However, the second derivative 𝜙′′ needs to exist and
if it does, its computation is often expensive.

Given a twice-differentiable function 𝜙, we seek to
solve the optimization problem

min
𝑥
𝜙(𝑥), (3.16)

by constructing a sequence of iterates {𝑥𝑘 }𝑁0 that con-
verge to a minimizer 𝑥∗ of 𝑓 . At each iteration 𝑘, the
Taylor series expansion of 𝜙 about 𝑥𝑘 is constructed as

𝜙(𝑥𝑘 + 𝑡) ≈ 𝜙(𝑥𝑘) + 𝜙′(𝑥𝑘)𝑡 +
1
2𝜙
′′(𝑥𝑘)𝑡2. (3.17)

To find the step 𝑡 that minimizes 𝜙(𝑥𝑘 + 𝑡), we set
the derivative of the Taylor expansion to zero and solve for 𝑡 as follows

𝑑

𝑑𝑡
𝜙(𝑥𝑘 + 𝑡) = 0 (3.18)

𝑑

𝑑𝑡

(
𝜙(𝑥𝑘) + 𝜙′(𝑥𝑘)𝑡 +

1
2𝜙
′′(𝑥𝑘)𝑡2

)
= 0 (3.19)

𝜙′(𝑥𝑘) + 𝜙′′(𝑥𝑘)𝑡 = 0. (3.20)

The 𝑡 that minimizes the Taylor expansion is given by

𝑡 = − 𝜙
′(𝑥𝑘)
𝜙′′(𝑥𝑘)

, (3.21)

and the next iterate is then given by

𝑥𝑘+1 = 𝑥𝑘 −
𝜙′(𝑥𝑘)
𝜙′′(𝑥𝑘)

. (3.22)

The above formulation deals with the univariate case of 𝑥 ∈ R. In the multivariate

CHAPTER 3. MATHEMATICAL OPTIMIZATION 24

Data and Hybrid Models of Dynamical Systems

case, ie. 𝑥 ∈ R𝑛, the Taylor expansion is given by

𝜑(𝑥𝑘 + 𝑡) ≈ 𝜑(𝑥𝑘) + ∇𝜑(𝑥𝑘)𝑇𝑡 + 1
2𝑡𝑇∇2𝜑(𝑥𝑘)𝑡, (3.23)

and the method can be extended to the multivariate case in (3.24) by simply replacing
the derivative 𝜑′(𝑥) with the gradient ∇𝜑(𝑥) and the second derivative 𝜑′′(𝑥) with the
Hessian matrix ∇2𝜑(𝑥).

Newton’s Method Iteration

𝑥𝑘+1 = 𝑥𝑘 −
(
∇2𝜑(𝑥𝑘)

)−1 ∇𝜑(𝑥𝑘) (3.24)

3.3.2 Sequential Quadratic Programming

One of the most effective methods for solving nonlinear constrained optimization
problems from section 3.1.1 is sequential quadratic programming [14] (SQP). This
method works by generating and solving quadratic subproblems [27], which it uses to
iteratively converge to the solution of the parent problem. The critical points of the
objective function 𝑓 (𝑥) are also the critical points of its Lagrangian 𝐿 (𝑥,𝜆,𝜇), since
𝑓 (𝑥) = 𝐿 (𝑥,𝜆,𝜇) at the KKT point (𝜆 = 0 and 𝜇 = 0), therefore we can use Newton’s
method to find the critical points of the Lagrangian 𝐿 (𝑥,𝜆,𝜇) like so:


𝑥𝑘+1

𝜆𝑘+1

𝜇𝑘+1

 =

𝑥𝑘

𝜆𝑘

𝜇𝑘

 −

∇2

𝑥𝑥𝐿 ∇ℎ ∇𝑔∗

∇ℎ𝑇 0 0
∇𝑔∗𝑇 0 0


−1

︸ ︷︷ ︸
∇2𝐿


∇ 𝑓 + 𝜆∇ℎ + 𝜇∇𝑔∗

ℎ

𝑔∗

 .︸ ︷︷ ︸
∇𝐿

(3.25)

The Newton step 𝑑 =
[
𝑑𝑥, 𝑑𝜆, 𝑑𝜇

]𝑇 from the iterate (𝑥𝑘 ,𝜆𝑘 ,𝜇𝑘) to the next iterate
(𝑥𝑘+1,𝜆𝑘+1,𝜇𝑘+1) is obtained by solving the linear system


∇2

𝑥𝑥𝐿 ∇ℎ ∇𝑔∗

∇ℎ𝑇 0 0
∇𝑔∗𝑇 0 0



𝑑𝑥

𝑑𝜆

𝑑𝜇

 =

∇ 𝑓 + 𝜆∇ℎ + 𝜇∇𝑔∗

ℎ

𝑔∗

 . (3.26)

However, since the Hessian of the Lagrangian ∇2𝐿 is likely to be non-invertible, the
Newton step 𝑑 is to be found indirectly, by solving a quadratic minimization subproblem
defined as

25 CHAPTER 3. MATHEMATICAL OPTIMIZATION

Data and Hybrid Models of Dynamical Systems

QP subproblem

min
𝑑

𝑓 (𝑥𝑘) + ∇ 𝑓 (𝑥𝑘)𝑇𝑑 + 1
2𝑑𝑇∇2

𝑥𝑥𝐿 (𝑥𝑘 ,𝜆𝑘 ,𝜇𝑘)𝑑 (3.27)

subject to ∇ℎ(𝑥𝑘)𝑑 + ℎ(𝑥𝑘) = 0 (3.28)
and ∇𝑔(𝑥𝑘)𝑑 + 𝑔(𝑥𝑘) = 0. (3.29)

Newton’s method

xk+1 = xk + dk

min
x

f(x)

subject to h(x) ≥ 0

and g(x) = 0

Parent problem

min
d

f(xk) +∇f(xk)
T d+ 1

2d
T∇2

xxL(xk, λk, σk)d

s.t. h(xk) +∇h(xk)
T d ≥ 0

and g(xk) +∇g(xk)
T d = 0

QP subproblem

xkdk

Figure 3.2: Schematic representation of the
SQP algorithm.

The QP subproblem is still a non-
linear optimization problem (solved for
example using quadratic programming),
however, it is much easier to solve than
the general nonlinear programming par-
ent problem. There exists many vari-
eties of the SQP algorithm, making use
of specifin assumptions about the prob-
lem structure, however, the general idea
is the same. One can use various solvers
to solve the QP subproblem, for exam-
ple, the interior-point solver fmincon in
MATLAB or solvers specialized for QP
problems, such as the HPIPM solver dis-
cussed in section 3.1. The SQP algorithm
is summarized in Algorithm 2 and its schematic representation is visualized in fig. 3.2.

Algorithm 2 Local SQP Algorithm
1: Choose initial iterate (𝑥0,𝜆0,𝜇0)
2: for 𝑘 = 0, 1, . . . do
3: Solve (3.27) to obtain 𝑑𝑘
4: Update iterate (𝑥𝑘+1,𝜆𝑘+1,𝜇𝑘+1) ← (𝑥𝑘 ,𝜆𝑘 ,𝜇𝑘) + 𝑑𝑘
5: if Convergence test satisfied then
6: 𝑥∗ ← 𝑥𝑘

7: Stop
8: end if
9: end for

Real-Time Iteration (RTI) SQP Solving each OCP𝑁 step (6.18) in the MPC
framework is computationally expensive, and the computational burden increases with
the prediction horizon. The SQP−RTI scheme [35] is a variant of the SQP algorithm
that exploits the sequential similarity of the OCP𝑁 problem. At each sampling instant
𝑖, the NMPC solution is updated using a full Newton step, instead of performing the
SQP algorithm to full convergence [15]. The Newton step is taken on the NMPC

CHAPTER 3. MATHEMATICAL OPTIMIZATION 26

Data and Hybrid Models of Dynamical Systems

solution obtained at the previous time instant 𝑖 − 1. This approach is computationally
efficient, since it does not require the full convergence of the SQP algorithm at each
sampling instant.

3.3.3 CasADi and acados

CasADi and acados are two software frameworks we use in this thesis to construct
and solve optimization problems. They are both open-source and written in C++ with
interfaces to Python and MATLAB.

CasADi [3] is an open-source tool3 for nonlinear optimization and algorithmic differ-
entiation. Using an internal symbolic representation of expression, it facilitates the
efficient computation of symbolic differentiation using algorithmic differentiation re-
quired to solve optimization problems.

This framework allows the user to code a wide variety of nonlinear optimization
problem (NLP) formulations. It also includes a suite of NLP solvers, including SQP,
IPOPT and more.

acados [35] is a software package4 of solvers designed for nonlinear OCPs. This is
in contrast with CasADi which only solves general NLP problems. acados implements
SQP type solvers tailored to OCP structured NLPs, which aim to solve those problems
very fast. The solution time of acados for typical MPC problems is expected to be
orders of magnitude faster compared to using IPOPT in CasADi.

3Source code: https://web.casadi.org/
4Source code: https://docs.acados.org/

27 CHAPTER 3. MATHEMATICAL OPTIMIZATION

https://web.casadi.org/
https://docs.acados.org/

Chapter 4

Gaussian Process Regression

4.1 Gaussian Process Regression

Gaussian process regression (GP) [29] is a non-parametric method that generalizes
Gaussian probability distribution . Instead of describing the probability over a

scalar (or vector) space, stochastic processes describe probability over function space.
Gaussian process does not draw a function as-is, instead it only evaluates the

function at a finite number of points, sidestepping the issue of evaluating an infinite-
dimensional vector. Every finite collection of these function values has a multivariate
normal distribution. The Gaussian process is the joint distribution of all of those func-
tion values, and is thus a distribution over functions with continuous domain. Gaussian
processes can be used for regression problems as well as for classification. Classification
problems are concerned with providing outputs as discrete labels, whereas in regression,
the outputs are continuous variables.

The GP is a non-parametric method which, when used for regression tries to regress
observations 𝑜𝑘 = {𝑥•

𝑘
, 𝑦•

𝑘
}, where the symbol “•” signifies a observation, generated

from a noisy process

𝑦•𝑘 = 𝑔(𝑥
•
𝑘) + 𝜖𝑘 , (4.1)

where 𝜖𝑘 ∼ N(0, 𝜎2
𝑛) is the process noise.

For the GP to make predictions, we need to provide it with access to a training
dataset of 𝑛 observations D = {𝑜𝑖 |𝑖 = 1, ..., 𝑛}. The GP is then conditioned on the
training data and can be used to make predictions 𝑦 on new data points 𝑥.

The covariance function (also called a kernel) used changes the possible behavior
of the GP. An example of a kernel is the squared exponential kernel 𝐾 given by

Source code available at https://github.com/smidmatej/Gaussian-process

28

https://github.com/smidmatej/Gaussian-process

Data and Hybrid Models of Dynamical Systems

Squared exponential kernel

𝐾 ((𝑥,𝑥′) = 𝜎2
𝑓 exp(−1

2 (𝑥 − 𝑥′)𝐿−1(𝑥 − 𝑥′)𝑇) + 𝜎2
𝑛 , (4.2)

where 𝜎 𝑓 is the signal variance, 𝜎𝑛 is the noise variance and 𝐿 is the length scale.
These three parameters form the hyperparameters 𝜂 =

(
𝑙, 𝜎 𝑓 , 𝜎𝑛

)
of the GP.

A Gaussian process is completely specified by its mean function 𝑚, its covariance
function 𝐾 and the available dataset D. The mean function is usually set to zero for
simplicity, but not necessarily.

We define mean function 𝑚 and the covariance function 𝐾 of a estimated process
𝑔 as

𝑚(𝑥) = E[𝑔(𝑥)],
𝐾 (𝑥,𝑥′) = E[(𝑔(𝑥) − 𝑚(𝑥)) (𝑔(𝑥′) − 𝑚(𝑥′))],

(4.3)

and will write the Gaussian process as

𝑔(𝑥) ∼ GP(𝑚(𝑥), 𝐾 (𝑥,𝑥′)). (4.4)

When provided no data, i.e., D = ∅, the GP is said to be unconditioned and the
prior distribution is given by a normal distribution with mean 𝑚(𝑥) and covariance
𝐾 (𝑥,𝑥′). For 𝜂 = {1, 1, 1} with 𝑚(𝑥) = 0 the distribution for each 𝑥 is then N(0, 1) as
seen in fig 4.1.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
Input x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

O
ut

pu
t y

η=[1, 1, 0.1]

GP with =∅
E[y]
sin(x)
±2 ⋅ std

Figure 4.1: A Gaussian process in R with
no training data. For each value of 𝑥 the
GP output is a normal distribution N(0, 1)

Adding training data D to the GP,
the posterior distribution changes to ac-
commodate the new data. In fig. 4.2a
we see the posterior distribution of a GP
with 5 training samples. The GP con-
forms to the data, where available, but
it is plainly visible that the GP does not
generalize well outside the training data.

Adding more data, i.e. increasing the
size of D, the GP is able to fit the data
better. In fig. 4.2b we see the posterior
distribution of a GP with 50 training sam-
ples. The GP is able to fit the data well
where it is available, but does not do a

good job of generalizing the fit outside D.

29 CHAPTER 4. GAUSSIAN PROCESS REGRESSION

Data and Hybrid Models of Dynamical Systems

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
Input x

−2

−1

0

1

2
O

ut
pu

t y
η=[1, 1, 0.1]

GP with || = 5

E[y]
sin(x)
±2 ⋅ std


(a) GP with |D| = 5

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
Input x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

O
ut

pu
t y

η=[1, 1, 0.1]

GP with || = 50

E[y]
sin(x)
±2 ⋅ std


(b) GP with |D| = 50
.

Figure 4.2: The GP regressed to 𝑦 = sin(𝑥) with 5 and 50 training samples with no
MLE. The probability distribution conforms to the available data to according to its
hyperparameters 𝜂.

4.1.1 Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is a method of estimating the parameters of
a given probability distribution, given some observed data. This is done by maximizing
the likelihood function of the distribution. The likelihood function is the probability
of observing the data 𝜉 = {𝜉1, 𝜉2, . . . , 𝜉𝑛mle} given the parameters 𝜃 of the distribution
𝛾. The likelihood function for 𝛾 ∼ N(𝜇, 𝜎), i.e., a normal distribution is given by

Ω(𝜃; 𝜉) =
𝑛∏
𝑖=1

1
√

2𝜋𝜎2
exp

(
− (𝜉𝑖 − 𝜇)

2

2𝜎2

)
, (4.5)

where 𝜃 = {𝜇, 𝜎}. The goal of the MLE is to find the parameters 𝜃 that maximize the
likelihood function, i.e.,

𝜃∗ = arg max
𝜃

Ω(𝜃; 𝜉). (4.6)

For mathematical convenience, the log-likelihood function is often used instead of
the likelihood function. The log-likelihood function is given by

𝜔(𝜃; 𝜉) = logΩ(𝜃; 𝜉), (4.7)

whose maximum is the same as the maximum of the likelihood function, since the
natural logarithm is a monotonic.

MLE for GP hyperparameters To find the maximizing hyperparameters 𝜂∗ of
the GP, we need to find the maximum of its log-likelihood function. The log-likelihood
function of a GP with a dataset D given hyperparameters 𝜂 can be calculated [29]

CHAPTER 4. GAUSSIAN PROCESS REGRESSION 30

Data and Hybrid Models of Dynamical Systems

(Section 2.2, Algorithm 2.1) using the following algorithm:

Algorithm 3 Log-likelihood function of a GP
Input: 𝜂 =

(
𝑙, 𝜎 𝑓 , 𝜎𝑛

)
, D = {(𝑥•, 𝑦•)}

1: 𝐾 = 𝐾 (𝑥•,𝑥•)
2: 𝐿 = chol(𝐾)
3: 𝛼 := 𝐿𝑇 \ (𝐿 \ 𝑦•)
4: 𝜔(𝜂;D) := −1

2𝑦•𝑇𝛼 −∑𝑖 𝐿𝑖𝑖 − 𝑛
2 log(2𝜋)

Output: 𝜔(𝜂;D)

Using the algorithm 3, we can use a standard numerical optimization algorithm
to find the maximizing hyperparameters 𝜂∗. In this work we use the Python function
scipy.optimize.minimize to perform the optimization.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
Input x

−1.0

−0.5

0.0

0.5

1.0

O
ut

pu
t y

η=[1.63 0.82 0.01]

GP with || = 50

E[y]
sin(x)
±2 ⋅ std


Figure 4.3: A Gaussian process in R with
data after MLE. The data are identical to
those in Fig. 4.2b.

In Fig. 4.3 we see that the GP does a
much better job of fitting the data. The
mean function touches the samples and
all samples are within the ± standard de-
viation interval. The hyperparameter op-
timization procedure is called training the
GP.

Here it is important to note that even
though the data points are generated
from a sine function, the GP is not aware
of it. During training, MLE optimizes the
hyperparameters so that the GP fits the
data in a maximum likelihood sense. The
GP is not aware of the underlying func-
tion that generated the data. This is an example of the generalization problem of
machine learning, where the learned function has no means to generalize outside the
training data, unless guided to, for example, by adding a regularization term to the
MLE.

Since GP defines a distribution over function space, we can freely draw samples
from this distribution, ie. functions as seen in Fig. 4.4. These functions have to be
sampled over 𝑥 in order to display them.

31 CHAPTER 4. GAUSSIAN PROCESS REGRESSION

Data and Hybrid Models of Dynamical Systems

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
Input x

−2

−1

0

1

2
O

ut
pu

t y
Functions sampled from the GP prior distribution with =∅

E[y]
±2 ⋅ std

(a) Function sampled from the GP with no
training data.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
Input x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

O
ut

pu
t y

Functions sampled from the GP posterior distribution with || = 50

E[y]
±2 ⋅ std


(b) Function sampled from the GP with
training data and MLE.

Figure 4.4: The GP represents a probability distribution over function space. We can
therefore draw sample functions from this distribution to better understand the GP.

4.2 Recursive Gaussian Process

Recursive Gaussian process (RGP) regression [18] is a method for online learning
of Gaussian processes. Standard GP regression described in section 4.1 requires the
entire training dataset D to be available before the model can be learned using hyper-
parameter optimization. In contrast to this, RGP allows for updating the GP model
as new observations 𝑜𝑘 become available from the underlying process

𝑦•𝑘 = 𝑔(𝑥
•
𝑘) + 𝜖𝑘 , 𝜖𝑘 ∼ N(0, 𝜎2

𝑛). (4.8)

The RGP is initialized with a set of basis vectors X+ ≜ [𝑥+1 ,𝑥+2 , . . . ,𝑥+𝑚], which
hold the local estimates 𝑔+ ≜ 𝑔(X+) of the latent function 𝑔(·) and is chosen to be a
set of 𝑚 vectors that span the interval of interest of the input space 𝑥. For example,
one can choose to distribute X+ uniformly inside the interval of interest. The set
Y+ ≜

[
𝑦+1 , 𝑦

+
2 , . . . , 𝑦

+
𝑚

]
is the initial mean of the estimates 𝑔+, which can be for simplicity

initialized to zero. We refer to the set of basis vectors X+ and their estimates Y+ as
B ≜

{
X+,Y+

}
.

To run inference, we need only to evaluate on the basis vectors X+, which is a much
cheaper operation than evaluating on the entire dataset D. Thus, the basis vectors can
be thought of as an active set allowing a sparse GP representation. The datapoints in
D are not saved by the RGP, they only serve to update the estimates 𝑔+ of the latent
function, which alleviates the computational requirements, since 𝑚 ≪ 𝑛.

The initial distribution of the RGP is given by

𝑝0(𝑔+) = N(𝑔+; 𝜇+0 ,𝐶
+
0), (4.9)

Source code available at https://github.com/smidmatej/RGP

CHAPTER 4. GAUSSIAN PROCESS REGRESSION 32

https://github.com/smidmatej/RGP

Data and Hybrid Models of Dynamical Systems

where 𝜇+0 ≜ 0 is the mean at X+ and 𝐶+0 ≜ 𝐾 (X
+,X+)1 is the covariance at X+.

The goal of the RGP method is then to use the new observations 𝑜𝑘 as they become
available to calculate the posterior distribution 𝑝(𝑔+ |𝑜1:𝑘), where 𝑜1:𝑘 ≜ {𝑜1, 𝑜2, . . . , 𝑜𝑘 },
from the prior distribution

𝑝(𝑔+ |𝑜1:𝑘−1) ∼ N (𝜇+𝑘−1,𝐶
+
𝑘−1). (4.10)

The desired posterior distribution 𝑝(𝑔+ |𝑜1:𝑘) is expanded as

𝑝(𝑔+ |𝑜1:𝑘) =
∫

𝑐𝑘 · 𝑝(𝑜𝑘 |𝑔+, 𝑔•) ·

inference︷ ︸︸ ︷
𝑝(𝑔• |𝑔+) · 𝑝(𝑔+ |𝑜1:𝑘−1)︸ ︷︷ ︸
update

d𝑔+, (4.11)

in two steps inference and update. The inference step is the calculation of the joint prior
𝑝(𝑔+, 𝑔• |𝑜1:𝑘), which provides the required correlation between 𝑥•

𝑘
and X+. The update

step is the updating of the joint prior distribution with observations 𝑦•
𝑘

by applying
Bayes’ rule and integrating out 𝑔• = 𝑔(𝑥•

𝑘
) where 𝑐𝑘 is a normalization constant.

Inference

At any point in time, we can run inference to find the distribution of 𝑔• = 𝑔(𝑥◦),
i.e., of the latent function 𝑔(·) at an arbitrary point 𝑥◦, by evaluating the joint prior
𝑝(𝑔+, 𝑦◦ |𝑜1:𝑘) and marginalizing out the basis vectors 𝑔+ such as

𝑝(𝑔+, 𝑔• |𝑜1:𝑘) = 𝑝(𝑔• |𝑔+) · 𝑝(𝑔+ |𝑜1:𝑘)
= N(𝑔•; 𝜇◦𝑘 ,𝐶

◦
𝑘) · N (𝑔

+; 𝜇+𝑘 ,𝐶
+
𝑘),

(4.12)

where

Recursive Gaussian Process Inference

𝜇◦𝑘 ≜ 𝑚(𝑥
◦) +𝐻𝑘 · (𝜇+𝑘 − 𝑚(X

+)), (4.13)
𝐶◦𝑘 ≜ 𝐾 (𝑥

◦,𝑥◦) −𝐻𝑘 · 𝐾 (𝑥◦,X+), (4.14)
𝐻𝑘 ≜ 𝐾 (𝑥◦,X+) · 𝐾 (X+,X+)−1. (4.15)

An example of the initial distribution of the RGP is shown in Fig. 4.5a. The initial
distribution is a normal distribution with mean zero and covariance 𝐾 (X+,X+).

1When applied to vector arguments, the kernel 𝐾 is applied element-wise to each pair of elements
in the arguments, yielding a matrix.

33 CHAPTER 4. GAUSSIAN PROCESS REGRESSION

Data and Hybrid Models of Dynamical Systems

Updating the RGP

To update the RGP we make use of several properties. Firstly, since 𝑔+ is not
observed the conditional 𝑝(𝑜1:𝑘 |𝑔+, 𝑔•) = 𝑝(𝑜1:𝑘 |𝑔•) is independent of 𝑔+. Furthermore,
both 𝑝(𝑜1:𝑘 |𝑔•) according to 4.8 and 𝑝(𝑔• |𝑜1:𝑘) according to 4.12 are Gaussian and
therefore 𝑔+ can be easily updated via a Kalman filter update step [22].

The Kalman filter update step is yields 𝑝(𝑔• |𝑜1:𝑘) = N(𝑔•; 𝜇KF
𝑘
,𝐶KF

𝑘
), where

𝜇KF
𝑘 ≜ 𝜇•𝑘 +𝐺𝑘 · (𝑦•𝑘 − 𝜇•𝑘), (4.16)

𝐶KF
𝑘 ≜ 𝐶•𝑘 −𝐺𝑘𝐶

•
𝑘 , (4.17)

𝐺𝑘 ≜ 𝐶•𝑘 · (𝐶
•
𝑘 + 𝜎

2
𝑛𝐼)−1. (4.18)

However, we are not concerned with updating the distribution of 𝑔• but rather the
distribution of 𝑔+. The multiplication of the Gaussians 𝑝(𝑔• |𝑜1:𝑘) with 𝑝(𝑔+ |𝑔•, 𝑜1:𝑘)
yields a joint Gaussian distribution of 𝑔+ and 𝑔•.with mean and covariance given by

𝜇𝑘 =

[
𝜇+
𝑘

𝜇KF
𝑘

]
and 𝐶𝑘 =

[
𝐶+
𝑘

𝐿𝑘 ·𝐶KF
𝑘

𝐶KF
𝑘
· 𝐿𝑇

𝑘
𝐶KF
𝑘

]
, (4.19)

where

Recursive Gaussian Process Update

𝐿𝑘 ≜ 𝐶+𝑘−1𝐻𝑇
𝑘

(
𝐶•𝑘

)−1
, (4.20)

𝐺̃𝑘 ≜ 𝐿𝑘𝐺𝑘 = 𝐶+𝑘−1𝐻𝑇
𝑘 · (𝐶

•
𝑘 + 𝜎

2
𝑛𝐼)−1, (4.21)

𝜇+𝑘 = 𝜇+𝑘−1 + 𝐺̃𝑘 ·
(
𝑦•𝑘 − 𝜇•𝑘

)
, (4.22)

𝐶+𝑘 = 𝐶+𝑘−1 − 𝐺̃𝑘𝐻𝑘𝐶
+
𝑘−1. (4.23)

In order to keep memory usage and computational complexity low, we need only to
update the distribution of 𝑔+ at the basis vectors X+ while integrating 𝑔• out which,
in the case of a Gaussian distribution, is equivalent to neglecting 𝜇•

𝑘
,𝐶•

𝑘
and the cross-

covariances 𝐿𝑘 ·𝐶KF
𝑘

and 𝐶KF
𝑘
· 𝐿𝑇

𝑘
.

Combining together the inference and update parts at time steps 𝑘 = 1, 2, . . . gives
us the algorithm to recursively process observations 𝑦•

𝑘
at the inputs 𝑥•

𝑘
as described

in Algorithm 4.

CHAPTER 4. GAUSSIAN PROCESS REGRESSION 34

Data and Hybrid Models of Dynamical Systems

Algorithm 4 Recursive Gaussian Process
1: Inference step
2: Calculate 𝐻𝑘 using (4.15)
3: Calculate 𝜇•

𝑘
using (4.13) and 𝐶•

𝑘
using (4.14)

4: Update step
5: Calculate 𝐺̃𝑘 using (4.21)
6: Calculate 𝜇+

𝑘
using (4.22) and 𝐶+

𝑘
using (4.23)

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
Input x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

O
ut

pu
t y

η=[1.00 1.00 0.10]

RGP with =∅
E[x]
sin(x)
std
Basis vectors 

(a) Initial distribution of the RGP with no
observations

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
Input x

−1.0

−0.5

0.0

0.5

1.0

O
ut

pu
t y

η=[1.00 1.00 0.10]

RGP with || = 5

E[x]
sin(x)
std
Basis vectors 


(b) Posterior distribution with 5 observa-
tions

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
Input x

−1.0

−0.5

0.0

0.5

1.0

O
ut

pu
t y

η=[1.00 1.00 0.10]

RGP with || = 50

E[x]
sin(x)
std
Basis vectors 


(c) Posterior distribution with 50 observa-
tions

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
Input x

−1.0

−0.5

0.0

0.5

1.0

O
ut

pu
t y

η=[1.63 0.82 0.01]

RGP with || = 50

E[x]
sin(x)
std
Basis vectors 


(d) Posterior distribution with 50 observa-
tions and with hyperparameters chosen by
maximum likelihood estimation on the RGP

Figure 4.5: The RGP regressed to a 𝑦 = 𝑔(𝑥) = sin(𝑥) + 𝜖 function with 𝜖 ∼ N(0, 0.1)
noise. The RGP is initialized with 𝜂 = [1, 1, 0.1] and X+ = [−5,−3,−1, 1, 3, 5]. Figure
4.5d shows the posterior distribution of a RGP with the same D and B as in Fig. 4.5c,
but with the hyperparameters chosen by maximum likelihood estimation on the RGP

While allowing for the online regression of a function, the RGP is limited in that it
does not easily allow for the online hyperparameter estimation. Figure 4.5d shows the
posterior distribution of a RGP with the same D and B as in Fig. 4.5b, but with the
hyperparameters chosen by maximum likelihood estimation on the GP, as in 4.3. We
see that the posterior distribution in Fig. 4.5d fits the data better and is able to both
interpolate and extrapolate more accurately.

35 CHAPTER 4. GAUSSIAN PROCESS REGRESSION

Chapter 5

Simulation Environments

Simulation is an important part of the development of any robotic system. When
designing new hardware and software, it is conveneient to be able to test and

validate them before building prototypes in the real world. This is especially true for
aerial robots, where the cost of failure is high. Simulation environments allows for the
testing of new algorithms and software in a safe and controlled environment. There are
multiple considerations when choosing a simulation environment, such as the fidelity
of the simulation, the ease of use.

In the robotics comunnity, the most popular simulation environments are Gazebo,
Webots, and AirSim. However, simulation environments developed for use in machine
learning and artificial inteligence contexts, have been emerging, notably from Unity’s
robotics simulator1 and NVIDIA’s Isaac Sim2. Notably, these simulators are often
integrated with the Robot Operating System (ROS), which is the most popular mid-
dleware for robotics development, meaning experiments performed in simulation are
able to brought into the physical world relatively easily and also that the developments
are easily communicated within the robotics develompent community. In this thesis we
used Gazebo, as it is the most popular simulation environment in the ROS community,
and it is the most integrated with the Robotic Operating System.

1https://unity.com/solutions/automotive-transportation-manufacturing/robotics
2https://developer.nvidia.com/isaac-sim

36

https://unity.com/solutions/automotive-transportation-manufacturing/robotics
https://developer.nvidia.com/isaac-sim

Data and Hybrid Models of Dynamical Systems

5.1 Robot Operating System

Robot Operating System (ROS)3 is open-source middleware for robotics, main-
tained by Open Source Robotics Foundation, Inc., consisting of a set of tools and
libraries that help in the development of robot applications.

Node Node

Topic
Publication Subscription

Figure 5.1: Basic ROS communication model.

Usage of ROS has become
ubiquitous in both research and
industrial contexts, being used
by robotics manufacturers and
related applications such as
ABB, Bosch, BMW and Boeing.

The core of ROS is its mes-
sage passing system, which al-
lows for standardised communi-
cation between different parts of
a robot. ROS processes are rep-
resented as nodes in a graph

structure. These nodes post and receive messages to other nodes using a publish/-
subscribe model to a specific topics as shown in Figure 5.1.

Figure 5.2: Latest (Release date:
2020) distribution of ROS, Noetic
Ninjemys

ROS also offers a set of tools for developers, in-
cluding hardware abstraction, launch, debugging,
project management and visualisation. It also pro-
vides tools and libraries for obtaining, building,
writing, and running code across multiple com-
puters. ROS is not a real-time framework, though
it is possible to integrate ROS with realtime code.

ROS is primarily designed for Unix-based op-
erating systems, especially for Ubuntu and Debian
Linux distributions and macOS, with an experi-
mental Windows branch also being available.

The main draw of ROS is that it is designed to
support code reuse in robotics research and devel-
opment. Being a distributed framework of loosely
coupled nodes, it is possible to write a node that
performs a specific task, such as path planning, and then share it in multiple projects.

3https://www.ros.org/

37 CHAPTER 5. SIMULATION ENVIRONMENTS

https://www.ros.org/

Data and Hybrid Models of Dynamical Systems

5.2 Gazebo Simulator

Gazebo4 is a high-fidelity robot simulator, originaly developed by Dr. Andrew
Howard and his student Nate Koenig, now maintained by Open Source Robotics Foun-
dation.

Figure 5.3: Logo of the
Gazebo simulator, one of
the most popular in the
ROS community.

Because Gazebo was originally developed to simulate
robots in indoor environments, the name Gazebo was cho-
sen as the closest outdoor structure to an indoor stage.
Gazebo is a part of, and is seemlessly integrated in ROS.
Gazebo allows the user to create a virtual robot and a
virtual environment (world) with which the robot can in-
teract. Gazebo’s physics engine then allows for the sim-
ulation of physics phenomena, e.g., forces, friction, joint
interactions, colisions and others. The user can then add
functionality to the robot or the environment by adding
premade (or creating their own) plugins. The plugins allow
for changes in the behaviour of the world, model, sensors,
physics, visualisation, the GUI and more. Gazebo was not
made for aerial robots, hence it lacks some of the function-
ality of other simulators, such as PX4 SITL. The plugin
LiftDragPlugin allows for basic aerodynamic simulations
in Gazebo.

5.2.1 Physics Engine

At the core of Gazebo is its ability to simulate physical phenomena, the most
important of these are the rigid body dynamics and the collision detection. For this
purpuse Gazebo allows the user to choose between multiple physics engines. The
default physics engine is ODE (Open Dynamics Engine)5. Aside from the rigid body
dynamics, Gazebo also simulates the interaction of the robot with the environment,
such as contacts but also sensing using cameras, laser range finders, etc.

5.2.2 RotorS Simulator

RotorS6 is a Gazebo plugin that allows for the simulation of micro aerial vehicles
(MAVs). It provides multiple multirotor models such as the AscTec Hummingbird, the
AscTec Pelican, or the AscTec Firefly. We used the AscTec Hummingbird model to
perform all of our simulations in Gazebo.

4https://gazebosim.org/
5https://www.ode.org/
6https://github.com/ethz-asl/rotors_simulator

CHAPTER 5. SIMULATION ENVIRONMENTS 38

https://gazebosim.org/
https://www.ode.org/
https://github.com/ethz-asl/rotors_simulator

Chapter 6

Experiment

To present how hybrid discrepancy modeling as described in chapter 2 can improve
the performance of a control system, we use a quadrotor as a case study. We

model a quadrotor using a combination of first principles modeling and Recursive
Gaussian Process Regression, described in section 4.2. We use the model to control the
quadrotor using Model Predictive Control as described in subsection 3.2. We compare
the performance of the controller with and without the discrepancy model.

The usage of a discrepancy model is motivated by the fact that the quadrotor’s air
drag characteristics are not known a priori and can change over time. In particular, this
changing in time motivates us to use a recursive Gaussian Process Regression model
instead of a pretrained Gaussian Process Regression model. This means our model of
the quadrotor is a time-variant system.

The drag model parameters, such as the coefficients, fluid density, or the quadrotor-
related areas, and their spatial and time variability, are, unfortunately, known with a
very limited accuracy. To improve the accuracy, the model of the total drag acceler-
ation or its parameters should be identified from measured data, while the physical
model (6.3) is respected. This, recently developed concept, is referred to as the data-
augmented physics-based (DAPB) modeling [19].

Previous works have explored the case where the total acceleration error made
up by both drag forces1 (6.5), (6.6), was modeled using an offline trained Gaussian
process (GP) which was then used as an extension to the physical model for a trajectory
control [33, 26]. The approach leads to significant improvement of the resulting position
accuracy assuming no time or spatial variability of the drag-related acceleration, which
might not be always fulfilled.

The goal of this experiment is to further extend and simplify the applicability of
hybrid modeling approaches by online identification of the drag-related acceleration.

Source code: https://github.com/smidmatej/mpc_quad_ros
1Since the relationship between acceleration and force is given by Newton’s second law, it is not

possible to directly disentangle the effects of the body and rotor drag from each other.

39

https://github.com/smidmatej/mpc_quad_ros

Data and Hybrid Models of Dynamical Systems

In particular, we

• Use the RGP described in section 4.2 for online drag modeling,

• Design a MPC algorithm capable of working with inherently time-varying DAPB
models.

We illustrate the viability of the proposed method using a realistic scenarios generated
Gazebo simulator [1] and publicly available source code2.

The experiment chapter is organized as follows. Section 6.1 describes the first
principles quadrotor model and assumptions about its drag characteristics. Section 6.2
describes in detail the proposed method for observing the drag, using those observations
to train the RGP regression, augmenting the first principles model with the RGP, and
using this augmented model in the MPC framework and finally, section 6.4 describes
the simulation environment used for evaluation, the specificities of the conjunction of
the MPC with the RGP, and the results.

6.1 First Principles Quadrotor Modeling

In this section, we describe the first principles model of the quadrotor using un-
derstanding of Newton’s laws of linear and rotational motion. We also describe the
assumptions about the drag characteristics of the quadrotor.

Notation To describe the quadrotor, we need to consider 2 reference frames. The
world reference frame 𝑊 is defined by the orthonormal basis {𝑥𝐵, 𝑦𝐵, 𝑧𝐵} and the body
reference frame {𝐵} by the basis vectors {𝑥𝑊 , 𝑦𝑊 , 𝑧𝑊 }. The origin of {𝐵} is located
in the center of mass of the quadrotor. We denote the vector from coordinate system
{𝑊} to coordinate system {𝐵}, as seen from the perspective of reference frame {𝐶},
as 𝑣𝐶

𝑊𝐵
. In this paper, we only work with the world frame {𝑊} and the body frame

{𝐵}, so we omit the subscript "𝑊𝐵" and write 𝑣𝐵 as a shorthand for 𝑣𝐵
𝑊𝐵

and 𝑣𝑊 as a
shorthand for 𝑣𝑊

𝑊𝐵
. The quaternion–vector product is denoted by ⊙, representing the

rotation of 𝑣 by 𝑞 is defined as 𝑞 ⊙ 𝑣 = 𝑞𝑣𝑞∗, where 𝑞∗ is the quaternion conjugate of
𝑞. The cross–product of vectors a, b is denoted as a × b.

6.1.1 Quadrotor Model

We assume a quadrotor can be described as a rigid body with 6-DoF in free space.
The state of the quadrotor 𝑥 is chosen as the quadrotor current position 𝑝𝑊 = [𝑥, 𝑦, 𝑧],
rotation quaternion 𝑞𝑊 =

(
𝑞𝑤, 𝑞𝑥 , 𝑞𝑦, 𝑞𝑧

)
, velocity 𝑣𝑊 =

[
𝑣𝑥 , 𝑣𝑦, 𝑣𝑧

]
and angular rate

𝜔𝑊 =
[
¤𝜑, ¤𝜃, ¤𝜓

]
.

2Source code available at: https://github.com/smidmatej/mpc_quad_ros

CHAPTER 6. EXPERIMENT 40

https://github.com/smidmatej/mpc_quad_ros

Data and Hybrid Models of Dynamical Systems

To describe rotation we use a quaternion describing the rotation of frame {𝐵}
relative to frame {𝑊}. Rotation of a object in R3 is described fully by 3 angles (such
as using Euler angle representation), but the 4-dimensional quaternion with length 1
allows us to avoid the gimbal lock problem present in other representations.

u0

u3

u2

u1

T0

T1

T2

T3

xB

yB

zB

{B}

xW yW

zW

{W}

Figure 6.1: Quadrotor schematic. Thrust
𝑇𝑖 is generated by individual rotors given
inputs 𝑢𝑖 The body frame {𝑥𝐵, 𝑦𝐵, 𝑧𝐵} is at-
tached to the center of mass of the quadro-
tor. The world frame {𝑥𝑊 , 𝑦𝑊 , 𝑧𝑊 } is at-
tached to the inertial frame.

The quadrotor’s rotors are collocated
on the 𝑥𝑦-plane of the {𝐵} frame going
through the center of mass of the quadro-
tor. The rotors are numbered 0 to 3 in
a clockwise direction when seen from the
positive 𝑧𝐵 direction. Furthermore, the
𝑥𝐵 axis is pointing forward, in between
the zeroth and the third rotor as seen in
Fig. 6.1.

The model is controlled by an input
vector 𝑢 = [𝑢1, 𝑢2, 𝑢3, 𝑢4] where 𝑢𝑖 ∈
[0, 1] for 𝑖 = 0, 1, 2, 3. The input 𝑢 corre-
sponds to the activation of each individ-
ual rotor. Each rotor provides a thrust
𝑇𝑖 = 𝑇max · 𝑢𝑖. The collective thrust vector
𝑇 𝐵 and the torque vector 𝜏 𝐵, both ex-
pressed in the body frame {𝐵} and con-
stituted by the individual thrusts 𝑇𝑖, are
given by

𝑇 𝐵 =


0
0∑
𝑖 𝑇𝑖

 and 𝜏 𝐵 =


𝑑𝑦 (−𝑇0 − 𝑇1 + 𝑇2 + 𝑇3)
𝑑𝑥 (−𝑇0 + 𝑇1 + 𝑇2 − 𝑇3)
𝑐𝜏 (−𝑇0 + 𝑇1 − 𝑇2 + 𝑇3)

 . (6.1)

We model the nominal quadrotor dynamics using the following ordinary differential
equations (ODEs) [13]

¤𝑝𝑊 = 𝑣𝑊

¤𝑞𝑊 = 𝑞𝑊 ·
[

0
𝜔𝐵/2

]
¤𝑣𝑊 = 𝑞𝑊 ⊙

(
1
𝑚

𝑇𝐵

)
+ 𝑔𝑊

¤𝜔𝑊 = 𝐽−1(𝜏𝐵 − 𝜔𝐵 × 𝐽𝜔𝐵).

(6.2)

The parameters of the model are the mass 𝑚, moment of inertia 𝐽 ∈ R3×3, the rotor
displacements 𝑑𝑥 , 𝑑𝑦, the rotor drag constant 𝑐𝜏 and the gravitational acceleration

41 CHAPTER 6. EXPERIMENT

Data and Hybrid Models of Dynamical Systems

vector 𝑔𝑊 = [0, 0,−9.81]𝑇𝑚𝑠−2.
Together, these ODEs describe the physical model of the quadrotor dynamics using

a 13-dimensional state vector 𝑥 using the first principles model as

First Principles Quadrotor Model

¤𝑥 = 𝑓PHYS =



𝑣𝑊𝐵

𝑞𝑊𝐵 ·
[

0
𝜔𝐵/2

]
𝑞𝑊𝐵 ⊙

(
1
𝑚

𝑇𝐵

)
+ 𝑔𝑊

𝐽−1(𝜏𝐵 − 𝜔𝐵 × 𝐽𝜔𝐵)


. (6.3)

The ODE 𝑓PHYS describes the relationship between a quadcopter state 𝑥 and its
time derivative ¤𝑥. To solve the ODE numerically, we need to discretize the ODE
from continuous time 𝑡 into discrete timesteps 𝑡𝑘+1 = 𝑡𝑘 + Δ𝑡. To do this, we use the
Runge-Kutta 4th order method [28] given by

𝑘1 = 𝑓PHYS(𝑥𝑘 ,𝑢𝑘)

𝑘2 = 𝑓PHYS(𝑥𝑘 +
1
2Δ𝑡 · 𝑘1,𝑢𝑘)

𝑘3 = 𝑓PHYS(𝑥𝑘 +
1
2Δ𝑡 · 𝑘2,𝑢𝑘)

𝑘4 = 𝑓PHYS(𝑥𝑘 + Δ𝑡 · 𝑘3,𝑢𝑘)

𝑥𝑘+1 = 𝑥𝑘 +
1
6 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) .

(6.4)

6.2 Data-driven Drag Model

The first principles model in (6.3) is a good approximation of the quadrotor dynam-
ics. However, it does not capture the effect of aerodynamic drag. In this section, we
propose a data-driven model to model the effects of aerodynamic drag on the quadrotor
using RGP regression.

6.2.1 General Drag Model

Drag is a force acting on a body counter to its motion in a fluid. One source of
drag is solid’s body drag, which is proportional to the velocity of the body and the
fluid density. The body drag force acting on the quadrotor body is described as [8]

𝐹 𝐵
𝑏𝑑 = −

1
2𝜌 |𝑣

𝐵 |2𝐶𝐷𝐴 · 𝑣𝐵, (6.5)

CHAPTER 6. EXPERIMENT 42

Data and Hybrid Models of Dynamical Systems

where 𝜌 is the fluid density, 𝐶𝐷 is the drag coefficient and 𝐴 is the cross-sectional area
of the body. The drag force is applied to the body in the opposite direction of the
velocity vector 𝑣𝐵.

Another source of drag affecting the quadrotor is the rotor drag affecting each rotor
which can be modeled using

𝐹 𝐵
𝑟𝑑 = −𝜔𝐶𝑟𝐷 ·

(
𝑣𝐵

)⊥
, (6.6)

where 𝜔 is the angular velocity of the rotor, 𝐶𝑟𝐷 is the drag coefficient of the rotor and(
𝑣𝐵

)⊥ is the orthogonal projection of the quadrotor {𝐵} velocity onto the 𝑥𝑦-plane.
Since we do not have direct measurement of the drag force, we will use the measured

acceleration as a surrogate and work in the acceleration domain for the rest of the paper.

6.2.2 Drag Estimation

To model the total drag force given by (6.5), (6.6), we estimate the drag acceleration
𝑎̃𝐵 acting on the quadrotor in the body frame {𝐵} at time 𝑡𝑘 as

𝑎̃𝐵𝑘 =
𝑣𝐵
𝑘+1 − 𝑣̂𝐵

𝑘+1
Δ𝑡𝑘

, (6.7)

where 𝑣̂𝐵
𝑘+1 is the velocity predicted using the nominal model 𝑓PHYS, 𝑣𝐵

𝑘
is the measured

velocity, Δ𝑡𝑘 = 𝑡𝑘−𝑡𝑘−1, and using the notational shorthand 𝑣𝐵
𝑘
= 𝑣𝐵 (𝑡𝑘). The estimated

drag acceleration 𝑎̃𝐵
𝑘
, together with the current velocity 𝑣𝐵

𝑘
then form an observation

pair

𝑜𝑘 =
{
𝑣𝐵𝑘 , 𝑎̃

𝐵
𝑘

}
, (6.8)

that is used in the regression procedure described below. This procedure is in effect a
realization of the discrepancy modeling approach described in section 2.3.

6.2.3 Drag Modeling by Recursive Gaussian Process

The GP [29] is a non-parametric method that generalizes Gaussian probability
distributions. Instead of describing the probability over a scalar (or vector) space,
stochastic processes (of which GPs are a part of) describe probability over a function
space. GPs do not draw a function as-is, instead we can only evaluate the function at
a finite number of points. Every finite collection of these function values has a multi-
variate normal distribution. The GP is the joint distribution of all of those function
values, and is thus a distribution over functions with continuous domain.

The standard ”offline” GP require access to a training dataset of 𝑛obs observa-

43 CHAPTER 6. EXPERIMENT

Data and Hybrid Models of Dynamical Systems

tions 𝑜𝑘 =
{
𝑣𝐵
𝑘
, 𝑎̃𝐵

𝑘

}
forming the dataset D = {𝑜𝑘 | 𝑘 = 0, . . . , 𝑛obs} gathered from the

quadrotor during flight. To reduce the complexity of the GP we split the observations
into its 𝑑 ∈ {𝑥, 𝑦, 𝑧} components, use a separate GP for each component and then
aggregate their outputs into an ensemble. The observations 𝑜𝑘 forming the dataset D
is generated from the noisy process

𝑎𝐵𝑑,𝑘 = 𝑔𝑑 (𝑣
𝐵
𝑑,𝑘) + 𝜖𝑑,𝑘 , (6.9)

where 𝑔𝑑 is the true, unmodeled drag acceleration for dimension 𝑑 and 𝜖𝑑,𝑘 ∼ N(0, 𝜎2
𝑑
)

is the noise in the measurement. The GP is used to infer the latent function 𝑔𝑑 from
D.

The recursive Gaussian process regression [18] is a method for online learning of
Gaussian processes. Standard GP regression requires the entire training dataset D
to be available before the model can be learned using hyperparameter optimization.
In contrast to this, RGP allows for updating the GP model as new observations 𝑜𝑘

become available.

The RGP for each dimension 𝑑 ∈ {𝑥, 𝑦, 𝑧} is initialized with a set of basis vectors lo-
cated at V+𝑑 ≜ [𝑣+𝑑,1, 𝑣

+
𝑑,2, . . . , 𝑣

+
𝑑,𝑚
] with the random variable Ã+𝑑 ≜

[
𝑎+
𝑑,1, 𝑎

+
𝑑,2, . . . , 𝑎

+
𝑑,𝑚

]
,

corresponding to output of 𝑔𝑑 given a velocity 𝑣+
𝑑,𝑘

. These basis vectors can be thought
of as an active set allowing a sparse GP representation. This alleviates the computa-
tional requirements immensely, since 𝑚 ≪ 𝑛obs. The initial distribution of the RGP is
given by

𝑝0(Ã+𝑑) = N(Ã
+
𝑑; 𝜇+,0

𝑑
,𝐶+,0

𝑑
), (6.10)

where 𝜇+,0
𝑑
≜ 0 is the mean at V+𝑑 and 𝐶+,0

𝑑
≜ 𝐾 (V+𝑑 ,V

+
𝑑)3 is the covariance at V+𝑑.

The goal is then to use the new observations 𝑜𝑘 as they become available to calculate
the posterior distribution 𝑝(Ã+𝑑 |𝑜1:𝑘), where 𝑜1:𝑘 ≜ {𝑜1, 𝑜2, . . . , 𝑜𝑘 }, from the prior
distribution

𝑝(Ã+𝑑 |𝑜1:𝑘−1) ∼ N (𝜇+,𝑘−1
𝑑

,𝐶+,𝑘−1
𝑑
). (6.11)

At any point in time, we can run inference to find the distribution of 𝑎•
𝑑
= 𝑔𝑑 (𝑣•𝑑),

i.e., of the function 𝑔𝑑 at an arbitrary point 𝑣•
𝑑
, in our case corresponding to the drag

acceleration given an instantaneous velocity, by evaluating the joint prior 𝑝(Ã+𝑑 , 𝑎•𝑑 |𝑜1:𝑘)

3𝐾 (𝑥, 𝑥′) = 𝜎2
𝑓

exp
(
−1

2
(𝑥−𝑥′)2

𝑙

)
+ 𝜎2

𝑛 is the squared exponential kernel. When applied to vector
arguments, the kernel 𝐾 is applied element-wise to each pair of elements in the arguments, yielding a
matrix. The hyperparameters 𝜂 =

(
𝑙, 𝜎 𝑓 , 𝜎𝑛

)
are the only hyperparameters of the GP/RGP regression.

CHAPTER 6. EXPERIMENT 44

Data and Hybrid Models of Dynamical Systems

and marginalizing out the basis vectors Ã+𝑑 such as

𝑝(Ã+𝑑 , 𝑎
•
𝑑 |𝑜1:𝑘) = 𝑝(𝑎•𝑑 |Ã

+
𝑑) · 𝑝(Ã

+
𝑑 |𝑜1:𝑘)

= N(𝑎•𝑑; 𝜇
•,𝑘
𝑑
,𝐶•,𝑘

𝑑
) · N (Ã+𝑑; 𝜇

+,𝑘
𝑑
,𝐶+,𝑘

𝑑
),

(6.12)

where

𝜇
•,𝑘
𝑑
≜ 𝐻 · 𝜇+,𝑘

𝑑
, (6.13)

𝐶•,𝑘
𝑑
≜ 𝐾 (𝑣•𝑑 , 𝑣

•
𝑑) −𝐻 · 𝐾 (𝑣•𝑑 ,V

+
𝑑), (6.14)

𝐻 ≜ 𝐾 (𝑣•𝑑 ,V
+
𝑑) · 𝐾 (V

+
𝑑 ,V

+
𝑑)
−1. (6.15)

6.2.4 Model Learning, Utilization, and Properties

We use the RGP model to compensate the discrepancy between our nominal model
prediction and the measured state of the quadrotor characterized by the drag-related
acceleration (6.7).

For each RGP in the ensemble, the basis vectors V+𝑑 are initialized by equidistantly
sampling the velocity space on [−𝑣𝑚𝑎𝑥 , 𝑣𝑚𝑎𝑥] using 𝑚 points, setting their corresponding
estimates of 𝑔𝑑 to 0 and their covariance to 𝐶+,0

𝑑
= 𝐾 (V+𝑑 ,V

+
𝑑).

At each time step 𝑘, we use the current quadrotor state 𝑥𝑘 with the RGP model
𝑓DATA to infer the acceleration 𝑎̃ at the current velocity 𝑣𝑘 using the mean of the
marginalized joint distribution in (6.12) as described in (6.16).

Data-Driven Drag Model

𝑓DATA(𝑥𝑘 ; 𝜇•,𝑘) =



07×1

𝑎𝑥

𝑎𝑦

𝑎𝑧

03×1


=



07×1

𝜇
•,𝑘
𝑥

(
𝑣𝑥,𝑘 ; 𝜇+,𝑘

𝑑

)
𝜇
•,𝑘
𝑦

(
𝑣𝑦,𝑘 ; 𝜇+,𝑘𝑦

)
𝜇
•,𝑘
𝑧

(
𝑣𝑧,𝑘 ; 𝜇+,𝑘𝑧

)
03×1


, (6.16)

where 𝜇•,𝑘 ≜
(
𝜇
•,𝑘
𝑥 , 𝜇

•,𝑘
𝑦 , 𝜇

•,𝑘
𝑧

)
. To perform the online update of the RGP distribu-

tion 𝑝(Ã+𝑑 |𝑜1:𝑘) we keep the covariance matrices 𝐶+,𝑘−1
𝑑

and the mean 𝜇+,𝑘−1
𝑑

of the
prior distribution 𝑝(Ã+𝑑 |𝑜1:𝑘−1). However, to run inference using the RGP, only the
means 𝜇+,𝑘

𝑑
are needed, while 𝐶+,𝑘−1

𝑑
is kept in memory only to perform updates.

45 CHAPTER 6. EXPERIMENT

Data and Hybrid Models of Dynamical Systems

6.3 Hybridized Quadrotor Model

To complete the hybrid model of the quadrotor dynamics, the physics-based model
𝑓PHYS (6.3) and the online trained RGP model 𝑓DATA(6.16) are combined into the
single hybrid model in the form of

Hybrid Quadrotor Model

𝑓DAPB (𝑥𝑘 ,𝑢𝑘) = 𝑓PHYS (𝑥𝑘 ,𝑢𝑘) + 𝑓DATA
(
𝑥𝑘 ; 𝜇+,𝑘

)
. (6.17)

The hybrid model (6.17) provides more accurate description of the underlying sys-
tem, incorporating both the first principles understanding of motion and the data-
driven model of the drag. The hybrid model is used in the MPC controller to generate
the control inputs 𝑢𝑘 for the quadrotor.

6.3.1 Model Predictive Control for the Hybridized Model

The model predictive control discussed in section 3.2 is a control scheme used to
stabilize a system subject to dynamic equations ¤𝑥 = 𝑓DAPB(𝑥,𝑢) given a reference
trajectory 𝑥ref(𝑡),𝑢ref(𝑡) by minimizing a cost function L(𝑥,𝑥ref,𝑢,𝑢ref).

We use the MPC to control the movement of a quadrotor in the 3D space. We use
the hybrid model (6.17) as the internal MPC dynamics.

We define the OCP as

𝐽𝑁 (𝑥0) ≜ min
𝑢0:𝑁−1

𝑁−1∑︁
𝑘=0
L(𝑥,𝑥ref,𝑢,𝑢ref), (6.18)

with respect to ℎ𝑖 (𝑥) = 0 𝑖 = 1, . . . 𝑛ℎ (6.19)
and 𝑔 𝑗 (𝑥) ≤ 0 𝑗 = 1, . . . 𝑛𝑔 . (6.20)
subject to 𝑥𝑘+1 = 𝑓DAPB(𝑥𝑘 ,𝑢𝑘), (6.21)

where 𝑓DAPB denotes the hybrid model of the system, 𝑥ref is the tracked trajectory, 𝑥0

is the initial state, ℎ𝑖 describes the equality constraints and 𝑔 𝑗 describes the inequality
constraints. The inclusion of ℎ𝑖 and 𝑔 𝑗 is one of the main advantages of MPC, allowing
for solutions satisfying specific constraints. Importantly, we use the inequality con-
straints 𝑔 𝑗 to limit the input 𝑢 to the range < 0, 1 >, which represents the normalized
thrust of the quadrotor.

Because of the changing nature of the 𝑓DATA model due to online learning, it would
be computationally inefficient to reconstruct the OCP at each control time step. There-
fore, we use the following simplification [32]: we treat the vector 𝜇+,𝑘 as a parameter of
the 𝑓DATA model. In this way, we change the parameters of the nonlinear optimization

CHAPTER 6. EXPERIMENT 46

Data and Hybrid Models of Dynamical Systems

problem at each control time step 𝑘 as the RGP ensemble is updated.
The process of computing the control using MPC and updating its RGP model is

shown in Algorithm 5. We refer to this approach as RGP−MPC and as GP−MPC
when a pre-trained GP is used.

Algorithm 5 Recursive Learning and Control Algorithm Summary
1: initialize 𝑓DATA with V+𝑑 and Ã+𝑑
2: initialize MPC with 𝑓DAPB
3: 𝑥̂0 ← initial state
4: 𝑘 ← 0
5: while trajectory ready do
6: procedure RGP−MPC STEP
7: 𝑥𝑘 ← state measurement
8: 𝑢𝑘,0:0+𝑛ℎ ← MPC optimal control
9: send control command 𝑢𝑘,0

10: 𝑥̂𝑘+1 ← 𝑓PHYS
(
𝑥𝑘 ,𝑢𝑘,0

)
11: 𝑎̃𝐵

𝑘
← 𝑣𝐵

𝑘
−𝑣̂𝐵

𝑘

Δ𝑡𝑘

12: 𝑜𝑘 ←
{
𝑣𝐵
𝑘
, 𝑎̃𝐵

𝑘

}
13: 𝑝(Ã+𝑑 |𝑜1:𝑘) ← update with 𝑜𝑘 from prior
14: 𝜇+,𝑘 ← marginalize 𝑝(Ã+𝑑 , 𝑎̃𝐵𝑘 |𝑜1:𝑘)
15: update 𝑓DAPB with 𝜇+,𝑘 inside MPC
16: 𝑘 ← 𝑘 + 1
17: end procedure
18: end while

u
′
k

fPHYS

fDATA

+

x̂
′
k+1

fDAPB

min
u

∫
L(x,xref,u,uref)

r(x,u) = 0,

h(x,u) ≤ 0

MPC

xref

uref

xk

uk

Plant

fPHYS

xk

x̂k

ok

{vB
k , ãB

k }
RGP update

µ+,k

ok

Figure 6.2: Schematic of the RGP−MPC
algorithm.

The RGP−MPC approach is summa-
rized in the schematic in fig. 6.2. There,
the MPC controller is initialized with the
hybrid model 𝑓DAPB, which is used to
compute the optimal control 𝑢𝑘,0:0+𝑛ℎ at
each control time step 𝑘. The control is
then applied to the system, and the state
is measured. The measured state is used
to update the RGP model, which is then
used to update the hybrid model 𝑓DAPB

inside the MPC controller. The process
is repeated at each control time step.

6.4 Simulation

The proposed data-augmented mod-
elling and and predictive control of quadrotor is numerically evaluated on two trajec-

47 CHAPTER 6. EXPERIMENT

Data and Hybrid Models of Dynamical Systems

tories using a realistic quadrotor model provided by the Gazebo simulator explained
in section 5.2. Details on trajectory generation, MPC implementation, and the results
follows. A simplified simulation environment is also provided as described in 6.4.3.

6.4.1 Trajectory Generation

As a tracking reference we generate trajectories illustrated in Fig. 6.3 in {𝑊} frame
using a trajectory generator4 [30]. We start by randomly generating waypoints in a
3-dimensional cube of size hsize = 10m raised above the 𝑥𝑦 ground plane by hsize.
Then we provide these waypoints to the genTrajectory bash script together with
the maximum allowed velocity 𝑣𝑚𝑎𝑥 and acceleration 𝑎𝑚𝑎𝑥. The script then generates a
trajectory that satisfies the velocity and acceleration constraints as a polynomial which
we then sample with the desired control frequency 𝑓𝑠 =

1
Δ𝑡

.

Position x [m]
−6

−4
−2

0
246

Positi
on y [

m]

−8
−6

−4
−2

0
2

4
6

Po
sit

io
n
z [

m
]

0

5

10

15

20

(a) Trajectory created by interpolating be-
tween randomly generated waypoints with a
polynomial

Position x [m]
−20.0−17.5−15.0−12.5−10.0−7.5−5.0−2.50.0

Positi
on y [

m]

−10.0
−7.5

−5.0
−2.5

0.0
2.5

5.0
7.5

10.0

Po
sit

io
n
z [

m
]

0

1

2

3

4

5

6

(b) Circular trajectory with radius 𝑟 = 10𝑚
with velocity increasing linearly from 0 to 𝑣max

Figure 6.3: Reference trajectories used for the experiments.

6.4.2 Nonlinear Model Predictive Control Implementation

The RGP−MPC algorithm is implemented using the Python interface to acados
[35], a solver for nonlinear optimal control problems for embedded applications. The
system model 𝑓DAPB is implemented as a symbolic CasADi [3] function which is used
to construct the OCP for the MPC, for which acados generates a solver.

4https://github.com/whoenig/uav_trajectories

CHAPTER 6. EXPERIMENT 48

https://github.com/whoenig/uav_trajectories

Data and Hybrid Models of Dynamical Systems

The MPC is parametrized with a desired horizon look–forward time 𝑡ℎ and the
number of prediction steps 𝑛ℎ. The length of one prediction step is thus given by
𝑇ℎ =

𝑡ℎ
𝑛ℎ

.
To solve the MPC problem at each time step, we use the Sequential quadratic

programming real-time iteration (SQP−RTI) solver type described in section 3.3.2. This
solver attempts to solve the optimization problem iteratively, but instead of iterating
until a desired optimality condition is satisfied, it performs only a single iteration and
then returns the current solution. This non-optimal solution is then used instead of
the optimal quadrotor control. At the next time step, the system state is updated
and the solver begins to solve the optimization problem again, but this time using the
previous solution as an initial guess. The SQP−RTI solver scheme allows us to control the
quadrotor in real time, but it is not guaranteed to find the optimal solution, especially
during the first few control loops.

6.4.3 Simplified Python Simulation

In order to evaluate the performance of the RGP−MPC method, we first perform
a series of experiments in a simplified simulation, where all the underlying models are
perfectly known and the physics-based part coincides with the model used by the MPC.
We created a simple simulation environment where we simulate the dynamics of the
quadrotor under the influence of a drag force. The quadrotor is simulated using the
nominal model (6.3) with the addition of a drag force

¤𝑥 = 𝑓PHYS + 𝑓drag (𝑥) , (6.22)

where the drag force model (6.23) reads

𝑓drag (𝑥) = 𝐶𝐷 ·



07𝑥1

𝑣𝐵𝑥
2 · sgn

(
𝑣𝐵𝑥

)
𝑣𝐵𝑦

2 · sgn
(
𝑣𝐵𝑦

)
5 · 𝑣𝐵𝑧

2 · sgn
(
𝑣𝐵𝑧

)
03𝑥1


. (6.23)

The drag force is applied in the body frame, and the drag coefficient 𝐶𝐷 = 0.01kg ·
m−1 is assumed to be constant. We assume the drag in the 𝑧 body axis more significant
as the quadrotor body surface is larger in the 𝑥𝑦-plane projection than the side views.

The simulation environment is implemented in Python5 using the fourth-order
Runge-Kutta (RK4) integration scheme with the simulation (integration) step 𝛿𝑡 =

0.001𝑠. The quadrotor is controlled using the Alg. 5 along a trajectory Fig. 6.3.
5Source code: https://github.com/smidmatej/mpc_quad_ros

49 CHAPTER 6. EXPERIMENT

https://github.com/smidmatej/mpc_quad_ros

Data and Hybrid Models of Dynamical Systems

6.4.4 Gazebo Simulation

Using the RotorS [13] package for the Gazebo simulator [1] we simulate the quadro-
tor in a high fidelity environment. RotorS provides a AscTec Hummingbird quadrotor
model together with an interface using which we supply the control inputs 𝑢𝑘 .

Figure 6.4: Screenshot of the Gazebo sim-
ulator showing the AscTech Hummingbird
quadrotor model at stand-still.

Gazebo provides the quadrotor odom-
etry to our MPC controller node with a
frequency of 100Hz. The controller node
then extracts the state 𝑥𝑘 from the odom-
etry and runs the procedure RGP−MPC
STEP in algorithm 5 to obtain the control
action 𝑢𝑘 . The control action is then sent
to the quadrotor model in Gazebo, which
then updates the quadrotor state. The
procedure is repeated until the trajectory
is completed.

The Gazebo simulation environment
is shown in Fig. 6.4 and the rviz visualization tool together with a reference trajectory
is shown in Fig. 6.5.

6.4.5 Experimental Setup

The experiments were performed on the circle trajectory shown in Fig. 6.3b and
on a randomly pre-generated trajectories shown in Fig. 6.3a. We set the parameters
of the MPC control algorithm as follows, horizon length 𝑡ℎ = 1s, 𝑛ℎ = 5 and control
interval of Δ𝑡 = 0.01s. Both the GP and the RGP models used 𝑚 = 20 inducing points.

Figure 6.5: Screnshot of the rviz visualiza-
tion tool showing the quadrotor model and
the reference trajectory during flight.

The GP in the GP−MPC approach
was pre-trained by selecting the 𝑚

most informative inducing points from a
dataset generated in a training run on the
random trajectory using Gaussian mix-
ture modeling (GMM). The hyperparam-
eters of the GP 𝜂 were then optimized
using the maximum likelihood estimation
method [23]. Since the GP−MPC ap-
proach is trained on the random trajec-
tory it is expected that it will achieve
greater reduction of the error for the ran-

dom trajectory than RGP−MPC.
The RGP in the RGP−MPC approach was not pre-trained before performing the

CHAPTER 6. EXPERIMENT 50

Data and Hybrid Models of Dynamical Systems

trajectory, and was trained online only. Its 𝑚 basis vectors were uniformly chosen on
[−𝑣max, 𝑣max] with corresponding initial drag acceleration estimates being 0 as shown in
Fig. 6.7. Since the RGP does not perform hyperparameter estimation during learning,
its hyperparameters were set at the start of the trajectory as 𝜂 = (1.0, 0.1, 0.1). The
need to set hyperparameters beforehand limits the RGP−MPC approach, as discussed
further.

6.4.6 Results

Having description of the simulation environment, the simulation results of the
experiments performed in Gazebo are discussed further.

RMSE pos [mm]
Trajectory 𝑣max [ms−1] Nominal GP−MPC RGP−MPC

Random

3 75.9 30.9 (41%) 40.6 (53%)
6 110.1 52.9 (48%) 65.1 (59%)
9 128.5 70.3 (55%) 88.2 (69%)
12 142.9 81.9 (57%) 99.6 (69%)

Circle

3 57.5 22.5 (39%) 23.6 (41%)
6 102.7 50.5 (49%) 43.5 (42%)
9 145.1 88.1 (61%) 69.7 (47%)
12 183.9 128.4 (70%) 98.2 (53%)

avg. opt. dt [ms] 0.60 0.66 1.21

Table 6.1: RMSE position error for the circle trajectory generated using Gazebo with
both 𝑓PHYS and 𝑓DAPB. Both the pretrained GP and the RGP augmented controllers
have consistently lower RMSE position error at the cost of increased optimization time.

5.0 7.5 10.0
Peak velocity vpeak [ms−1]

0.0

0.2

0.4

0.6

0.8

|c
ov

(v
x,
e x

)|
 [
m

2 s
−1

]

xB

5.0 7.5 10.0
Peak velocity vpeak [ms−1]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

|c
ov

(v
y,
e y

)|
 [
m

2 s
−1

]

yB

5.0 7.5 10.0
Peak velocity vpeak [ms−1]

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

|c
ov

(v
z,
e z

)|
 [
m

2 s
−1

]

zB
Nominal RGP augmented

Figure 6.6: Absolute values of covariance
between the peak tracking velocity 𝑣peak
and position tracking error 𝑒𝑥,𝑦,𝑧 for the cir-
cle trajectory captured using the Gazebo
simulation.

The results shown in Table 6.1 in-
dicate that both the GP−MPC and
RGP−MPC approaches significantly re-
duce the RMSE position tracking error
in comparison to the nominal, unaug-
mented physics-based 𝑓PHYS MPC. Per-
formance of MPCs with the augmented
models is rather comparable, but the pro-
posed RGP−MPC do not rely on any
pre-training. On the other hand, both
GP−MPC and RGP−MPC increase the
optimization time needed to calculate the
next MPC output6. However, this in-

6Simulations performed on Ubuntu 20.04 with an Intel Core i5-8300H CPU and 8GB of RAM.

51 CHAPTER 6. EXPERIMENT

Data and Hybrid Models of Dynamical Systems

crease is more significant for RGP−MPC, since it performs additional computations to
update the RGP and then to re-parameterize the OCP.

−10 0 10
vx[ms−1]

−2

−1

0

1

2

̂ a x
[m

s−
2]

−10 0 10
vy[ms−1]

−2

−1

0

1

2
̂ a y
[m

s−
2]

−10 0 10
vz[ms−1]

−2

−1

0

1

2

̂ a z
[m

s−
2]

Samples Basis Vectors E[g(x)] 2 ⋅ std

−10 0 10
vx[ms−1]

−2

−1

0

1

2

̂ a x
[m

s−
2]

−10 0 10
vy[ms−1]

−2

−1

0

1

2

̂ a y
[m

s−
2]

−10 0 10
vz[ms−1]

−2

−1

0

1

2

̂ a z
[m

s−
2]

Samples Basis Vectors E[g(x)] 2 ⋅ std

Figure 6.7: RGP inference space at the
start (top) and at the end (bottom) of
the trajectory using the Gazebo simulator.
Since the Gazebo simulator only models
rotor drag (6.6), the RGP predicts much
lower drag in the 𝑧𝐵 direction.

Fig. 6.6 shows the absolute value of
covariance between the velocity 𝑣𝑑 and
the position tracking error 𝑒𝑑 for each
𝑑 ∈ {𝑥, 𝑦, 𝑧} based on the peak veloc-
ity during the simulated trajectory 𝑣peak.
It can be seen, that the RGP−MPC ap-
proach reduces this value w.r.t the nom-
inal approach due to the fact that using
both 𝑓PHYS and 𝑓DATA leads to improved
forecasting than using 𝑓PHYS only.

Fig. 6.7 visualises the RGP inference
distribution at the start (upper plot) and
the end (bottom plot) of a simulation.
The training of the RGP is done in real
time is able to fit a distribution to the ob-
servations 𝑜𝑘 online at the same time as
being used to make real-time predictions.

6.4.7 Observations, Notes,
and Future Work

Since we are using estimated distur-
bance acceleration 𝑎̃𝐵

𝑘
calculated in the

{𝐵} frame of the quadrotor to fit 𝑓DATA,
we only have a limited ability to distin-

guish disturbances that are not time-invariant with respect to {𝐵}. For example,
even for a constant wind in {𝑊}, the disturbance acceleration 𝑎̃𝐵

𝑘
will be time-varying

with respect to {𝐵} due to the rotation of the quadrotor. The presence of such seem-
ingly time-varying disturbances can induce adaptation that causes increasing 𝑎̃𝐵

𝑘
, which

might potentially lead to control loop instability.
In the current implementation, we do not perform any hyperparameter optimization

in the RGP−MPC approach. We found the hyperparameter estimation method [18]
augmenting the RGP state by the hyperparameters 𝜂 and estimating them using the
Kalman filter to be too unstable to be used safely. Thus, the suitable hyperparameters
was selected a priori. On-line adaptation can further increase the ability of the proposed
RGP−MPC method.

We use the estimated disturbance acceleration (6.7) caused by the drag to fit the

CHAPTER 6. EXPERIMENT 52

Data and Hybrid Models of Dynamical Systems

RGP model without any pre-processing. This can lead to unstable control behaviour
when the real quadrotor state differs from the predicted state due to faulty or rare-
normal behaviour. A possible solution can be based on gathering data in a training
run and then selects the data points valid for “nominal” conditions to fit the GP model
GP−MPC [33].

53 CHAPTER 6. EXPERIMENT

Chapter 7

Conclusion

This thesis dealt with the problem of combining the two modeling approaches,
first principle and data-driven, to create a hybrid model that balances the properties
of both approaches. We have shown that combining the two approaches can lead to
better performance than using either of the approaches alone, without significantly
increasing the compute required for optimal control using MPC.

We first discussed the theoretical background behind the two modeling approaches,
first principles and data-driven. Then we introduced the theory behind mathematical
optimization and MPC. The only data-driven models we considered were (recursive)
Gaussian Process regression models, which were then used in the Experiment chapter.
We also provide some background on the different simulation environments used in the
field of robotics, focusing on Gazebo+ROS.

In chapter 6 we develop a method RGP−MPC, which we tested on a quadrotor
model described by the data-augmented first principles model. The first principles
model is a standard model for quadrotor rigid body dynamics. The data-driven part
of the model is realized by a Recursive Gaussian Process regression model that gives
an estimate of the air drag force learned online without the need to gather data in
a training run. These two models are combined by augmenting the first principles
model with the drag force estimate from the RGP model, creating a hybrid model that
balances the strengths of each. The hybrid model is used by MPC to predict the future
position of the quadrotor, while taking into account the drag forces present.

To be able to use the RGP model inside the MPC framework, RGP−MPC includes
a parametrization of the MPC plant model, whose parameters are updated online
using the RGP model without having to reinitialize the OCP, which is one of the main
contributions of the RGP−MPC method.

We show that the data-driven RGP model is able to learn the drag force online,
without the need for a training run or any a priori information about the observed
dynamics, allowing for predicting the future state of the drag forces present.

Our proposed method, RGP−MPC, is able to quickly adapt to never-before-seen

54

Data and Hybrid Models of Dynamical Systems

velocities and achieves better position tracking performance than the MPC with the
non-augmented (purely physics-based) model.

We test our method in simulation, using the Gazebo simulator, where we show
that the RGP−MPC method is able to track the desired trajectory and adapt to the
changing drag forces present. This simulation experiment is a proof of concept that the
RGP−MPC method is able to improve the performance of the MPC controller in the
presence of unknown discrepancies in the model. The source code for the simulation
experiment is available at https://github.com/smidmatej/mpc_quad_ros.

Progress in the field of adaptive model approximation allows designing robotic
platforms that are able to adapt to changing conditions. This is a significant step
towards the transition from the current state of robotics, where robots are designed
for a specific task and constrained within a safe and predictable environment, to a
future where robots are able move in unstructured environments and use their adaptive
capabilities to influence it in intelligent ways.

55 CHAPTER 7. CONCLUSION

https://github.com/smidmatej/mpc_quad_ros

Bibliography

[1] Design and Use Paradigms for Gazebo, an Open-source Multi-robot Simulator.
In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)(IEEE Cat. No. 04CH37566), volume 3, pages 2149–2154. IEEE.

[2] Dawn An, Nam H. Kim, and Joo-Ho Choi. Practical Options for Selecting Data-
driven or Physics-based Prognostics Algorithms with Reviews. 133:223–236, 2015.

[3] Joel AE Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl.
CasADi: a Software Framework for Nonlinear Optimization and Optimal Control.
Mathematical Programming Computation, 11:1–36, 2019.

[4] Guangxing Bai, Yunsheng Su, Maliha Maisha Rahman, and Zequn Wang. Prog-
nostics of Lithium-Ion batteries using Knowledge-constrained Machine Learning
and Kalman Filtering. 231:108944, 2023.

[5] Alberto Bemporad, Daniele Bernardini, Ruixing Long, and Julian Verdejo. Model
Predictive Control of Turbocharged Gasoline Engines for Mass Production. In
WCX World Congress Experience. SAE International, apr 2018.

[6] George E. P. Box. Science and Statistics. Journal of the American Statistical
Association, 71(356):791–799, 1976.

[7] Andrea Carron, Elena Arcari, Martin Wermelinger, Lukas Hewing, Marco Hutter,
and Melanie N Zeilinger. Data-driven Model Predictive Control for Trajectory
Tracking with a Robotic Arm. IEEE Robotics and Automation Letters, 4(4):3758–
3765, 2019.

[8] Glenn Research Center. Drag Equation, 2022.

[9] Malin Christersson. Heliocentrism and Geocentrism, 2019.

[10] Brian M. de Silva, David M. Higdon, Steven L. Brunton, and J. Nathan Kutz.
Discovery of Physics From Data: Universal Laws and Discrepancies. Frontiers in
Artificial Intelligence, 3, 2020.

56

Data and Hybrid Models of Dynamical Systems

[11] Pedro Domingos. The Role of Occam’s Razor in Knowledge Discovery. Data
mining and knowledge discovery, 3:409–425, 1999.

[12] Gianluca Frison and Moritz Diehl. HPIPM: a High-performance Quadratic Pro-
gramming Framework for Model Predictive Control, 2020.

[13] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart. Robot Op-
erating System (ROS): The Complete Reference (Volume 1), chapter RotorS—A
Modular Gazebo MAV Simulator Framework, pages 595–625. Springer Interna-
tional Publishing, Cham, 2016.

[14] Ben Goodman. Sequential Quadratic Programming, 2016.

[15] Sébastien Gros, Mario Zanon, Rien Quirynen, Alberto Bemporad, and Moritz
Diehl. From Linear to Nonlinear MPC: Bridging the Gap via the Real-time Iter-
ation. International Journal of Control, 93(1):62–80, 2020.

[16] Lars Grüne and Jürgen Pannek. Nonlinear Model Predictive Control. Springer-
Verlag, 2017.

[17] Lukas Hewing, Juraj Kabzan, and Melanie N Zeilinger. Cautious Model Predic-
tive Control using Gaussian Process Regression. IEEE Transactions on Control
Systems Technology, 28(6):2736–2743, 2019.

[18] Marco F Huber. Recursive Gaussian process: On-line Regression and learning.
Pattern Recognition Letters, 45:85–91, 2014.

[19] Tales Imbiriba, Ahmet Demirkaya, Jindřich Duník, Ondřej Straka, Deniz Erdoğ-
muş, and Pau Closas. Hybrid Neural Network Augmented Physics-based Models
for Nonlinear Filtering. In 2022 25th International Conference on Information
Fusion (FUSION), pages 1–6, 2022.

[20] S.J. Julier and J.K. Uhlmann. Unscented Filtering and Nonlinear Estimation.
Proceedings of the IEEE, 92(3):401–422, 2004.

[21] Juraj Kabzan, Lukas Hewing, Alexander Liniger, and Melanie N Zeilinger.
Learning-based Model Predictive Control for autonomous racing. IEEE Robotics
and Automation Letters, 4(4):3363–3370, 2019.

[22] R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems.
Journal of Basic Engineering, 82(1):35–45, 03 1960.

[23] L. Ljung. System Identification: Theory for the User. Pearson Education, 1998.

57 BIBLIOGRAPHY

Data and Hybrid Models of Dynamical Systems

[24] Octavio Loyola-Gonzalez. Black-box vs. White-box: Understanding their Advan-
tages and Weaknesses from a Practical Point of View. IEEE access, 7:154096–
154113, 2019.

[25] Lalo Magni, Davide Martino Raimondo, and Frank Allgöwer. Nonlinear Model
Predictive Control. Lecture Notes in Control and Information Sciences, 384, 2009.

[26] Mohit Mehndiratta and Erdal Kayacan. Gaussian Process-based Learning Con-
trol of Aerial Robots for Precise Visualization of Geological Outcrops. In 2020
European Control Conference (ECC), pages 10–16, 2020.

[27] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. 1999.

[28] William Press. Numerical Recipes in Fortran 77: the Art of Scientific Csomputing.
(No Title), 1992.

[29] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning.
Adaptive Computation and Machine Learning series. MIT Press, 2005.

[30] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial Trajectory Planning for
Aggressive Quadrotor Flight in Dense Indoor Environments. In Robotics Research,
pages 649–666. Springer, 2016.

[31] Frank Rosenblatt. The Perceptron: a Probabilistic Model for Information Storage
and Organization in the Brain. Psychological review, 65 6:386–408, 1958.

[32] Matej Smid and Jindrich Dunik. Online Learning and Control for Data-Augmented
Quadrotor Model, 2023. Available at: https://arxiv.org/abs/2304.00503.

[33] Guillem Torrente, Elia Kaufmann, Philipp Foehn, and Davide Scaramuzza. Data-
Driven MPC for Quadrotors. IEEE Robotics and Automation Letters, 2021.

[34] Aditya Tulsyan, R. Bhushan Gopaluni, and Swanand R. Khare. Particle Filter-
ing without Tears: A Primer for Beginners. 95:130–145, 2016. Computers and
Chemical Engineering.

[35] Robin Verschueren, Gianluca Frison, Dimitris Kouzoupis, Jonathan Frey,
Niels van Duijkeren, Andrea Zanelli, Branimir Novoselnik, Thivaharan Albin,
Rien Quirynen, and Moritz Diehl. acados—a Modular Open-source Framework
for Fast Embedded Optimal Control. Mathematical Programming Computation,
14(1):147–183, 2022.

[36] Andreas Wächter and Lorenz T. Biegler. On the Implementation of an Interior-
Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming.
Math. Program., 106(1):25–57, mar 2006.

BIBLIOGRAPHY 58

https://arxiv.org/abs/2304.00503

Data and Hybrid Models of Dynamical Systems

[37] Niklas Wahlström and Emre Özkan. Extended target tracking using Gaussian
Processes. IEEE Transactions on Signal Processing, 63(16):4165–4178, 2015.

[38] Yu Zhang, Peter Tiňo, Aleš Leonardis, and Ke Tang. A Survey on Neural Net-
work Interpretability. IEEE Transactions on Emerging Topics in Computational
Intelligence, 5(5):726–742, 2021.

59 BIBLIOGRAPHY

Symbols

𝑓DATA Data-driven dynamics model using RGP
𝑓PHYS First principles dynamics model of the quadrotor
𝑓DAPB Hybrid model of 𝑓PHYS and 𝑓DATA

𝑓drag Drag equation dynamics
𝑓HYB Generic hybrid model
𝑓C Generic continuous time model
𝑓D Generic discrete time model
𝜙 Function to be optimized using Newton’s method
𝑡 Newton step
𝑔 Function generating data for GP
𝑔 Function regressed using GP
𝐾 Kernel function
X+ RGP basis vectors
Y+ Initial estimates at X+

𝑔+ RGP distribution evaluated at X+

𝜇+
𝑖

Mean of the RGP at X+

𝐶+
𝑖

Covariance of the RGP at X+

𝑥◦ Arbitrary RGP input
𝑦◦ RGP output at 𝑥◦

𝜇◦
𝑖

Mean of the RGP at 𝑥◦

𝐶◦
𝑖

Covariance of the RGP at 𝑥◦

𝑥• Observation input for the RGP
𝑦• Observation output for the RGP
𝑜𝑖 Observation vector [𝑥•

𝑖
, 𝑦•

𝑖
]

𝑜1:𝑖 Observations 𝑜1, 𝑜2, . . . 𝑜𝑖

𝑔• RGP distribution evaluated at 𝑥•

𝐻𝑖 Inference gain of the RGP
𝜇KF
𝑖

Mean of the RGP using the Kalman Filter step
𝐶KF
𝑖

Covariance of the RGP using the Kalman Filter step
𝐺𝑖 Kalman gain of the RGP

60

Data and Hybrid Models of Dynamical Systems

𝜂 RGP hyperparameters
D RGP dataset
B RGP basis vector-pairs
ℎ Equality constraints of a optimization problem
𝑔 Equality constraints of a optimization problem
𝜆 Lagrange multiplier for ℎ

𝜇 Lagrange multiplier for 𝜇

𝐿 Lagrangian of a optimization problem
{𝐵} Quadrotor body referential frame
{𝑊} Quadrotor world referential frame
𝑝 Quadrotor 𝑥𝑦𝑧 position [𝑚]
𝑣 Quadrotor 𝑥𝑦𝑧 velocity [𝑚 · 𝑠−1]
𝑞 Quadrotor rotational unit quaternion
𝑟 Quadrotor rotational rate [rad · 𝑠−1]

61 Symbols

	1 Introduction
	2 Modeling Approaches
	2.1 White Box, Black Box
	2.2 First Principles Modeling
	2.3 Data-driven Modeling
	2.4 Hybrid Models
	2.5 A Short History of the Two Approaches
	2.5.1 Kepler v. Ptolemy
	2.5.2 Galileo v. Aristotle

	2.6 All Models Are Wrong

	3 Mathematical Optimization
	3.1 Quadratic Programming
	3.1.1 Nonlinear Programming

	3.2 Model Predictive Control
	3.3 Programming Methods
	3.3.1 Newton's Method
	3.3.2 Sequential Quadratic Programming
	3.3.3 CasADi and acados

	4 Gaussian Process Regression
	4.1 Gaussian Process Regression
	4.1.1 Maximum Likelihood Estimation

	4.2 Recursive Gaussian Process

	5 Simulation Environments
	5.1 Robot Operating System
	5.2 Gazebo Simulator
	5.2.1 Physics Engine
	5.2.2 RotorS Simulator

	6 Experiment
	6.1 First Principles Quadrotor Modeling
	6.1.1 Quadrotor Model

	6.2 Data-driven Drag Model
	6.2.1 General Drag Model
	6.2.2 Drag Estimation
	6.2.3 Drag Modeling by Recursive Gaussian Process
	6.2.4 Model Learning, Utilization, and Properties

	6.3 Hybridized Quadrotor Model
	6.3.1 Model Predictive Control for the Hybridized Model

	6.4 Simulation
	6.4.1 Trajectory Generation
	6.4.2 Nonlinear Model Predictive Control Implementation
	6.4.3 Simplified Python Simulation
	6.4.4 Gazebo Simulation
	6.4.5 Experimental Setup
	6.4.6 Results
	6.4.7 Observations, Notes, and Future Work

	7 Conclusion
	Symbols

