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1. Introduction
Energy functionals appearing in various types of problems in science and engineering can be
efficiently minimized using the finite element method (FEM). In [3], we introduced several
vectorization techniques for an efficient evaluation of the discrete energy gradient and, addi-
tionally, applied these techniques for the minimization of hyperelasticity in 2D and 3D using
P1 finite elements (piece-wise linear nodal elements defined on triangles/tetrahedra). Recently,
our approach has been successfully applied to 2D/3D problems in solid mechanics, namely the
resolution of elastoplastic deformations of layered structures or superelastic and pseudoplastic
deformations of shape-memory alloys [2].

The hp-FEM is an advanced numerical method based on FEM dating back to the pioneering
works of I. Babuška, B. A. Szabó and co-workers in 1980s. It provides increased flexibility
and convergence properties compared to the ”conventional” FEM. In particular, hp-FEM on
quadrilaterals (in 2D) and hexahedra (in 3D) are usually preferred in structural computations.

This contribution presents and extends results published in [1], where the energy evalua-
tion techniques of [3] are combined with the implementation of rectangular hp-FEM [4] using
some techniques, mainly for the construction of hierarchical shape basis functions, taken from
[5]. The actual minimization of energies was performed using the trust-region (TR) method
available in the MATLAB Optimization Toolbox which was found to be very efficient in the
comparison performed in [3]. It requires the gradient of a discrete energy functional and also
allows to specify a sparsity pattern of the corresponding Hessian matrix which is directly given
by a finite element discretization. The gradient can be evaluated explicitly or numerically using
the central difference scheme. A particular hyperelasticity problem was chosen to demonstrate
the capabilities of our implementation.

2. Hyperelasticity
Boundary value problems in (non-linear) elastostatics provide examples of vector problem
which can be directly dealt with our approach, see [3]. Given a (hyper)elastic body spanning
the domain Ω ∈ Rd and subjected to volumetric force, f(x), the corresponding deformation,
y(x), can be obtained by minimization of the following energy functional:

J(y(x)) =

∫

Ω

W
(
F(y(x))

)
dx−

∫

Ω

f(x) · y(x) dx , (1)
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where F(y(x)) = ∇y(x) denotes deformation gradient and

W (F) = C1

(
I1(F)− dim−2 log(det F)

)
+D1(det F− 1)2 (2)

is so-called compressible Neo-Hookean energy density with C1, D1 being material constants
and I1(F) = ‖F‖2 denotes the squared Frobenius norm.

We consider a double-beam model given by the following parameters: a 2D hyperelastic
domain given by a rectangle [0, 1]× [0, 0.25] is subjected to a constant volumetric vector force
f = (0,−2 · 107) acting in a top-to-bottom direction; zero Dirichlet boundary conditions are ap-
plied on the left and right edges. We assume the Young modulus E = 108 and the Poisson ratio
ν = 0.3. Arbitrary, although mutually consistent physical units are considered. For illustra-
tion, Fig. 1 shows examples of the corresponding deformed mesh together with the underlying
Neo-Hookean density distribution. Fig. 2 depicts a comparison of P1 elements and hp-FEM for
the polynomial degrees p = 1, 2, 3, 4 (denoted by Q1, Q2, Q3, Q4, respectively) used in our
computation. Since we do not know the exact energy value, we use Jref as the smallest of all
achieved energy values J(u) obtained in our computation decreased by 102. Q2 and Q4 ele-
ments are superior to P1, Q1 and Q3 in accuracy with respect to the number of dofs. However,
Q2 elements are only slightly better with respect to the evaluation times, while Q4 elements
turned out to be the least efficient.

Fig. 1. Deformation and the corresponding Neo-Hookean density distributions for the 2D hyperelastic
problem. The top figure corresponds to P1 elements and a computational mesh with 1 024 triangles. The
bottom figure corresponds to Q3 elements and a computational mesh with 4 096 rectangles
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Fig. 2. Performance of hyperelasticity: comparison of elements

3. Conclusions and outlook
The hp-FEM for 2D rectangular elements was successfully incorporated into our vectorized
MATLAB code and its improved convergence performance was demonstrated on the particular
hyperelasticity problem.

This work contributes to our long-term effort in developing a vectorized finite element-
based solvers for energy minimization problems. Since many such problems emerge in science
and engineering, the code is designed in a modular way so that various modifications (e.g., in
functional types or boundary conditions) can be easily adopted. Our future research directions
include implementing the hp-FEM in 3D or tuning the applied minimization algorithms.
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