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Abstract
Symmetry is a common property of real world objects as well as of artifi-
cially created geometric models. The knowledge about symmetry of a given
object can be useful in many applications in computer graphics and geo-
metry processing, such as compression, object alignment, symmetric editing
or completion of partial objects. In order to use the symmetry of any object
in any given application, it first needs to be found. In this work we focus
on the task of automatic symmetry detection in 3D objects and we also de-
scribe the link between symmetry detection and the problem of registration.
Most importantly, we present our own contribution in these fields, namely
in rigid surface registration, reflectional and rotational symmetry detection
and plane space representation.

Abstrakt
Symetrie je častá vlastnost objektů reálného světa i uměle vytvořených
geometrických modelů. Znalost symetrie daného objektu může být užitečná
v mnoha aplikacích v počítačové grafice a zpracování geometrie, jako je
komprese, zarovnávání objektů, symetrická editace nebo rekonstrukce ne-
úplných objektů. Aby bylo možné symetrii daného objektu jakkoliv využít,
musí být nejprve nalezena. Tato práce se zaměřuje na úlohu automatické
detekce symetrie ve 3D objektech a také popisuje vazbu mezi detekcí syme-
trie a problémem registrace. Především však jsou v textu prezentovány naše
vlastní příspěvky v těchto oblastech, zejména rigidní registrace povrchů, de-
tekce zrcadlové a rotační symetrie a reprezentace prostoru rovin.
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1 Introduction

Symmetry is a potentially very useful feature which many real world objects
exhibit. An object has symmetry if there is an operation or transformation
(rotation, reflection, etc.) that maps the object onto itself, i.e. the object
is invariant under the given transformation. The information about sym-
metry is instrumental in a variety of applications. It can be used for object
alignment [96] where an object is properly aligned with the x, y, z axes us-
ing the symmetry information, or in compression where some parts of the
object can be left out to lower the data size and then filled in during de-
compression using their symmetric counterparts [109]. Another application
is symmetrical editing [77] which allows editing a single part of the object
while the other symmetric parts are being edited in the same way auto-
matically. Symmetry can also be used to reconstruct incomplete objects
[78, 105, 110–112, 117] by filling the missing parts using the information
from the symmetric counterparts. However, for any given geometric object,
the symmetry information is not known in advance and needs to be first
extracted which means that the symmetry first needs to be detected, ideally
automatically by a computer. This is the task on which we focus in this
work - automatic symmetry detection, i.e. creating algorithms that can be
used to automatically find symmetry in geometric objects or models.

Symmetry detection in general is not an easy task. There is never perfect
symmetry in real world objects. They only exhibit approximate symmetry
and there is no direct way for a computer to decide whether some transform-
ation captures an approximate symmetry or not. It was already pointed out
in [127] that symmetry is not a binary feature (is/is not) but rather a con-
tinuous one (how much symmetry there is).

When detecting approximate symmetries the goal is mostly to find sym-
metries that appear natural to a human observer. See, for example, the
two human faces in Figure 1.1. The one on the right was created by simply
mirroring the one on the left over the red line that passes through its nose
and mouth and we can see that these two objects are quite similar so there
is obviously some form of symmetry w.r.t. (with respect to) the mirroring
operation. But we can also see that the symmetry is certainly not perfect, as
can be expected since it is a 3D scan of a real human face and human faces
never have perfect symmetry. Anyway, we would probably expect an auto-
matic symmetry detection algorithm to be able to detect such symmetry.
This also means that automatic symmetry detection is, in a certain way,
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Figure 1.1: A 3D scanned human face [18] and its mirrored version (mirrored
over the red line).

tied to how humans perceive symmetry in real world objects. Some experi-
ments regarding the correlation between human and machine perception of
symmetry in 3D objects were previously performed, e.g., in [95].

Although there are quite many methods for finding symmetries in geo-
metric data, there are still some challenges and a lot of room for improvement
in the field of symmetry detection. Several different types of symmetry exist
and geometric objects can have varying shapes and other properties. They
can also be damaged in different ways, e.g. by noise or by having some parts
missing. No method exists that could reliably and efficiently find symmetries
of all the different types in any object. Even the methods that specialize in
detecting symmetries of certain types, or a single type, can fail on certain
types of objects or objects damaged in certain ways. Some methods only
detect strong or perfect symmetries, some only work with specific object
representations and some are simply not very fast.

The main goal of this work is to enrich the field of symmetry detec-
tion by designing new more reliable and efficient methods or improving the
existing ones to tackle the challenges of detecting weak or partial symmet-
ries efficiently and reliably and to make symmetry detection an easier task
to solve in general. In some parts of this text we will also talk about the
problem of registration which is strongly related to symmetry detection as
it can be simply described as the problem of finding symmetry between two
objects. Symmetry detection can also be perceived as the process of regis-
tering an object onto itself, i.e. symmetry detection can be seen as special
case of registration in a way. Therefore, the registration problem also fits
well into the symmetry detection topic.
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Our review of previous work suggests that the existing approaches are
not always generic and flexible which can reduce their reusability. When
designing the new methods, we put our effort into this aspect, so that in the
future they can be modified or extended for solving more difficult problems
or used for different purposes as easily as possible. Our contributions are
following.

• A new consensus evaluation strategy for RANSAC surface
registration and analysis of rigid transformation metrics.

We focused on the popular RANSAC (RANdom SAmple Consensus)
scheme for rigid surface registration. We identified some issues with
the commonly used consensus evaluation strategy based on overlap
measurement including its sensitivity to parameter setting and pro-
posed a different strategy based on density peak estimation in the
candidate space which turned out to be more reliable. This strategy re-
quires a metric in the space of rigid transformations so we thoroughly
analyzed different metrics and discovered that the commonly used
composed metrics have some theoretical drawbacks, such as depend-
ing on the input object’s pose, that we address by employing a metric
that measures the distance of two transformations as the difference of
their effect on the input object. The original version of this met-
ric is not independent of object sampling density which we solved by
proposing an improved variant that stems from computing the trans-
formation effect difference continuously.

• Comparison of plane space representations in mode-based
symmetry plane detection.

So-called mode-based approach is quite common in methods for sym-
metry plane detection in 3D. The results of such methods always, to
some extent, depend on how the planes in the solution space are rep-
resented. However, it seems that the available literature does not give
much guidance regarding the appropriateness of different plane space
representations. Therefore, we provide a theoretical analysis and
practical comparison of various plane space representations
in context of mode-based symmetry plane detection including a newly
proposed representation based on dual quaternions. The repor-
ted results can be useful for anyone designing new methods in the
future.
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• A new method for symmetry plane detection.

In general, there are quite a few existing methods for symmetry plane
detection but they all have their limitations. Robust methods that
could reliably find weak symmetries in general point sets (clouds)
while being also robust to noise, computationally efficient and flex-
ible still seem to be missing or their robustness, flexibility or com-
putational efficiency is at least questionable. We address this issue
by proposing a new symmetry plane detection method for point
sets based on gradient-based numerical optimization of a simple
differentiable symmetry measure in combination with fast point
cloud simplification and sparse sampling of the solution space.
The proposed method appears to outperform previous approaches in
various aspects and seems to fulfill all the above mentioned conditions.

• A new method for rotational symmetry detection.

Unlike symmetry plane detection, the options for methods detecting
rotational symmetries in 3D objects are quite sparse and those that are
both general and robust to weak symmetries seem to be missing com-
pletely. To address this problem we propose using pairs of potential
symmetry planes to find rotational symmetries in 3D point
sets (clouds). We use this idea to design a new method for rota-
tional symmetry detection by extending the previously proposed
symmetry plane detection method. In this process we needed to find
a differentiable parameterization of the rotation transformation in or-
der to retain the possibility of using gradient-based optimization. We
solved this by proposing a simple quaternion-based parameteriz-
ation which stems from expressing the quaternion rotation formula in
the vector space using elementary algebraic operations. To our know-
ledge, the resulting method is the most general existing method for
rotational symmetry detection in 3D objects while also being robust
to weak symmetry and noise and considerably fast.

• Other small contributions.

We also proposed a new method for local reflectional symmetry
detection in 3D point sets. Some products of our research, mostly
the symmetry plane detection method, were used/modified/extended
by other researchers in their work on which the author of this thesis
was often cooperation/consulting. This includes reflectional symmetry
detection in 2D curves, detection of the spherical surface of reflectional
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symmetry in 3D objects, reflectional symmetry detection in earth ob-
servation data, generalization of our symmetry plane detection method
for non-uniform data and using the symmetry plane detection method
for constructing the cutting plane of a human face or predicting the
water level of a lake. Our previous work also helped the graphics group
at the University of West Bohemia, Department of Computer Science
and Engineering receive a research grant GACR 21-08009K, General-
ized Symmetries and Equivalences of Geometric Data, Czech Science
Foundation.

The rest of this text is organized as follows. Chapter 2 provides ne-
cessary background including definition of symmetry in geometric data and
description of different symmetry types. Chapter 3 describes previous work
in the field of symmetry detection and briefly in registration. Chapters 4 to 7
present our main contributions, first focusing on registration as a more gen-
eral problem (also because parts of this research are referenced in the later
chapters) and then we concentrate on the more specific areas of symmetry
detection itself. Several other smaller contributions that are worth mention-
ing but are not significant enough to be contained in their own chapters
are in Chapter 8 including a new method for local reflectional symmetry
detection in point sets. Finally, Chapter 9 concludes the thesis.
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2 Background

In this chapter we provide some background by defining symmetry in Euc-
lidean data and describing different symmetry types in the 3D space. Then
we also describe the task of registration which is strongly related to sym-
metry detection and we mention different representations of 3D objects.

2.1 Object and Symmetry Definition
We define a general object in an arbitrary Euclidean space Ed, where d is a
positive whole number, in the following way.

Definition 1 A set of points X is an object in Ed if X ⊂ Ed and X 6= ∅.

This means that we consider any non-empty set of points in Ed an object in
Ed, regardless of whether the set is discrete or continuous. For example, an
object in E2 can be a 2D line or curve or any discrete set of 2D points. An
object in E3 can be a 3D line, 3D curve, a plane, a surface or a discrete set
of 3D points.

It seems unclear whether a unique mathematical definition of symmetry
is possible and whether all types of symmetry can be covered by a single
definition [93]. However, symmetry of a geometric entity can be described
as an invariance under a given geometric transformation. Therefore, for
symmetry in d-dimensional Euclidean space we state a definition based on
the one proposed in [93]:

Definition 2 Having a function F (x),x ∈ Ed and a transformation T (x) =
y, x,y ∈ Ed then F has symmetry w.r.t. the transformation T if F (T (x)) =
F (x) for all x ∈ Ed.

To make this definition applicable to objects, considering an object X ⊂
Ed, we can simply set F as

F (x) =

1 x ∈ X
0 otherwise

. (2.1)

Then we can alternatively define symmetry of an object in an arbitrary
Euclidean space as follows.
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Definition 3 Given an object X ⊂ Ed, X 6= ∅ and a transformation
T (x) = y, x,y ∈ Ed the object is symmetrical w.r.t. the transformation
T if T (x) ∈ X for any x ∈ X.

In other words, T represents symmetry ofX if, after applying T on any point
of X, the point ends up in any other point of X or in itself, meaning the
transformation maps the object onto itself. When F is set as in Equation
2.1 this definition is equivalent to the first and more general one.

This work elaborates on the task of automatic computer symmetry de-
tection. Although the definition of symmetry in the previous section applies
for objects in a Euclidean space of arbitrary dimension, we mostly focus on
detecting symmetries in 3D objects. Therefore, unless stated otherwise, in
the rest of this work we only consider symmetries and objects in E3.

2.2 Symmetry Types
Symmetries in 3D objects can be classified based on different criteria some
of which are described in this section.

2.2.1 Perfect and Approximate Symmetry
The symmetry definition in Section 2.1 is a definition of perfect symmetry
where each point of the object is mapped exactly onto another point. How-
ever, perfect symmetry never occurs in real world objects and is quite rare
even in artificially created digital models. In practice, objects only exhibit
approximate symmetry where no transformation exists such that it maps
the object onto itself perfectly but there might be transformations that map
some portion of the object points ”considerably close” to other points of the
object. Therefore, when talking about symmetry detection in 3D objects, we
usually mean detection of approximate symmetries, not perfect ones. Obvi-
ously, for approximate symmetries the conditions in the symmetry definition
need to be relaxed in some way but no strict definition of approximate sym-
metry can be formed which in turn means that there is no exact way of
deciding whether a transformation captures some approximate symmetry or
not. This is what generally makes approximate symmetry detection quite
a difficult task because we do not have an objective way for a computer
to decide what is still perceived as approximate symmetry and what is not
symmetry anymore.

We will use the term strong symmetry for approximate symmetry that
is close to perfect symmetry, and the term weak symmetry for symmetry
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farther from perfect. Note, however, that the terms weak and strong do not
serve as exact definitions but rather to differentiate between the more and
less approximate symmetries in the text in an intuitive way.

2.2.2 Global and Local Symmetry
If an object has symmetry as a whole, it is called global symmetry. However,
very often there is only symmetry in some parts of the object, i.e. a trans-
formation exists that maps some part(s) of the object onto another part(s),
which is called local symmetry. There is again no strict definition of local
symmetry and both global and local symmetries are usually approximate in
practice.

2.2.3 Symmetry Type According to Transformation
Group

When detecting symmetries in 3D objects we are looking for transformations
that represent these symmetries and these transformations always belong to
a certain transformation group. Depending on the transformation group the
symmetries in E3 can be classified into several types.

Reflectional Symmetry

Reflectional symmetries (sometimes called mirror symmetries or bilateral
symmetries) are represented by transformations from a group of reflection
transformations, i.e. transformations that perform reflection over an arbit-
rary plane. A reflectional symmetry is usually and most easily described by
a single plane of reflection. A plane that captures reflectional symmetry is
called a symmetry plane. This type of symmetry is probably the most of-
ten occurring symmetry type in both real world and artificial objects which
makes reliable methods for detecting symmetry planes in 3D objects quite
desirable. For examples of reflectional symmetries see Figure 2.1. The ob-
jects are all aligned in such a way that the symmetry plane, which is marked
by the red line, is perpendicular to the image plane. Reflecting these objects
over their symmetry planes would approximately map them onto themselves,
therefore, these planes represent their approximate reflectional symmetries.
The objects in Figure 1.1 are also examples of reflectional symmetry.

8



Figure 2.1: Examples of reflectional symmetry (figures taken from [53]).

Rotational Symmetry

Rotational symmetry is represented by a transformation that performs rota-
tion by a given angle around a given axis. Such symmetry can be described
by a rotation axis and a scalar value which defines the rotation angle. A
special type of rotational symmetry is circular symmetry which can be rep-
resented only by the rotation axis where the symmetry holds for any rotation
angle. A single circular symmetry basically represents infinitely many rota-
tional symmetries. Some examples of approximate rotational and circular
symmetries are in Figure 2.2. The top row shows the rotation axis for each
object (marked by the black line) and the bottom row depicts the rotation
angle (the red arc).

Figure 2.2: Examples of approximate rotational symmetry (figures taken
from [49]).

9



Rigid Symmetry

Rigid symmetries are one of the most general symmetries that commonly oc-
cur in geometric models and they are represented by rigid transformations,
i.e combinations of rotations and translations. Rigid symmetry can be de-
scribed by a rotation matrix R and a translation vector t. Often symmetry
is considered rigid even if the transformation contains reflection and in such
a case R can be either a rotation matrix or a product of a rotation matrix
and a reflection matrix. When talking about rigid symmetries in 3D objects
we often, but not always, consider local symmetries. Example of an object
with local rigid symmetries can be seen in Figure 2.3, the symmetric parts
are in the frames of the same color.

Figure 2.3: Example of an object with local approximate rigid symmetries
(figure taken from [70]).

Other Symmetry Types

There are also other symmetry types such as point symmetry, which is rep-
resented by a reflection over a single point, or translational symmetry repres-
ented only by a translation. We can also consider more general symmetries
represented by rigid transformations with additional uniform scaling or by
general affine transformations. We could even have symmetries described by
elastic transformations that can bend and stretch the object differently in
different places which includes transformations that perform reflection over
an arbitrary surface or curve. Such symmetries are hard to generate artifi-
cially or to even imagine, at least in 3-dimensional space. This is why we
only show a 2D example in Figure 2.4 where reflection of the black object
over the red curve can be considered its approximate symmetry.

If we do not put any constraints on the transformation type then we
can basically for any object construct a transformation that captures its
symmetry. These very general transformations are, however, very difficult
to represent and have many degrees of freedom. Therefore, detecting such
general symmetries is very hard.
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Figure 2.4: Example of a general elastic symmetry in 2D - the black object
has approximate reflectional symmetry w.r.t. the red curve.

Symmetries can be further classified as either extrinsic or intrinsic. Ex-
trinsic symmetries are represented by geometric transformations in the Eu-
clidean space. Until now we were only talking about extrinsic symmetries
and all the symmetry types we have mentioned are types of extrinsic sym-
metry. Intrinsic symmetry is rather specific and does not really satisfy our
definition of symmetry, but, just for completeness, we mention it anyway.
Intrinsic symmetries are specific to surfaces and are described by intrinsic
transformations on the surface rather than extrinsic transformations in the
Euclidean space in which the surface is embedded. Usually intrinsic symmet-
ries are defined as transformations that maintain geodetic distances between
all points on the surface. Such symmetries are invariant under deformation
of the surface, such as bending or folding, as long as the deformation does not
change the geodetic distances of any points. There are several methods that
are somewhat capable of detecting intrinsic symmetries, e.g. [87, 121, 122],
however, this area is distinct from the focus of our research and by finding
a good intrinsic symmetry, we do not necessarily get a meaningful extrinsic
symmetry of the desired type. Also, intrinsic symmetries are represented by
point-to-point or part-to-part correspondences which are rather impractical
representations for extrinsic symmetries, which can usually be represented
by simple geometric transformations. Therefore, in the rest of this work we
will not be considering intrinsic symmetries in any way.

2.3 Registration
Registration is a field strongly related to symmetry detection. Having two
input objects, the task of registration is to find a transformation that maps
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one of the two objects onto the other one. So, only instead of mapping
an object onto itself we are trying to map an object onto another object,
therefore, registration can basically be understood as detecting symmetry
between two objects. Another way of seeing this is that symmetry detec-
tion is a special case of registration where we are registering an object onto
itself (the two input objects are the same), i.e. that registration is a more
general extension of the symmetry detection task. Either way, symmetry
detection and registration have very much in common and many principles
and approaches used in registration methods can be also used in symmetry
detection and vice versa.

Therefore, given the relation between these two areas, we are also going
to consider registration in some parts of this work. Specifically, we will talk
about rigid surface registration which is a task of finding a rigid transform-
ation that maps a 3D surface onto a different 3D surface in such a way that
some portion of the two surfaces overlaps. This is usually used for com-
pleting objects from partial 3D scans. An example of a correct result of a
registration process can be seen in Figure 2.5.

(a) First surface (b) Second surface (c) Correct registration

Figure 2.5: Example of a correct registration result - (c) of the two surfaces
- (a), (b) (figure taken from [46]).

2.4 Object And Other Data Representations
When trying to detect symmetries in 3D objects, we first need to define
what representation of an object will be on the input. Throughout this text,
we will work with two different representations of general 3D objects - a
discrete point set (point cloud) and a triangle mesh. Here we describe these
representations and also briefly mention other representations of objects and
of some non-object geometric data.
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2.4.1 Discrete Point Set or Point Cloud
A discrete point set, often called a point cloud, is very commonly used
in geometry processing to represent a sampled 3D surface but it can also
represent a sampled volume. Using the discrete point set representation,
any 3D object X can be simply defined as

X = {x1,x2, ...,xn},xi ∈ E3, i = 1, ..., n

where n is the number of the points in the point set. Discrete point sets are
usually outputted e.g. by 3D scanners.

2.4.2 Triangle Mesh
The triangle mesh representation is very commonly used in computer graph-
ics to describe a surface. A triangle mesh is often understood as an approx-
imation of a continuous surface by a piece-wise planar surface where the
planar pieces are triangles. Having an object X, to use the triangle mesh
for its representation we need a set of vertices Xv = {xi ∈ E3}, i = 1..νX
and a set of triangles Xt = {tXi }, i = 1..τX . For each triangle tX ∈ Xt three
indices k1, k2, k3 are stored and the triangle is defined by the three ver-
tices xk1, xk2, xk3 ∈ Xv. The object is then defined using the triangle mesh
representation as

X =
τX⋃
i=1

tXi

i.e. it is a union of all the triangles. We could, of course, only have the set of
triangles without the set of vertices while describing the same exact object.
This, however, would not be a triangle mesh but only a triangle set. Unlike
the triangle set, the triangle mesh allows easily extracting adjacency inform-
ation which is required for many operations, such as traversal or estimating
differential quantities (e.g. curvature), which would be much more difficult
to perform without it.

The triangle mesh is a more complex representation of an object than
the discrete point set because it contains more information. A discrete point
set can always be easily derived from a triangle mesh simply by taking its
vertices or using some surface sampling technique (e.g. [3, 13]). But trans-
forming a discrete set of points into a triangle mesh is not so straightforward
and is considerably more difficult (various mesh reconstruction methods ex-
ist however, e.g. [73, 125, 130]). This also means that methods that are
capable of working with the discrete point set representation are generally
more widely applicable than those that require a triangle mesh on the input.
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2.4.3 Plane Representation
In some parts of this text we will also work with planes in E3, therefore,
here we describe how to represent them. Unless stated otherwise, we define
an arbitrary plane P by its implicit equation P : ax+ by+ cz+ d = 0 where
x = [x, y, z]T ∈ E3 is a general 3D point, a, b, c, d are the coefficients that
define the plane and the points x ∈ E3 that satisfy this equation are the
points of the plane P . The vector [a, b, c]T describes the normal of the plane
and the d coefficient encodes the distance of the plane from the origin of the
coordinate system. This representation is probably the simplest one but it
is also ambiguous since for any real number k 6= 0, the coefficients a, b, c, d
define the same plane as coefficients ka, kb, kc, kd.

2.4.4 Others
General objects in E3 can also be represented in other ways, e.g. as paramet-
ric or implicit surfaces, parametric curves or binary functions which can rep-
resent volumes by having a value of 0 for points outside the object and 1 for
points inside the object. Objects can also have values associated with each
of their points. These values can be scalars or vectors and they can represent
various quantities, such as colors or results of some physical measurements
(temperature, pressure, etc.). When considering symmetries of such objects,
sometimes, but not always, it is desired that apart from the positions of the
points these associated values are also taken into account. In such a case
Definition 3 of (perfect) symmetry of objects is no longer applicable and
the more general Definition 2 needs to be used with the function F defined
accordingly.

There are also other types of geometric data that do not satisfy our
definition of an object but appear commonly in certain areas of computer
science. We can have a general voulmetric function which associates a value
with each point in E3 or in some subspace of E3. Or we can have a discrete
volumetric grid where each cell has a value assigned to it - this is mainly
used to represent medical images outputted by CT or MRI scanners. For
such data we also need to use Definition 2 when talking about symmetries.

However, the representations mentioned in the previous two paragraphs
will be used in this work only rarely.
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3 Related Work

In this chapter we provide information about various existing symmetry
detection methods. We mention some only briefly while some, which seem
more important or interesting, will be described in more detail. Since the
methods are quite diverse and based on various approaches it is quite difficult
to find some way to classify them in order to make the chapter easier to read.
Therefore, we divide the methods only according to the type of symmetry
they are designed to detect. At the end of the chapter we also briefly describe
several existing methods for rigid surface registration. Some parts of this
chapter were taken from the author’s master’s thesis [43].

3.1 Reflectional Symmetry
As already mentioned, the most common type of symmetry being solved for
3D objects is reflectional symmetry. Such symmetry is captured by a single
plane of reflection and there are many strategies of computing such a plane.

Some methods detect only planes that pass through some reference point
such as the origin, centroid of the input object or its center of mass. Such
methods are generally not very good at detecting weaker symmetries because
weakly symmetrical objects can have the symmetry plane in an arbitrary
position, not passing through the expected reference point.

Sun and Sherrah [115] proposed symmetry plane detection using ori-
entation histogram and their method detects only planes that pass through
the origin. The method uses the discrete version of the Extended Gaussian
Image [42] called orientation histogram. It is obtained by dividing a unit
sphere into hexagonal bins with values assigned according to the number of
normal vectors of the input object facing in the given bin’s direction. An
example of the orientation histogram of a given 3D model is shown in Fig.
3.1.

Several candidate planes are selected such that they pass through the
origin and their normal vectors are facing approximately in the directions
of the principal axes of the object. For each candidate the histogram is
reflected over the given plane and a correlation of the reflected histogram
with the original one is computed. The plane with the highest correlation is
then selected as the strongest symmetry plane. The method can also detect
rotational symmetries as will be mentioned in the next section.
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Figure 3.1: A 3D model of a human head (left) and its orientation histogram
(right) (figure taken from [115]).

Figure 3.2: Symmetric ant model (right) and the star-shaped surface created
by its approximation using the spherical harmonics (right) (figure taken from
[58]).

Kakarala et al. [58] proposed a method that uses approximation of the
input object with spherical harmonics, creating a star-shaped surface, and
the symmetry plane detection is then performed on this new shape. Fig. 3.2
shows an example of the spherical harmonics approximation for a symmetric
ant model.

The symmetry detection is based on the observation that if a real-valued
function has symmetry across the origin then its Fourier transform is real-
valued. The authors apply this observation on the spherical harmonics to
derive an error function whose minimization leads to the symmetry plane.
This method only detects planes that pass through the origin.

Korman et al. [60] designed a method that uses a distortion meas-
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Figure 3.3: The viewpoint entropy distribution sphere for four different ob-
jects generated using 2562 viewpoints where the color represents the entropy
value - blue: large entropy, green: mid-size entropy, red:small entropy (figure
taken from [69]).

ure representing the amount of mismatched volume between the original
shape and the transformed shape. The method detects only planes that pass
through the origin but it can also detect rotational symmetries (with axes
also passing through the origin). Since the evaluation of the distortion meas-
ure is too complex, the authors propose a randomized sampling procedure
that gives approximately the same results with overwhelmingly high prob-
ability. The symmetry of an input object is than found by clever sampling of
the transformation group based on the observation that the upper bound on
the sampling density can be controlled by the maximum allowed distortion
of the symmetry. The distortion is evaluated in each sample and the one
with the lowest distortion can be selected as the strongest symmetry.

Li et al. [69] proposed a view-based method for symmetry plane de-
tection on triangle meshes. A set of viewpoints is sampled on a sphere
around the input model and in each viewpoint a camera is set to look at
its center. Using these cameras the model is rendered from each viewpoint
using orthogonal projection. The authors employ a viewpoint entropy which
can be computed for each rendered view and depends on the areas of the
faces that were rendered in the particular view. This entropy is computed
for each viewpoint which creates a viewpoint entropy distribution sphere.
Fig. 3.3 shows the viewpoint entropy distribution sphere for several objects
generated using 2562 viewpoints.

The symmetry plane detection itself is then based on the observation that
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the symmetry planes of the model and of the viewpoint entropy distribution
sphere are the same. Therefore, the symmetry plane detection is performed
on the viewpoint entropy distribution sphere which has the advantage of
being independent of the vertex count of the input mesh. The authors only
use 42 viewpoints for generating the distribution sphere and claim that it
is enough. Candidate planes are created using pairs of viewpoints with
matching values of the viewpoint entropy. For each candidate plane the
rest of all pairs of viewpoints with matching entropy are verified to see
whether they are symmetric with respect to the given plane. If the number
of symmetric pairs is great enough the given candidate plane is declared a
symmetry plane. This method only detects planes passing through or very
near the center of the input object’s bounding sphere. However, it seems
to outperform previously designed methods in terms of accuracy, speed and
robustness to noise.

The following methods do not put any constraints on the detected planes
and most of them can be used for detecting weaker symmetries.

Schiebener et al. [105] designed a method which detects the plane of
symmetry of a point cloud and they use it for completion of partial 3D scans.
Apart from the point cloud representing the input object, the method also
needs a point cloud representing the object’s surrounding and the position
from where the object was scanned. It relies on the fact that a 3D object
usually stands on some kind of supporting structure, such as the ground,
and the first step is detecting the supporting plane which represents such
a structure. Candidates for these supporting planes are created using a
RANSAC-based plane fitting algorithm and for each of these candidates,
several symmetry plane candidates are created by sampling the space of
planes orthogonal to the given supporting plane. The authors define rating
of the candidate symmetry planes which uses the supporting plane and the
scanner position to evaluate whether points of the input object, when reflec-
ted over a given candidate symmetry plane, end up in plausible locations.
For example, the reflected points should appear above the supporting plane
and mainly in occluded areas. The plane with the highest rating is declared
the object’s plane of symmetry.

Fig. 3.4 shows an example scene containing a symmetric object in the
middle with the estimated supporting plane and the estimated symmetry
plane. This method only detects symmetry planes which are orthogonal to
the supporting surface and, because it requires the surrounding and scanner
position, it is only usable in specific applications.
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Figure 3.4: A scene with a symmetric object (red) and its estimated sym-
metry plane (yellow vertical) and the estimated supporting plane of the scene
(yellow horizontal)(figure taken from [105]).

Simari et al. [109] presented an algorithm for detecting local reflectional
symmetries of 3D triangle meshes. First, a weighted covariance matrix and
a weighted centroid are computed, with the weights set for each vertex ac-
cording to the areas of its adjacent triangles. Eigenvectors of the matrix are
used to define three orthogonal planes that pass through the centroid. For
each of the planes all vertices are reflected over it and its cost is computed
based on the distances of the reflected vertices from the original mesh (using
the minimum point-to-triangle distance). Only the plane with the lowest
cost is kept and a support region is defined as the region of the mesh which
has a strong enough symmetry w.r.t. to this plane. Next, the weights of all
vertices are updated to contain information of how far from the mesh the
given vertex is when reflected over the plane - the farther, the smaller its
weight. Also, weights of all vertices outside of the support region are set
to 0. A new covariance matrix and a new centroid are computed using the
new weights, a new plane is estimated and a new support region is found.
These plane estimation and region finding steps are iterated until conver-
gence is achieved. The vertices in the support region of the final plane are
removed and the whole process is repeated for the remaining components
of the mesh. This way a tree structure can be created called a folding tree
which the authors propose to use for mesh compression.

Fig. 3.5 depicts three objects with the symmetry planes detected by this
method in the process of creating the folding tree.
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Figure 3.5: Symmetry planes detected on three different objects during the
folding tree creation (figures taken from [109]).

Podolak et al. [96] proposed a Planar Reflective Symmetry Transform
(PRST) for volumetric functions which associates each plane in the space
of planes with a value determining how symmetrical the function is w.r.t.
that plane. This value is defined as the distance of the function to the
closest function which is perfectly symmetrical w.r.t. to the plane. The
transform can be used to find the plane of symmetry of a discrete volumetric
function represented by a uniform 3D grid. Fig. 3.6 shows several examples
of PRST for 2D binary functions where the transform works as well only for
2D reflection lines instead of 3D reflection planes. The object in each image
is represented by the black contour and the strength of each reflection line is
determined by its shade of grey - the darker the line, the stronger symmetry
of the object it represents in terms of the PRST.

The brute-force computation of the PRST has time complexity O(n6)
for a grid of n × n × n voxels but the authors propose a way of finding
the plane with the highest PRST in O(n4log(n)). To use this approach
for symmetry detection on a sampled surface (triangle mesh, point cloud)
the authors use the Gaussian Euclidean Distance Transform to convert the
surface to a volumetric grid. To lower the computation cost for the surface
data, the authors propose using a randomized Monte-Carlo algorithm to
approximate the PRST. The space of planes is divided into discrete bins
based on their normal orientation and distance from the origin. Pairs of
points are randomly being selected, for each pair the symmetry plane of
the two points is constructed and it votes for the plane represented by the
corresponding bin. The planes with the largest vote count represent the most
significant symmetry planes of the input object. Since these results are not
necessarily very precise, the authors propose a final iterative refinement.
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Figure 3.6: Visualization of the PRST in 2D examples - darker lines rep-
resent stronger reflectional symmetries in terms of the PRST, each image
represents a binary function where the object is defined by the black contour
(figures taken from [96]).

Although this approach works with sampled surface data, it still requires
rasterizing the input object, which can be computationally expensive and
seems unnecessary.

Caillière et al. [16] used Hough transform to detect symmetry planes of
triangle meshes. This method is actually a modification of the more general
clustering approach [83] that will be described in Section 3.3. It is overall
also quite similar to the Monte-Carlo approach used in the previous method
by Podolak et al. [96]. Points are paired based on similar curvature values
and for each pair its symmetry plane is constructed. These planes vote for
the planes represented by the corresponding bins in the space of planes and,
in the end, the plane with the largest vote count is selected as the symmetry
plane of the input mesh.

Speciale et al. [114] employ two symmetry plane detection methods
for 3D shape reconstruction. Both the methods take depth information in
voxel grid as input and one of them is essentially the implementation of the
above described method of Podolak et al. [96]. The second method is a little
different. High-gradient and high-curvature voxels are extracted and referred
to as surface voxels. Pairs of surface voxels are randomly sampled and for
each pair a symmetry plane candidate is constructed. Each candidate is
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Figure 3.7: Example of the correspondence creation. Left image shows an in-
put surface (the black curve) and a plane in a given iteration of the ICP-like
process (the green line S). Right image shows also the reflection of the ori-
ginal surface over the plane (the grey curve) and the created correspondences
(the small blue lines) (figure taken from [29]).

evaluated according to the number of inliers. A surface voxel is considered
an inlier if, when reflected over the given candidate plane, it ends up in
another surface voxel or in space with unknown voxel information where a
potential occluded part of the symmetric object could be. Planes with the
largest inlier count then represent the strongest symmetries. The authors
claim that this approach, although similar to [96], can potentially be faster
and has lower memory requirements than [96].

The methods of Combès et al. [26] and Ecins et al. [29] both use
iterative ICP-like (see Section 3.5 for ICP) approaches for symmetry plane
detection in point clouds. Such approaches can be roughly summarized
as follows. Initial plane or planes are estimated in some way and for a
given initial plane an iterative process is executed. In each iteration the
points of the object are reflected over the plane and those that reflect too far
from other points of the object are usually considered outliers and ignored
in that iteration. For each of the remaining reflected points, the closest
point of the object is found and a correspondence between the two points
is created. Next, the plane is adjusted such that the corresponding pairs of
points have the best possible reflectional symmetry w.r.t. the new plane -
least square error is usually used for this purpose. These steps are iterated
until convergence and the final plane usually represents some significant
symmetry of the input object.

Fig. 3.7 demonstrates the correspondence creation process - the black
curve represents an input surface, the green line denoted S is the reflection
plane in a given iteration, the grey curve in the right image is the reflection of
the surface over S and the small blue lines show the found correspondences.
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Sipiran et al. [112] proposed a method specifically designed for global
symmetry plane detection on incomplete objects represented by triangle
meshes. First step is to detect local features of the given 3D shape which is
done using the theory of heat diffusion on manifolds. A function is defined
which associates the accumulation of heat up to a given time to each point
on the surface. This function is computed using the eigenvalues and eigen-
vectors of the Laplace-Beltrami operator and is called a Heat Kernel. As the
feature points, local maxima of the heat accumulation function are taken.
Pairs of the feature points then generate the candidate symmetry planes
but only pairs of points which have a similar value of the heat accumula-
tion function are considered. The last stage of this algorithm is a voting
process where other pairs of points are tested against the candidate planes.
The more pairs of points are considered to be symmetrical with respect to
a given plane the more votes the plane gets. There are several criteria de-
signed by the authors, which are used to decide whether or not a plane is
considered a plane of symmetry of a given pair of points. Also only points
in which the mean curvature is larger than some threshold are used in the
voting process. In the end the plane with the highest vote count can be
declared the resulting plane of symmetry.

Fig. 3.8 shows the pipeline of the overall symmetry detection process.
This method seems to provide very good results even when used on objects
with very high level of missing parts. However, it only works on manifold
triangle meshes and it does not work on featureless objects, which is quite
constraining.

Cicconet et al. [22] solve the symmetry plane detection problem as a
registration problem. They propose reflecting the input object over a fixed
plane and then using some rigid registration algorithm to map the reflected
object onto the original one. This approach results in a transformation that
represents a reflection over some plane followed by some rigid transformation.
Such a transformation does not generally represent reflection over a plane, so
it needs to be extracted approximately from it, which seems unnecessarily
more complex than finding the reflection plane directly. Furthermore, as
elaborated in [99], the registration algorithms sometimes do not work well
on symmetrical objects.

Most recently, Nagar and Raman [88] proposed using linear pairing
and optimization on manifold to find the symmetry plane of a point cloud.
This method works in a space of arbitrary number of dimensions, but due
to time complexity O(n3.5) for n points, it is considerably slow. The same
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Figure 3.8: Pipeline of the symmetry detection process using the heat
diffusion-based feature function and the voting approach (figure taken from
[112] and modified).

authors then proposed a closed form solution to the symmetry plane detec-
tion problem with randomized initialization [89]. Apparently, at some stages
this method expects the symmetry plane to pass through the center of mass
of the input object which could possibly be problematic for some weakly
symmetrical data.

There are also methods that approach symmetry plane detection by em-
ploying machine learning techniques, usually using neural networks. Some
of the representatives of this approach include the methods of Ji and Liu
[57], where the output of the network is followed by an ICP-like refinement,
or Gao et al. [37] and Shi et al. [106] which can also detect rotational
symmetries. The biggest advantage of such methods in general is that ap-
plying the trained neural network is usually very fast, especially when using
a GPU implementation. On the other hand, they naturally require a set of
training data and a training process, usually very slow, to be executed before
any symmetry detection can be performed, which considerably limits their
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applicability. Also, when trained on a given dataset, it is questionable how
the network would perform on objects that significantly differ (in terms of
shape, symmetry strength, noise level, sampling density, etc.) from objects
in the training set.

3.2 Rotational Symmetry
Some of the methods mentioned above can also be used to detect rotational
symmetries, but they exhibit the same problems and limitations for this
purpose as for the symmetry plane detection. Specifically, the method of
Korman et al. [60] finds rotational symmetries when the sampling of
the transformation space includes rotations but it can only find rotations
with axes passing through the origin. The method of Sun and Sherrah
[115] can find rotational symmetries by using the approximate principal
axes as rotation axis candidates instead of normal directions for symmetry
plane candidates. For each of the candidate axes a set of rotation angles
is sampled providing a set of candidate rotation transformations which are
then evaluated in the same way as the reflection ones. This method can also
find only rotations with axes passing through the origin. Some additional
methods for rotational symmetry detection are mentioned in the following
text.

Martinet et al. [77] designed a method for detection of rotational sym-
metries with possible reflections in triangle meshes using generalized moment
functions. It is based on the observation that the generalized moments of a
shape have at least the same symmetries as the shape itself and the symmet-
ries of the moments can be computed efficiently. This method only detects
symmetries with rotation axes passing through the input object’s center of
mass but it can also find pure reflectional symmetries (symmetry planes).

Gothandaraman et al. [39] proposed a method that rotates the input
object by several fixed angles around the x, y, z axes and creates a 2D image
of the object for each rotation by projecting it onto a fixed plane. SIFT [75]
features are extracted for each of these images and are used to find a match
among them. The information about matching images of different rotations
of the input object are used to find its rotational symmetry with possible
reflection including purely reflectional symmetry. This method does not
seem to be very robust to approximate symmetries and only finds rotations
with the axis passing through the origin.
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Figure 3.9: Circles detected on a partial 3D rotationally symmetrical object
(left) and the symmetry axis detected based on the circle set information
(right)(figures taken from [110]).

Sipiran proposed two methods [110, 111] for rotational symmetry de-
tection in partial 3D objects based on finding circular structures in the data
(see Fig. 3.9). However, they only seem to detect symmetries of rotational
shapes and do not detect discrete symmetries where the symmetry only holds
for certain angles of rotation, i.e. they can only detect circular symmetries.

Ecins et al. [31] designed a symmetry-based segmentation method
which combines symmetry detection steps with segmentation steps. The
symmetry detection steps include detection of reflectional and rotational
symmetries where the approach used for finding the reflectional symmetries
seems similar (or identical) to their method [29] mentioned in the previous
section.

The rotational symmetry detection is performed by minimizing an error
function which for a given axis is computed as follows. For each point of
the input object a plane is created such that it contains the axis and the
given point. Then the angle between the normal in this point and the plane
is computed (if its value is larger than 45◦ then 45◦ is used instead). These
angle values computed for all the points are summed together providing the
error function value. The authors claim that an axis that minimizes the
error function can be found, for example, using the Levenberg-Marquardt
[84] solver. The angle computation for a single point is detailed in Fig.
3.10a.

Three axes passing through the object’s center of mass in the directions
of its principal axes (see Fig. 3.10b) are used to initialize the solver and
after the optimizations are finished the best of the three results is selected
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(a) (b) (c)

Figure 3.10: The left image details the process of angle computation in the
error function for a single point p with normal n when given an axis S -
the angle is computed between the normal n and the plane spanned by S and
p. The middle image depicts the three initial axes of a partial rotationally
symmetrical object before optimization and the right image shows the best of
the three axes after optimization (figures taken from [31]).

as the resulting symmetry axis (see Fig. 3.10c).
This method seems to work well for objects with approximate symmetries

and even missing parts but it can only find the axis of rotational symmetry
and only works for rotational shapes (it only finds circular symmetry). Also,
it can be used for point clouds but a normal needs to be available in each
point.

As already mentioned in the previous section, even rotational symmet-
ries can be detected using machine learning techniques. The methods of
Gao et al. [37] and Shi et al. [106] can also find rotational symmetries
using neural networks. The advantages and problems of methods based on
neural networks are the same regardless of whether detecting rotational or
reflectional symmetries.

3.3 More General Symmetry
There are also methods designed for detecting more general symmetries but
we only describe one such method in more detail because of its non-negligible
significance in the overall field of symmetry detection. A few other methods
will be only briefly mentioned, however, mentions and brief descriptions of
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some additional, more general, symmetry detection methods can be found
in the author’s technical report [44].

Probably the most commonly known and arguably most popular method
for symmetry detection was designed by Mitra et al. [83] who used clus-
tering in the transformation space for detecting quite general symmetries.
The symmetry transformations can contain rotation, with or without re-
flection, translation and even uniform scaling. The method can also be
restricted to only detect subgroups of these general symmetries. The input
object is sampled and in each sampled point, the principal curvatures and
principal directions are computed creating a local coordinate frame together
with the normal vector. Candidate transformations are created by pairing
the sampled points and aligning their local frames, but, since points where
both principal curvatures are the same do not define unique transformations,
such points are excluded beforehand. The scale component of each trans-
formation is estimated from the ratio of the principal curvatures in the two
points.

If the two generating points of the candidate transformation have too
distinct signatures (represented by the curvature values), the transforma-
tion is discarded to ensure that only candidates that approximately match
the local patches of the two points are kept. Since the candidate trans-
formations map local patches onto each other, each of the transformations
provides evidence of symmetry. The core idea of the method is that now
the transformations that represent significant symmetries will appear most
frequently forming modes in the candidate set, so the symmetry detection
problem is approached by mode-seeking in the transformation space.

Of course, the transformations in the modes are generally not exactly
the same, only similar, therefore, the mode-seeking is solved by clustering.
Specifically the mean shift clustering algorithm [25]. The detected clusters
then represent the symmetries of the input shape.

Fig. 3.11 shows a 3D scene at the top and the generated candidate trans-
formations at the bottom - 280 transformations with 100 samples selected
(left), 1262 transforms with 500 samples selected (right). The points in the
transformation space were projected into 2D using multidimensional scaling.
The two most significant clusters represent the two reflectional symmetries
shown in Fig. 3.12.

Much later, Shi et al. [107] improved this method by designing and
employing a more appropriate metric in the transformation space during
the clustering stage. They also use a slightly different criterion for deciding
what candidate transformations to discard. Apart from this, the method
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Figure 3.11: A 3D scene in the top and the candidate transformations gen-
erated for it at the bottom projected into 2D with multidimensional scaling
- the 100 black points generated 280 transformations (bottom left), the 500
yellow points generated 1262 transformations (bottom right) (figures taken
from [83]).

Figure 3.12: The two symmetries corresponding to the most significant
clusters from Fig.3.11 (figures taken from [83]).
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[107] is almost identical to [83].
Although these clustering-based methods are very general, they are not

very robust to noise and our experiments also suggest that they are rather
sensitive to parameter setting.

Bokeloh et al. [11] proposed a method for finding rigid symmetries
in point sets with normal vectors available for each point. The method
uses feature line segments (found using normals and curvature estimates)
connected to form a feature graph and it requires significant features to be
present in the input data in order the find any symmetries.

Mavridis et al. [78] find global rigid symmetry of an object with miss-
ing parts by registering the object onto itself using the Super4PCS [80] rigid
registration method (see also Section 3.5) with the additional modification
that at least k percent of the points of the two objects should not be over-
lapping. This method obviously stands on the quality and properties of the
selected registration method.

Li et al. [70] use co-occurrence analysis and clustering in the feature
space to find rigid symmetries of a point cloud. The authors state that
this method does not work well for objects with noise, irregular sampling or
objects without significant features.

3.4 Symmetry Detection Overview
Here we provide an overview of the methods for symmetry detection de-
scribed in the previous text. Tab. 3.1 contains most of the symmetry de-
tection methods mentioned in the previous three sections, excluding the
methods based on machine learning. For each method we state its authors
together with the year it was published and citation of the publication. The
first column after the method contains the symmetry type in terms of the de-
tected transformation for each method. The second column states whether
the given method finds global or local symmetry (or both).

The third column indicates the representation of input data which the
method requires. Point set (point cloud) is considered the most generic rep-
resentation and methods with this representation on the input are expected
to work with any other representation from which a point set can be eas-
ily extracted using some sampling technique, such as a triangle mesh. By
mesh representation we generally mean a triangle mesh. Some of the meth-
ods could probably also work on different types of polygonal meshes, which,
however, are not very commonly used so we do not differentiate between
different mesh types. A binary volume is a representation where for any
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Table 3.1: Overview of the symmetry detection methods.

Method Transform
type

Local /
Global

Input
representation

Weak
symmetries

Sun and Sherrah 1997 [115] Reflection
Rotation Global Anything with

normals No

Kakarala et al. 2013 [58] Reflection Global Point set No

Korman et al. 2015 [60] Reflection
Rotation Global Binary volume No

Li et al. 2016 [69] Reflection Global Mesh No

Schiebener et al. 2016 [105] Reflection Global
Point set with
surrounding +
scanner position

Yes

Simari et al. 2006 [109] Reflection Global
Local Mesh Yes

Podolak et al. 2006 [96] Reflection Global
Local

Voxel grid
(Point set, mesh) Yes

Caillière et al. 2008 [16] Reflection Global
Local? Mesh Yes?

Speciale et al. 2016 [114] Reflection Global
Local

Depth information
in voxel grid

(Mesh)
Yes

Combès et al. 2008 [26] Reflection Global Point set Yes
Ecins et al. 2017 [29] Reflection Global Mesh Yes?
Sipiran et al. 2014 [112] Reflection Global Manifold mesh Yes
Cicconet et al. 2017 [22] Reflection Global Point set Yes?
Nagar and Raman 2019 [88] Reflection Global Point set Yes
Nagar and Raman 2020 [89] Reflection Global Point set Yes?

Martinet et al. 2006 [77] Reflection
Rotation Global Surface No

Gothandaraman et al. 2020 [39] Reflection
Rotation Global Point set No

Sipiran 2017 [110] Rotation Global Manifold mesh Yes
Sipiran 2018 [111] Rotation Global Mesh Yes

Ecins et al. 2018 [31] Reflection
Rotation

Global
Local

Point set
with normals Yes

Mitra et al. 2006 [83]
Rigid +

reflection +
uniform scale

Global
Local Mesh Yes

Shi et al. 2016 [107]
Rigid +

reflection +
uniform scale

Global
Local Mesh Yes

Bokeloh et al. 2009 [11] Rigid Local Point set
with normals Yes

Mavridis et al. 2015 [78] Rigid Global Surface Yes
Li et al. 2015 [70] Rigid Local Point set Yes
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point in the space it can be determined whether or not it lies inside the
input object. By surface representation we mean a general representation of
a surface which can also include a mesh. The text in brackets indicates addi-
tional representations the given method can be used for but only after some
preprocessing that transforms it into the method’s native representation.

The fourth column states whether the given method can be used, to
some extent, to find weak symmetries or possibly symmetries on objects
with missing parts. The methods for reflectional or rotational symmetry
detection which restrict the detected plane/axis so that it passes through
some reference point are automatically assigned No in this column.

We note that all the information in the table was only extracted from
the corresponding publications and we did not experimentally verify it in
any way. If there is a question mark next to a line it means that we were
not sure/convinced about this information based on what we could extract
from the given paper.

3.5 Rigid Surface Registration
In this section we very briefly mention some methods that attempt to solve
the problem of rigid surface registration where the goal is to map one surface
onto another using a rigid transformation. The text in this section was
mostly taken from our paper [46].

The registration process can be classified as either local registration or
global registration, but in this case the terms local and global have a slightly
different meaning than in context of symmetry. While a local registration
only improves some initial alignment and makes it more precise, a true global
registration finds an alignment without any assumptions on the initial po-
sition of the inputs. Typical registration pipeline consists of first using a
global registration method to find a rough alignment and then employing
some local registration method to improve its accuracy.

Perhaps the best known approach to local rigid surface registration is the
Iterative Closest Point (ICP) algorithm [10, 20], and its derivatives [12, 97,
103] and generalizations [82]. The algorithm improves a given alignment by
searching for point correspondences, usually based on local proximity, color
similarity or other point properties. Based on the set of correspondences,
an optimal rigid transformation is found that maps the points from the first
object to their corresponding counterparts in the second object. These steps
are iterated until convergence. Given a good initialization, the algorithm
converges quite quickly, making it a good choice for local registration.
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Algorithms for global registration are usually designed to be fully in-
dependent of the initial position of the inputs. Some algorithms decouple
the rotation from translation, searching for the optimal rotation first. One
possibility is using the Hough transform [7, 17]. Spherical maps of the in-
put surfaces are created, where each point represents a direction, in which
a certain property of the input data is computed. A rotation is then sought
which maps the two spherical maps one onto another. Having the rotation,
translation is found by projecting the rotated inputs onto coordinate axes
and aligning the projections in each axis separately.

Another possibility of decoupling the rotation is to use the Extended
Gaussian Image [42], approximated by a spherical histogram of normal ori-
entations. Two such histograms can again be aligned first in the space of
rotations [76], while the translation is found afterwards.

Another group of methods attempts to extend the notion of Phase Correl-
ation [27], which has been successfully used for image alignment, to 3D point
clouds. Usually, the input objects are resampled onto a regular grid, which
is then transformed into frequency domain, where the aligning rotation can
be found [15]. Unfortunately, the extension only works in a certain range of
angles, and thus it cannot be applied for a general global registration.

Concepts of evolutionary algorithms were also applied to searching for the
best aligning transformation [14, 21]. An initial population of possible align-
ments is created, and a complex evaluation function is used to determine the
fitness of each phenotype. The most successful phenotypes are recombined
and mutated to create the next generation of alignments. The method usu-
ally delivers a good match, however, its computational complexity is high.

Another global registration method has been proposed based on search-
ing for pairs of congruent planar quadrilaterals in both input datasets [2],
known as 4PCS (4-point congruent set). The method builds on a smart
tree data structure which allows finding the congruent quadrilaterals based
on their midpoint, called invariant, efficiently. An improved version of the
method, the Super4PCS [80], eliminates some of the quadratic steps, such
as finding all pairs of vertices at a given distance, by using another spatial
structure built in a preprocessing step.

The Fast Global Registration [129] stands on the border between local
and global approaches, despite its name. It uses Fast Point Feature Histo-
gram (FPFH, [104]) features that are matched and a subset of valid match-
ing pairs is iteratively refined, while each iteration also improves the aligning
transformation.

Naturally, some of the concepts and approaches used in the methods
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for symmetry detection that were described above could also be utilized in
surface registration. On the other hand, some of the registration methods
mentioned in this section could quite likely be modified to perform some
form of symmetry detection as done e.g. in [78] or [22].

3.6 Summary
In this chapter we provided an overview of previous work done in the field of
symmetry detection and briefly in rigid surface registration. The number of
existing methods is certainly far from small and considering the age of the
least recent ones the area has been developing for quite a time. Nevertheless,
despite many of the methods being sophisticated and capable of providing
good results, there is obviously still room for improvement.

For example, the possibilities for detecting rotational symmetries in 3D
objects seem to be very limited - not just that the number of existing meth-
ods for this symmetry type is rather small but they also mostly have some
major constraints such as only finding circular symmetries or only sym-
metries with the axis passing through some reference point. The number
of methods for detecting reflectional symmetries is seemingly much larger
but even here most of the methods are not robust enough to be used on
weakly symmetrical objects or put some constraints on the input data such
as requiring a mesh or other specific representation or at least estimated
normals in each point. For the very few methods that appear to be capable
of finding even weak reflectional symmetries in general point sets there are
further questions about computational efficiency, robustness to noise, imple-
mentation simplicity or flexibility (possibility to easily modify the method
for out-of-order situations, different types of data, different symmetry types
etc.) which are often not even addressed in the corresponding publications.

One thing that can be noticed, however, is that most of the methods use
their own unique approaches and are based on unique ideas. This means
that, apart from several exceptions, each method usually advances the field
in different direction. While this might be good from the scientific point
of view because many novel methods are produced, it also suggest that the
approaches these methods are based on are not very flexible because they
are rarely reused. For example, when a method for some new specific type
of data is needed (e.g. objects with missing parts) a new method is usually
developed rather than extending/modifying an existing one. Therefore, in
this work we will attempt to not just design new methods for symmetry
detection that are better than the previous ones in terms of robustness, speed
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and requirements on input data but also to base the methods on approaches
that are flexible and generic so that they could be further extended, modified
or generalized and reused in the future for other related problems.
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4 Consensus Evaluation in
RANSAC Surface
Registration

In this chapter we describe our contribution to the field of rigid surface
registration. The task of rigid surface registration is, having two surfaces on
the input, find a rigid transformation (i.e., a combination of rotation and
translation) that best aligns the first surface with the second one. The two
surfaces might have generally different sizes and shapes but some portion of
overlap between them (parts of the surfaces that are similar) is expected.
The resulting rigid transformation should map the approximately matching
parts of the two surfaces onto each other. For a specific example see Figure
2.5 in Section 2.3.

As already mentioned in Section 2.3, rigid surface registration is a field
strongly related to symmetry detection since it can be understood as de-
tecting rigid symmetry between two objects. The contribution and results
presented in this chapter can therefore very easily find its application in
the area of symmetry detection as well. The content of this chapter was
previously published in [46].

Several registration algorithms mentioned in Section 3.5 (among oth-
ers [2, 17, 76, 80]) can be interpreted as a particular implementation of
the general RANSAC (Random Sample Consensus) approach, which is very
commonly used in surface registration and other areas including symmetry
detection. The overall scheme of a general RANSAC registration algorithm
is following. By estimating the correspondences of points of the first sur-
face with points of the second surface, a set of candidate transformations
is constructed, each of which succeeds in aligning at least part of the input
surfaces. Then, the consensus of the candidate transformations is evaluated
to pick the best one. Some algorithms, including the current state of the
art Super4PCS [80], seek consensus of points of the two input surfaces w.r.t.
the candidate transformations. The candidate transformations are being
applied on the first input surface and the consensus is determined for each
candidate as the portion of the transformed surface that overlaps with the
second surface. Generally, the candidate with the largest overlap is selected
as the best one. However, we argue that this might not be the best possible
approach.
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The key problem of finding the consensus this way stems from the dif-
ficulty of evaluating the result. Usually, the user is expected to define a
certain distance δ, and the quality of the alignment is defined as the size of
the overlap, i.e. the portion of the input meshes that get mapped closer to
each other than δ. Choosing a large δ leads to false matches, which align
incorrect parts of the two objects. On the other hand, choosing a small δ
leads to a narrow global optimum, which can be missed even with a rather
dense sampling of the solution space, and a large number of local optima
which complicate iterative refinement. For practical registration, δ cannot
be determined universally, not even as a proportion of the input scale, as we
demonstrate in our experiments. Moreover, since the solution involves an
estimate of a rotation, it is possible that remote parts of the surface become
severely misaligned, even when the rotation estimate is only off by a few
degrees.

As a remedy to this problem, we propose using information from all the
candidates to better analyze the space of rigid transformations. The key
observation is that the optimal alignment forms a density peak in the space
of rigid transformations. The problem can therefore be solved using some
clustering algorithm (k-means, mean shift), interpreted as a facility location
problem, or solved by efficiently estimating the density at each candidate
location. In our experiments, the last choice is both the fastest and the
most reliable. Similar idea was previously used by Mitra et al. for symmetry
detection [83] and here we show how a related approach can be employed in
surface registration.

In order to perform a clustering or a density estimation, a crucial ingredi-
ent is a metric that relates the elements of the given space, i.e. determines
the amount of (dis)similarity of rigid transformations. This turns out to be
a non-trivial problem, because the metric has to relate the different degrees
of freedom of a rigid transformation (rotation, translation) to obtain a single
distance value. This relation depends on the units used for translation and
rotation, as well as on the scale of the object: for large objects, a unit rota-
tion (for example one degree) has a bigger impact than a unit translation,
and vice versa. For example, imagine a sphere centered at the origin with
radius 10000. By rotating this sphere by 1◦ around the y axis all points
on its surface that also lie in the xz plane travel along the arc of length
2π·10000

360 ≈ 174.53. However, translating the sphere by a unit vector only
causes every point on its surface to travel the distance of 1 which is hardly
comparable.

Furthermore, unlike translation, rotation impacts differently different
points of the object, i.e. points that are farthest from the rotation axis
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travel the largest distances whereas points lying on the intersections of the
axis with the object do not move at all.

There are several well-defined metrics for rotations [54], and the dis-
tance of two translations can be simply defined as the Euclidean distance of
the two translation vectors. However, the problem of computing distances
of combined transformations seems insufficiently addressed. In the related
context of symmetry detection Mitra et al. [83] used the mean shift cluster-
ing algorithm with a metric which uses a weighting scheme that imperatively
relates a rotation by π radians to a translation by one half of the body di-
agonal. In [113] the authors attempt to address the problem of measuring
distances of 2D transformations by searching for geodesics on the manifold
of rigid transformations and similar idea is used by [107] for transformations
in 3D, however, the problem of proper scale is not addressed - in [107] the
authors introduce two parameters that need to be fixed by the user to set
the importance ratio between unit translation and unit rotation. A metric
in SE(3) is used by [8] to generate smooth transformations. In this case the
problem of relating rotations and translations is bypassed by inheriting a
metric from a higher-dimensional manifold GL(3) and projecting the result
back to SE(3) which is not an optimal solution.

A common approach to constructing a metric for rigid transformations is
to compute it as a weighed sum of some rotation metric and the Euclidean
translation metric [65]. In this chapter, we analyze this approach and show
that, although it is well applicable, it needs to be used with caution, because
of several problems inherent to such metrics that may not be obvious. We
also show how these problems can be mitigated or even eliminated using
a different, data-induced transformation metric which embraces a different
interpretation of the problem, and we demonstrate that in order to properly
relate the rotation and translation component, the difference between two
rigid transformations necessarily must depend on the input data, and should
be evaluated as such. A metric in SE(3) that fulfills this criterion has been
defined in [98] to evaluate registration results, however, it has not been used
in the registration (nor symmetry detection) process itself.

As a model case, we study a generic global RANSAC-based rigid surface
registration scheme. We compare several metrics in the context of this al-
gorithm, as well as different consensus evaluation strategies, and we report
the results on multiple non-trivial registration datasets.

Our contribution is threefold:

• we analyze a global registration algorithm that is based on creating a
set of candidate alignments, followed by finding a density peak in the
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space of rigid transformations using an efficient data structure - the
Vantage Point Tree,

• in the context of the algorithm, we test a variety of distance metrics,
examining their properties theoretically and experimentally,

• we propose certain modifications to the compound metrics that im-
prove their performance in the task at hand and potentially in other
applications as well.

4.1 Model Registration Algorithm Descrip-
tion

As input, we have two triangle meshes P and Q with vertices pi, i = 1..νP
and qi, i = 1..νQ, and triangles tPi , i = 1..τP and tQi , i = 1..τQ. The result
is a rigid transformation (an orientation-preserving isometry) that aligns Q
to P . Since neither P nor Q represent the entire object, the overlap is only
partial.

The model algorithm consists of the following steps:

1. A subset of the vertices of P is selected, so that their distribution is
roughly uniform. For each sample, the principal curvatures κ1, κ2, as
well as the first principal direction e1, are estimated and stored.

2. The mesh Q is also sampled in a roughly uniform manner and for
each sample the best matching sample in P is identified based on the
similarity of principal curvature estimations. A rigid transformation
is constructed, which maps the corresponding points, and its qual-
ity is evaluated. High scoring transformations are stored for further
processing.

3. The set of candidate transformations is interpreted as a point set in the
SE(3) space, and a density peak that can be interpreted as a candidate
consensus is sought.

In the following, we describe each step in more detail.

4.1.1 Curvature Sampling
First, we need a feature vector that describes the local shape of the objects.
It is possible to use various descriptors proposed in the literature [41]. For
the purposes of our model scenario, we need a descriptor that is fast to
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Figure 4.1: Neighborhood for curvature computation. Black lines represent
original edges, while blue lines show their projection to the tangential plane,
which is parameterized by (lx, ly), represented by red arrows. Black arrows
are 3D normals, while blue arrows are the normals projected to the tangential
plane, i.e. (nj · lx,nj · ly).

evaluate, yet considers larger local neighborhood than just a 1-ring (vertices
in distance of 1 edge from the point in which the descriptor is being evalu-
ated) in order to be resilient to noise. We choose to use a very simple custom
local feature vector, only consisting of the two principal curvatures (see [119]
for details about curvature) estimated from points in a local neighborhood,
which is found using a breadth-first search (BFS) of the mesh connectivity.
We stop the BFS at a certain Euclidean distance from the sample point.

Having a set of N neighbors vj, j = 1..N of a vertex pi, we estimate
the shape operator in a way similar to the method of Rusinkiewicz [102].
In contrast to his method, we do not attempt to obtain exact curvature,
and thus we can omit some steps in order to simplify the computation. We
parameterize the tangent plane, defined by the normal ni of the vertex pi,
with a local othonormal basis (lx, ly) (see Fig. 4.1). We then use the property
of the shape operator that for a tangential position difference vector it yields
the corresponding change in normal, i.e. for each neighbor vj the following
relationship represents two linear equations:[

a b

b c

] [
(vj − pi) · lx
(vj − pi) · ly

]
=
[
(nj − ni) · lx
(nj − ni) · ly

]
.

Since ni · lx = 0 and ni · ly = 0 we get[
a b

b c

] [
(vj − pi) · lx
(vj − pi) · ly

]
=
[
nj · lx
nj · ly

]
. (4.1)

We obtain an overdetermined system of linear equations. Using the least
squares we find the values a, b and c, which form an estimate of the shape
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operator. Its eigenvalues are used as estimates of the principal curvatures
and stored. We also compute the eigenvector corresponding to the larger
eigenvalue and project it back to the tangent plane, yielding one principal
direction e1, which is also stored with the sample.

4.1.2 Candidate Rigid Transformations
We sample the vertices from P randomly, using a regular 3D grid over the
distribution of points and ensuring that from each grid cell at most one
vertex is selected. This way the sampling is usually close to uniform, even
when the distribution of points in P is not.

Next, we build a set of candidate transformations. We construct a 2D
kD-tree on the samples from P , using the curvature estimates as coordinates.
Next, we sample the vertices of Q using the same strategy as with P , i.e.
ensuring a roughly uniform sampling. For each sample point in Q, the
principal curvatures are estimated using Eq. 4.1. Having the curvature
estimates of a sample from Q, we use the kD-tree to locate the most similar
sample from P .

Finally, having a potentially corresponding pair of vertices, we build a
pair of rigid transformations T+ and T− that map the sample from Q to the
sample from P , together with the normal, T+ maps the principal direction
eQ of the sample in Q to the principal direction eP of the sample in P , while
T− maps eQ to −eP .

For each generated transformation, we quickly verify that it aligns a sub-
stantial part of Q. In preprocessing, we build a uniform 3D binary grid over
the bounding box of P , in which each cell value determines whether there
is a point in P closer to the cell center than δ. We use point sample of Q
reduced to about 400 vertices. Each sample vertex vq is transformed using
the candidate transformation T , and the binary grid is used to determine
whether or not there is a point vp in P such that ‖T (vq)−vp‖ < δ. The per-
centage of points that meets this criterion is also known as Largest Common
Pointset (LCP). If LCP is at least 3%, then the candidate is retained for
further processing. We keep sampling Q until a certain number of candidate
transformations is found, which pass the verification.

One possibility to choose the aligning transformation is to pick the can-
didate with the highest resulting overlap, i.e. the highest portion of samples
fulfilling the verification condition. As discussed at the beginning of this
chapter, this approach is sensitive to the choice of the δ parameter, and,
therefore, we also use a different approach, exploiting the distribution of the
candidate transformations.
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4.1.3 Analyzing the Space of Rigid Transformations
In the set of candidate transformations, there are probably many transform-
ations quite close to the optimum, but possibly not close enough to obtain
a high score. Even in such a situation, however, it is possible to analyze
the space of rigid transformations and find a good approximation of the
optimum by looking for a density peak in the distribution of the candidate
transformations.

The key ingredient needed for evaluating the density is a proper way of
evaluating proximity. This problem is challenging, because of the non-trivial
topology of the space, which makes its parameterization difficult. Common
parameterizations, such as using 4× 4 matrices in homogeneous coordinates
or dual quaternions, are redundant in the number of parameters used to
describe the transformation. The redundancy can be avoided for example
by using Euler angles to describe the rotation, however, even then, similarity
of two rigid transformations does not imply the similarity of the parameters
that describe them. Choosing a proper metric in SE(3) is a crucial task,
and, therefore, we analyze different possibilities in the next section. At this
point, we assume that the distances can be consistently measured and finish
the overview of our model registration algorithm.

There are different ways of finding a density peak of vertices (rigid trans-
formations in our case) in a vector space. A clustering algorithm can be used
that groups similar vectors, and cluster centroids or modes often correspond
to density peaks. There are various approaches to clustering, ranging from
simple parametric algorithms, such as k-means, up to more complex proced-
ures, such as mean shift clustering [25] or facility location [19]. In each case,
the questions remain how to select the cluster which corresponds to the best
alignment, how to select the best alignment within the cluster, and whether
the clusters correspond to good alignments in the first place. Although some
intuitive answers can be found for some of the clustering algorithms, we use
a more direct way of finding the density peak, which turns out to be both
more efficient computationally, as well as more robust/precise.

A sampling density estimation function can be defined using some kernel
function K as

ρ(x) =
∑
i

K(d(Ti, x)), (4.2)

where d(x, y) measures the distance of two samples. Various kernel functions
can be used for K, for efficiency reasons we use a simple Gaussian K(r) =
e−(Dr)2 , where D is a spread parameter.

Instead of looking for the general location of the true global maximum
of ρ, we only search for a candidate T ∗, for which ρ(T ∗) ≥ ρ(Ti) for all
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candidate transformations Ti. Given the spread parameter D and some
small threshold t, only samples within a radius r =

√
−ln(t)/D contribute

significantly (> t) to the density.
Therefore, the task is to find for each candidate a set of candidates up to

a distance r. Such goal is usually achieved using a kD-tree, however, such
structure cannot be used in this setting, since the space we are working in
is not Euclidean. Having a metric, however, allows using a more general
acceleration structure - the Vantage Point Tree [126]. It is constructed as a
binary tree, where each node represents a certain candidate c. Inner nodes
have two child nodes: the near node contains all other candidates that are
closer to c than a certain threshold, while the far node contains candidates
that are farther from c than the threshold. The threshold is selected as
the median of distances, so that the tree is balanced, and at a certain level
the branching is terminated by a leaf node, which contains no more than a
certain number of candidates.

Building such a structure is of O(n log(n)) complexity. With the struc-
ture built, proximity queries can be resolved quickly with O(log(n)) com-
plexity in the average case by only investigating the branches which can
contribute to the answer. Therefore, evaluating the density estimation func-
tion at each candidate location has an overall complexity of O(n log(n)) and
it is easily feasible even with the 104 candidates used as default setting.

In principle, our approach is similar to what [83] proposed for symmetry
detection, however, we use a substantially different execution with differ-
ent metrics in a slightly different application. Our density peak location
approach could be also applied in an arbitrary Mode-based method (see
Chapter 5) for global symmetry detection. As an alternative, we have tested
the k-means algorithm and the local search algorithm which solves the prob-
lem in the facility location interpretation. Both algorithms require a higher
minimum number of candidates in order to robustly identify the correct
alignment than the proposed exhaustive density evaluation. Moreover, k-
means is more than 5 times slower and the local search for facility location
is more than 48 times slower. Therefore, we argue that using an advanced
clustering algorithm is not an efficient solution for finding the density peak
representing the optimal alignment.

4.2 Transformation Distance Metrics
In order to find the density peak in the space of rigid transformations we
need to define a metric d(T1, T2) which measures the distance of transform-
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ation T1 from transformation T2. The metric must somehow relate the two
parts of the transformation: the rotation and the translation. In this section
we therefore discuss other transformation distance metrics that can be used
for this purpose. Apart from surface registration, the presented knowledge
about rigid transformations can be useful in different areas including sym-
metry detection, especially in the case of using the Mode-based methods
(see Section 5) such as [83] to detect rigid symmetries.

4.2.1 Composed Metrics
Since a rigid transformation can be decomposed into a rotation and a trans-
lation, a metric can be defined as d(T1, T2) = cRdR(R1,R2) + ct‖t1 − t2‖
where dR(R1,R2) is a metric for rotations, R1 and R2 are the rotations
of T1 and T2 respectively, t1 and t2 are translation vectors of T1 and T2

respectively and cR and ct are customizable coefficients (a constant spread
parameter D of the kernel will be used). This way of defining the metric
was used e.g. in [65] or [4], a very similar approach was also used by Mitra
et al. in [83] with the only difference that the terms are squared and there
is an additional term for scaling.

An extensive analysis of several distance metrics for rotations where ba-
sically any of these metrics could be used as dR(R1,R2) can be found in [54].
Composed transformation distance metrics, as described above, exhibit cer-
tain impractical properties, some of which are independent of the choice of
dR(R1,R2), as discussed next.

Order of Operations

A rigid transformation can be equivalently defined as either a rotation fol-
lowed by a translation, i.e. T (x) = Rx + t, or as a translation followed
by a rotation, i.e. T ′(x) = R′(x + t′). If T and T ′ describe the same
transformation, following must hold:

Rx + t = R′(x + t′). (4.3)

This equation holds when R = R′ and t′ = RT t, because then R′(x + t′) =
R(x +RT t) = Rx + t. Applying transformation T to an object corresponds
to first changing its orientation to the target orientation by rotation and then
translating the object to the target location. Applying T ′ corresponds to first
translating the object to such a position that the subsequent rotation, which
enforces the target orientation, also moves the object to the target location.
The change of orientation is the same in both cases. Therefore, Equation
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4.3 can be rewritten as follows

Rx + t = R(x + t′),
Rx + t = Rx + Rt′,
t = Rt′ ⇒ RT t = t′. (4.4)

Suppose there are two arbitrary rigid transformations T1 and T2 ex-
pressed in the rotation-first form, i.e. R1x + t1, R2x + t2, and translation-
first form, i.e. R′1(x + t′1), R′2(x + t′2). Since R1 = R′1 and R2 = R′2,
dR(R1,R2) = dR(R′1,R′2) for any rotation metric dR. The translation met-
rics ‖t1 − t2‖ and ‖t′1 − t′2‖ are, however, different. The first metric can be
expanded as

‖t1 − t2‖ =
√

(t1 − t2)T (t1 − t2) =
√

tT1 t1 − 2tT1 t2 + tT2 t. (4.5)

From Equation 4.4 it follows that ‖t′1−t′2‖ = ‖RT
1 t1−RT

2 t2‖ and the second
metric can, therefore, be expanded as follows

‖t′1 − t′2‖ = ‖RT
1 t1 −RT

2 t2‖ =
√

(RT
1 t1 −RT

2 t2)T (RT
1 t1 −RT

2 t2) =

=
√

tT1 R1RT
1 t1 − 2tT1 R1RT

2 t2 + tT2 R2RT
2 t2 =

=
√

tT1 t1 − 2tT1 R1RT
2 t2 + tT2 t2.

The only case when ‖t1 − t2‖ = ‖t′1 − t′2‖ is when R1 = R2. The result
of the translation metric and, therefore, of the composed transformation
distance metric, depends on the order of rotation and translation, which
we choose for describing the transformations. Furthermore, the difference
between ‖t1−t2‖ and ‖t′1−t′2‖ grows with the increasing difference between
R1 and R2.

In principle there is no reason to prefer either representation and its
choice seems rather arbitrary. However, for objects located near the origin,
the rotation-first form may seem more appropriate, since regardless of the
rotation, the direction of the translation vector approximately corresponds
to the difference between the output and the starting position of the object.
Also, the rotation-first form corresponds to the way rigid transformations
are evaluated when using matrix multiplication in homogeneous coordinates
for transformation evaluation. For these reasons, in the rest of this text, we
only consider rigid transformations in the rotation-first form. Nevertheless,
the statements made in the rest of this section can be similarly made about
the translation-first form using analogous analysis and derivations.
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Dependence on Position

Consider an input object Qin and an arbitrary rigid transformation T that
transforms Qin into an output object Qout = T (Qin). Translating both Qin

and Qout by the same arbitrary vector t0 results in two objects Q′in and Q′out
respectively, with different absolute position but the same mutual position
as Qin and Qout. To transform Q′in into Q′out a new transform T ′ must be
defined such that T ′(Q′in) = Q′out. Since translating Q′out by −t0 results in
Qout, T (x) = T ′(x + t0)− t0 must hold, which can be expanded as

Rx + t = R′(x + t0) + t′ − t0.

The change of orientation is equal for T and T ′, and therefore R = R′,
which implies

Rx + t = R(x + t0) + t′ − t0,

t′ = t−Rt0 + t0. (4.6)

Consider two different rigid transformations T1 and T2 and some arbitrary
vector t0 and two corresponding transformations T ′1 and T ′2 where t′1 =
t1 − R1t0 + t0 and t′2 = t2 − R2t0 + t0 according to Equation 4.6. Since
R1 = R′1 and R2 = R′2, it follows that dR(R1,R2) = dR(R′1,R′2), but the
translation metrics ‖t1 − t2‖ and ‖t′1 − t′2‖ are generally different. The first
one expands as shown in Equation 4.5, while the second metric expands as

‖t′1 − t′2‖ = ‖t1 −R1t0 + t0 − t2 + R2t0 − t0‖
= ‖t1 −R1t0 − t2 + R2t0‖, (4.7)

and thus ‖t1 − t2‖ = ‖t′1 − t′2‖ only when R1 = R2 or when t0 = 0.
Suppose a different scenario, where only the input objectQin is translated

by t0, creating Q′in, and Qout stays the same, i.e. T (Qin) = T ′(Q′in) = Qout.
Now T (x) = T ′(x + t0) must hold, and it holds when R = R′ and t′ =
t − Rt0, the derivation is analogical to Eq. 4.6. If we now again consider
two transformations T1, T2 and corresponding T ′1, T ′2 it is easy to see that
‖t′1 − t′2‖ = ‖t1 −R1t0 − t2 + R2t0‖, which is the same expression as Eq.
4.7.

In a scenario where only Qout is translated by t0, yielding Q′out, and Qin

stays the same (T (Qin) = Qout, T ′(Qin) = Q′out). Now T (x) = T ′(x) − t0

must hold and it is easily proven that it holds when R = R′ and t′ =
t + t0 because then R′x + t′ − t0 = Rx + t + t0 − t0 = Rx + t. For two
transformations T1, T2 and corresponding T ′1, T ′2 we get

‖t′1 − t′2‖ = ‖t1 + t0 − t2 − t0‖ = ‖t1 − t2‖. (4.8)
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This has profound consequences in the context of rigid surface registra-
tion and possibly in other applications as well including symmetry detection.
When the space of rigid transformations is being sampled and transforma-
tions are created by fitting points of Q onto points of P , the value of the Eu-
clidean metric applied on the translation components of the transformations
depends on the position of Q (Eq. 4.7), but does not depend on the position
of P (Eq. 4.8). Having a general rigid transformation T1(x) = R1x + t1 and
x = 0, then t1 exactly represents the change of position of the point caused
by the transformation and if another transformation T2(x) = R2x + t2 is
defined then ‖t1− t2‖ exactly represents the difference between the position
change of T1 and the position change of T2. However, if x changes by a non-
zero vector t0, then the value ‖t1 − t2‖ starts to deviate from the difference
of the position changes of T1 and T2 and, according to Eq. 4.7, the deviation
grows infinitely with the distance of x from the origin (the length of t0) and
with the difference between the two rotations R1 and R2 (the angle between
R1t0 and R2t0). This implies that generally the farther a point is from the
origin, the worse the translation component t of a rigid transformation de-
scribes the change of the point’s position after applying the transformation,
and the worse the Euclidean metric of the translation components describes
the difference of these changes between the translation components of two
arbitrary rigid transformations.

Using the composed transformation metric, which uses the Euclidean
metric on the translation components, is therefore only meaningful when the
transformed object is approximately centered at the origin. Otherwise the
composed metric can behave unpredictably, having a great negative impact
on the registration results.

Dependence on Orientation

A rotation metric dR is right-invariant if for any two rotations R1, R2 and
an arbitrary rotation R0 it is that dR(R1,R2) = dR(R1R0,R2R0). It is left-
invariant if dR(R1,R2) = dR(R0R1,R0R2) and bi-invariant if dR(R1,R2) =
dR(R1R0,R2R0) = dR(R0R1,R0R2).

Consider an input object Qin and an arbitrary rigid transformation T

that transforms Qin into an output object Qout = T (Qin). Now imagine
rotating both Qin and Qout using the same arbitrary rotation matrix R0

resulting in two objects Q′in and Q′out respectively, with different absolute
orientation but the same mutual orientation as Qin and Qout. A transform
T ′ transforms Q′in into Q′out, i.e. T ′(Q′in) = Q′out. Since rotating Q′out by RT

0
results in Qout, T (x) = RT

0 T
′(R0x) must hold, which can be expanded as
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follows

Rx + t = RT
0 (R′R0x + t′),

Rx + t = RT
0 R′R0x + RT

0 t′.

This equation holds when R′ = R0RRT
0 and t′ = R0t.

Suppose we have two different rigid transformations T1 and T2 and two
corresponding transformations T ′1 and T ′2, where t′1 = R0t1, t′2 = R0t2,
R′1 = R0R1RT

0 and R′2 = R0R2RT
0 , and R0 is some arbitrary rotation

matrix. Obviously, ‖t1−t2‖ = ‖t′1−t′2‖ because ‖t1−t2‖ = ‖R0t1−R0t2‖.
In order to satisfy dR(R1,R2) = dR(R′1,R′2) it must be that dR(R1,R2) =
dR(R0R1RT

0 ,R0R2RT
0 ) which holds if the rotation metric dR is bi-invariant.

Suppose a different scenario, where only the input object Qin is rotated
by R0, creating Q′in, and Qout stays the same, i.e. T (Qin) = T ′(Q′in) = Qout.
Now T (x) = T ′(R0x) must hold, which expands as Rx + t = R′R0x +
t′. This holds for R′ = RRT

0 and t′ = t. If we now again consider two
transformations T1, T2 and corresponding T ′1, T ′2, obviously ‖t1 − t2‖ =
‖t′1 − t′2‖. For dR(R1,R2) = dR(R′1,R′2) it must now be that dR(R1,R2) =
dR(R1RT

0 ,R2RT
0 ) which holds when the rotation metric dR is right-invariant.

Finally, when only Qout is rotated by R0, creating Q′out, and Qin stays
the same (T (Qin) = Qout, T ′(Qin) = Q′out), T (x) = RT

0 T
′(x) must hold,

which expands as Rx + t = RT
0 (R′x + t′). This implies R′ = R0R and

t′ = R0t because then RT
0 (R′x + t′) = RT

0 (R0Rx + R0t) = Rx + t. For
two transformations T1, T2 and corresponding T ′1, T ′2, for the translation
metric we now again get ‖t1 − t2‖ = ‖R0t1 − R0t2‖, which holds. For
dR(R1,R2) = dR(R′1,R′2) we need dR(R1,R2) = dR(R0R1,R0R2), which
holds when the rotation metric dR is left-invariant.

In context of rigid surface registration, when fitting points of object Q
onto points of object P and a composed metric is used to measure distances
between the created transformations, the value of the composed metric is
independent of the initial orientation of Q only if the rotation metric is
right-invariant and independent of the initial orientation of P only if the
rotation metric is left-invariant. For a composed metric to be independent
of the initial orientation of both Q and P , the rotation metric must be bi-
invariant, even when the mutual orientation of Q and P remains unchanged.

Therefore we recommend only using rotation metrics that are bi-invariant,
otherwise the composed metric might behave unpredictably, negatively im-
pacting the registration results. This is because the distances of the can-
didate transformations could change just based on the initial orientation of
the input objects, i.e. for one initial orientation two candidates might be
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evaluated as distant while being evaluated as near for a different orienta-
tion. This can be compared to the following analogous situation: imagine
a metric for vectors in E2 that gives a different distance value for vectors
[1, 0]T , [0, 1]T than for vectors [−1, 0]T , [0,−1]T only because their absolute
orientation is different although their mutual pose is identical. Evaluating
density with such a metric would be unpredictable and could easily lead to
incorrect identification of the density maximum.

Rotation Metrics

We consider 6 rotation metrics that are described and analyzed in [54],
denoted Φi, i = 1, ..., 6, but since Φ6 = 2Φ3, we exclude Φ6 and only discuss
Φi, i = 1, ..., 5. For two rotations, described by rotation matrices R1, R2, we
denote q1, q2 the 4-dimensional vectors representing unit quaternions that
correspond to the same rotations, and (α1, β1, γ1), (α2, β2, γ2) the triplets of
corresponding Euler angles.

Distance between Euler angles

dDEAR (R1,R2) = Φ1((α1, β1, γ1), (α2, β2, γ2)) =

=
√
d(α1, α2)2 + d(β1, β2)2 + d(γ1, γ2)2

where d(a, b) = min{|a−b|, 2π−|a−b|} and α, γ ∈ [−π, π), β ∈ [−π/2, π/2).

Distance between unit quaternions

dDQR (R1,R2) = Φ2(q1,q2) = min{‖q1 − q2‖, ‖q1 + q2‖}

where q1 and q2 are treated as 4-dimensional vectors and ‖.‖ denotes the
Euclidean norm.

Dot product of unit quaternions

dADPQR (R1,R2) = Φ3(q1,q2) = arccos(|qT1 q2|)

and
dDPQR (R1,R2) = Φ4(q1,q2) = 1− |qT1 q2|

where q1 and q2 are treated as 4-dimensional vectors in both cases.
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Deviation from identity matrix

dDIMR (R1,R2) = Φ5(R1,R2) = ‖I−R1RT
2 ‖F = ‖R1 −R2‖F

where ‖.‖F denotes the Frobenius norm and I is the identity matrix.

All these metrics, except for dDEAR , are bi-invariant [54] and therefore well
applicable in the context of rigid registration. For more detailed description
and further analysis of these rotation metrics see [54]. The proof that dDEAR

is not bi-invariant follows.
Consider general rotation matrices R1, R2 and R0 and the corresponding

Euler angles (α1, β1, γ1), (α2, β2, γ2) and (α0, β0, γ0), respectively. If dDEAR is
a bi-invariant rotation metric, then dDEAR (R1,R2) = dDEAR (R1R0,R2R0) =
dDEAR (R0R1,R0R2) must hold for any R1, R2, R0. Now consider that the
rotations are such that α1 = 0, β1 = 0, γ1 = 90◦, α2 = 0, β2 = −90◦,
γ2 = 0, α0 = 0, β0 = 30◦, γ0 = 60◦. It can be easily shown that the
Euler angles of the rotation defined by a matrix R1R0 are α10 = −30◦,
β10 = 0, γ10 = 150◦ and those of R2R0 are α20 = 0, β20 = −60◦, γ20 = 60◦.
Similarly, for R0R1 we get α01 = 0, β01 = 30◦, γ01 = 150◦ and for R0R2

we get α02 = 73.896◦, β02 = −25.658◦, γ02 = 56.309◦. It is not hard to
show now that dDEAR (R1,R2) = 127.279, dDEAR (R1R0,R2R0) = 112.249 and
dDEAR (R0R1,R0R2) = 119.404. This implies that in general dDEAR (R1,R2) 6=
dDEAR (R1R0,R2R0) and dDEAR (R1,R2) 6= dDEAR (R0R1,R0R2) thus proving
that the rotation metric dDEAR is neither left nor right-invariant, and therefore
not bi-invariant.

Normalization

Since the values of all the rotation metrics described above are bounded
on finite intervals, we normalize them so that their values are mapped to
[0, 1]. We also normalize the translation metric by dividing it by the es-
timated size of Q which is computed as the average distance of its vertices
from its centroid. The composed metric we use can therefore be expressed
as d(T1, T2) = cR

dR(R1,R2)
kR

+ ct
‖t1−t2‖

kt
where kR, kt are the corresponding

normalization constants.

Properties of Composed Metrics

In order to use a composed metric in the context of rigid registration, it
is advisable to choose a bi-invariant rotation metric and only investigate
transformations of a centered object. The centering can also be interpreted
as integral part of the metric by evaluating each transformation composed
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with a centering translation d(T1◦Tc, T2◦Tc), where Tc moves the centroid of
the input object to the origin. In this sense, all composed metrics are data-
dependent, since the position of the centroid of the input object is necessary
for their proper evaluation. All composed metrics have two free parameters,
cR and ct. They influence the scale of the metric and, more importantly,
they set the balance of the rotation and translation part.

4.2.2 Compound Metrics
Some of the problems of composed metrics can be eliminated by accepting
and exploiting the fact that the metric inevitably must depend on the input
data to which the transformations are applied, i.e. evaluating the similarity
of rigid transformations by evaluating the difference of their effect on the
input data.

Vertex Sum of Squares

A compound data-induced metric provides a single value which quantifies
the difference between the effects of the two transformations to the input
object. Such a metric was previously discussed in [98], however, it has only
been used in order to evaluate the result of a registration, yet not within the
registration process itself. For two rigid transformations T1, T2 it is defined
as follows

d(T1, T2)2 =
νq∑
i=1
‖T1(qi)− T2(qi)‖2 (4.9)

where qi are the vertices of the input objectQ. This is in fact a special case of
the Procrustes distance [61] used to measure distances between point clouds
with known point-to-point correspondences. In the following, we show that
for measuring distances between rigid transformations, it can be evaluated
with O(1) time complexity rather than O(n).

Expressing T1 as a rotation R1 and a translation t1, and T2 as a rotation
R2 and a translation t2, we can derive Eq. 4.10. For any vector v and any
matrix A, it applies that

vTAv = A : vvT ,

where A : B denotes the Frobenius matrix product. Also

vTAv = A : vvT = AT : vvT = vTATv,

and thus the expression in Eq. 4.11 can be derived. Without loss of general-
ity, we can shift Q so that ∑νQ

i=1 qi = 0, producing the simplified expression
in Eq. 4.12.
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d(T1, T2)2 =
νQ∑
i=1
‖R1qi + t1 −R2qi − t2‖2 =

νQ∑
i=1

(R1qi + t1 −R2qi − t2)T (R1qi + t1 −R2qi − t2) =

νQ∑
i=1

(qTi RT
1 R1qi+qTi RT

1 t1−qTi RT
1 R2qi−qTi RT

1 t2 + tT1 R1qi + tT1 t1

−tT1 R2qi − tT1 t2−qTi RT
2 R1qi−qTi RT

2 t1+qTi RT
2 R2qi+qTi R2t2

−tT2 R1qi − tT2 t1+tT2 R2qi + tT2 t2) (4.10)

d(T1, T2)2 =2
νQ∑
i=1

qTi qi+2(t1 − t2)TR1

νQ∑
i=1

qi+2(t2 − t1)TR2

νQ∑
i=1

qi

+ νQtT1 t1 − 2νQtT1 t2 + νQtT2 t2−2RT
1 R2 :

νQ∑
i=1

qiqTi (4.11)

d(T1, T2)2 =2
νQ∑
i=1

qTi qi + νQtT1 t1 − 2νQtT1 t2 + νQtT2 t2−2RT
1 R2 :

νQ∑
i=1

qiqTi (4.12)

d(T1, T2)2 =2
νQ∑
i=1

qTi qi + νQtT1 t1 − 2νQtT1 t2 + νQtT2 t2

−2diag(RT
1 R2) · diag(

νQ∑
i=1

qiqTi ) (4.13)

This approach can be taken one step further: rotate Q so that the matrix∑νQ

i=1 qiqTi becomes diagonal using EVD. Assuming Q has been rotated this
way, we reach the final expression in Eq. 4.13, where diag(M) stands for a
vector of diagonal elements of a matrix M. Neither the full matrix RT

1 R2 nor∑νQ

i=1 qiqTi must be computed, only their diagonal elements that contribute
to the result.

The final formulation only depends on a scalar value ∑νQ

i=1 qTi qi, and a
vector diag(∑νQ

i=1 qiqTi ), as has been noted but not exploited in [98]. These
quantities can be precomputed for Q, which makes the distance evaluation
independent of the size of Q, while still obtaining exactly the same result as
when evaluating Eq. 4.9. This dissimilarity measure is fully independent of
both rotation and translation and fulfills all properties of a metric.

Triangle Sum of Squares

One disadvantage of the vertex sum of squares is that its value depends
on the sampling density of Q, which may be quite irregular. We propose
addressing this issue by integrating the squared distance over all triangles
rather than summing over vertices. Following the steps of Eq. 4.10-4.13, we
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derive the value of the integral over a triangle t:

dt(T1, T2)2 =
∫
t
‖R1x + t1 −R2x− t2‖2da

= 2
∫
t
xTxda+ a(t)(tT1 t1 − 2tT1 t2 + tT2 t2)

− 2diag(RT
1 R2) · diag(

∫
t
xxTda),

where a(t) is the area of triangle t. A full rigid transformation metric is
obtained by summing over all mesh triangles:

d(T1, T2)2 =
τQ∑
i=1

dtQi
(T1, T2)2.

Note that computationally, the vertex sum and the triangle sum error met-
rics are equivalent, the only difference is the means of precomputing the
constants needed for the evaluation. For a triangle t = (A,B,C), it is not
difficult to show that∫

t
xTxda =

∫
t
x2da+

∫
t
y2da+

∫
t
z2da,

diag(
∫
t
xxTdat) = (

∫
t
x2da,

∫
t
y2da,

∫
t
z2da),∫

t
x2da = Jt

(Ax +Bx + Cx)Cx + A2
x +B2

x + AxBx

12 ,

Jt = ‖(B − A)× (C − A)‖,

while the remaining integrals of y2 and z2 are expressed analogously. Note
that these simplified expressions can only be used for properly centered and
pre-rotated mesh, the rotation is equivalent to the vertex sum, only again
using integrals over triangles rather than sums. This does not, however,
compromise the generality of the approach, since it can be equivalently ex-
pressed for general position, only resulting in a more expensive computation
by a constant. Both vertex and triangle sum of squared distances depend
on the input data, but only a few values suffice to evaluate the metrics in
O(1) time.

L1 Data Dependent Metrics

A typical problem of a squared distance error metric is its sensitivity to
outliers: much more emphasis is given to larger distances than to small
ones. This issue can be alleviated by using a different distance metric [12],
such as L1, leading to:

d(T1, T2) =
νQ∑
i=1
‖T1(qi)− T2(qi)‖, (4.14)
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or if a metric insensitive to irregular sampling is required,

d(T1, T2) =
τQ∑
i=1

∫
tQi

‖T1(x)− T2(x)‖da.

Notably, a very similar expression has been recently used in order to evalu-
ate the smoothness (similarity) of local transformations needed for non-rigid
alignment [71]. With the L1 norm, it is substantially more difficult to eval-
uate such metric than when the L2 norm was used. The vertex sum leads
to linear computational complexity, while the triangle sum even leads to
integrals that are difficult to evaluate in general. Therefore, instead of the
full triangle sum L1 metric, we propose using an approximation

d(T1, T2) =
τQ∑
i=1

a(tQi )‖T1(c(tQi ))− T2(c(tQi ))‖, (4.15)

where c(t) is the centroid of the triangle t. Even with this approximation,
it is impractical to use either of the L1 metrics in registration, because of
their computational complexity. Nevertheless, L1 metrics can be applied
for evaluating the quality of the final alignment obtained by registration
algorithms when a correct aligning transformation is known.

Alternatively, one could use the well known Hausdorff distance [40] com-
puted between two versions of a mesh transformed by the two input trans-
formations. Such approach, however, ignores the known point-to-point cor-
respondences, and it also cannot be used in registration, because of the
computational complexity of the Hausdorff distance evaluation [24].

Normalization

Normalized metrics based on the sum of squares can be written as

1
r(Q)

√
1

A(Q)d(T1, T2)2,

i.e. the normalization constant is r(Q)
√
A(Q). The L1 based metrics are

normalized as 1
r(Q)A(Q)d(T1, T2),

where for the vertex-based metrics A(Q) = νq and for the triangle-based
metrics A(Q) is the surface area of Q, and r(Q) is the estimated radius of
Q. For the vertex-based metrics, r(Q) is computed as the average distance
of the vertices of Q from its centroid. For the triangle-based metrics, the
average distance is computed for the centroids of all triangles weighted by
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their areas and the same approach is used for computation of the centroid
itself.

If the spread parameter D in the Gaussian kernel for the density peak
location is constant, then the compound metrics have a single parameter
c, which sets the global scale of the metric. The compound metrics are
therefore generally evaluated as c

k
d(T1, T2) where d is a compound metric

and k is the corresponding normalization constant.

4.3 Results
There are several parameters that influence the model algorithm, in our
experiments, however, we found that the results are not very sensitive to
the precise value of any of them. The parameters are:

• Geometric ring of radius 8 times the average edge length has been used
as local neighborhood for the curvature estimation.

• 104 sample vertices of P were analyzed and their curvatures and prin-
cipal directions were estimated.

• 104 candidate transformations were obtained by sampling Q.

• The distance δ used to determine the LCP of each candidate has been
set to 2% of the mesh radius r(Q).

• The minimum value of LCP for a candidate to be accepted has been
set to 3%.

The registration algorithm was tested on 14 different realistic registra-
tion datasets. Datasets of varying character were chosen, with a range of
properties that may cause problems with registration, such as small overlap,
noise or potential to registration ambiguity. The reference implementation
(current at the time of this research) of the state of the art algorithm Su-
per4PCS [80] was only able to register 7 out of the 14 datasets, and even
that was only achieved when the algorithm parameters were adjusted for
different inputs. A detailed report on the performance of Super4PCS on the
test data will be presented in Section 4.3.4.

We have tested our model algorithm with the composed metric with all
the rotation metrics described in Section 4.2.1 and the two metrics based on
sum of squares described in Section 4.2.2. We denote the composed metrics
dNAME(T1, T2) = cR

dNAME
R (R1,R2)

kR
+ ct

‖t1−t2‖
kt

where NAME is the abbrevi-
ation for the corresponding rotation metric. Normalized metrics based on
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vertex and triangle sum of squares are denoted dV SS and dTSS respectively.
In all cases the object Q is centered at the origin.

For each of the 14 registration datasets the correct transformation is
known and the error of the registration can therefore be measured as the
difference between the resulting transformation and the correct one. To
compute this error, we use the metric defined by Eq. (4.15), normalized
as described in Section 4.2.2, with c = 1. We set a threshold ψ, below
which we consider a registration successful. In our experiments, correct
alignments have had error < 0.1, in order to provide a certain tolerance we
set ψ = 0.15. We also observed that in case of wrong alignment, the error is
usually considerably larger, generally greater than 0.3. Therefore, choosing
ψ between 0.1 and 0.3 does not make a big difference.

Before using the metrics, their parameters need to be set. In order to
do that we designed and performed the following experiment. The spread
parameter D in the Gaussian kernel was set to D = 1 and 900 different
configurations of the cR, ct coefficients were created in the following way:

cR = 1.5 · 2i/3, ct = 1.5 · 2j/3

where i, j = 0, 1, 2, ..., 29. The exponential progression was used because
a good metric should not be very sensitive to the coefficient setting and,
therefore, halving or doubling one of the coefficients should not impact the
results very much. Since the metrics dV SS, dTSS only depend on a single
parameter, we set it as c = cR while the value of ct remains unused. With
these metrics, the performance does not depend on j.

For each metric, we ran the registration on all the 14 datasets, 5 times
at every combination of i and j, which gives 70 tests for every configuration
in total. To visualize the results, we created a bitmap of 30 × 30 pixels,
where the index of each pixel corresponds to a single configuration of i and
j (i horizontal, j vertical from top to bottom). A pixel is white when the
corresponding configuration was successful in all 70 registration cases, i.e.
error < ψ, otherwise it is black.

For each metric, we computed the centroid of all the white pixels in the
bitmap and we used the i, j indices of the centroid pixel to acquire the
optimal values of cR, ct, which are shown in Table 4.1. The bitmaps are
shown in Figure 4.2, the centroid pixels are colored red. Since the algorithm
is non-deterministic, even for a good configuration of the coefficients, there
is always a certain chance of failure. Therefore, a black pixel does not ne-
cessarily mean that the corresponding configuration is bad, especially when
it is surrounded mostly by white pixels. On the other hand, if a black pixel
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(a) DEA (b) DQ (c) ADPQ (d) DPQ

(e) DIM (f) VSS (g) TSS

Figure 4.2: Bitmaps of the i, j configurations of the coefficient settings for
all the metrics. White pixel indicates a successful registration in all 70 test
cases, black pixel indicates at least one failure, red pixel shows the centroid
of the white pixels and indicates the optimal configuration.

Table 4.1: Optimal coefficients of the transformation distance metrics.

DEA DQ ADPQ DPQ DIM VSS TSS
cR 4.76 9.52 9.52 96 7.55 7.55 9.52
ct 12 7.55 7.55 9.52 6 - -

lies in a neighborhood of black pixels, it suggests a configuration far from
optimal.

Figure 4.3a shows the registration result of the model algorithm using the
dTSS metric with c = 9.52 for the Kac dataset. The error of this registration
was 0.007. For comparison, Figures 4.3b, 4.3c show two artificially created
alignments with errors of 0.077 and 0.153 respectively, which are close to ψ

2
and ψ.

To perform a comparison of all the metrics, we ran the registration on
each of the 14 datasets 1000 times, using the optimal parameters found
previously. Table 4.2 shows the average error for each metric on every dataset
and the fail count (FC), i.e. how many times of the 1000 tests the registration
resulted in error > ψ. The error cells are colored according to the order of
the error values for the given dataset, i.e. the cell with the largest error is red
and the color transits through orange and yellow to green which indicates
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(a) error = 0.007 (b) error = 0.077 (c) error = 0.153

Figure 4.3: Registration result of the model algorithm using the dTSS metric
with c = 9.52 (a) and its qualitative comparison to two artificial alignments
with different errors (b), (c).

Table 4.2: Comparison of the transformation distance metrics. The Error
column shows the average errors for corresponding datasets, the FC (fail
count) column shows how many times the registration produced an alignment
with error > ψ.

Error FC Error FC Error FC Error FC Error FC Error FC Error FC
Armadillo 0.0683 23 0.0479 0 0.0485 0 0.0486 0 0.0463 0 0.0455 0 0.0480 0
Bird 0.0673 0 0.0672 0 0.0672 0 0.0669 0 0.0672 0 0.0673 0 0.0672 0
Bubba 0.0032 0 0.0035 0 0.0039 0 0.0059 0 0.0039 0 0.0034 0 0.0023 0
Buddha 0.0363 0 0.0255 0 0.0252 0 0.0246 0 0.0241 0 0.0242 0 0.0242 0
Coa 0.0283 0 0.0211 0 0.0208 0 0.0212 0 0.0202 0 0.0199 0 0.0200 0
Dragon 0.0258 0 0.0222 0 0.0221 0 0.0233 0 0.0221 0 0.0211 0 0.0209 0
Eggs 0.0758 98 0.0852 120 0.0868 123 0.0967 142 0.1003 143 0.1202 179 0.0915 140
Head 0.0079 0 0.0081 0 0.0082 0 0.0089 0 0.0083 0 0.0081 0 0.0075 0
Hippo 0.0760 32 0.0560 0 0.0558 0 0.0566 0 0.0556 0 0.0528 0 0.0538 0
Kachel 0.0187 0 0.0152 0 0.0156 0 0.0168 0 0.0153 0 0.0156 0 0.0155 0
Oscar 0.0044 0 0.0039 0 0.0040 0 0.0048 0 0.0039 0 0.0036 0 0.0034 0
Suzanne 0.0139 0 0.0133 0 0.0139 0 0.0144 0 0.0130 0 0.0132 0 0.0130 0
Teeth 0.0160 0 0.0137 0 0.0135 0 0.0148 0 0.0131 0 0.0129 0 0.0127 0
Testbody 0.0189 0 0.0175 0 0.0172 0 0.0197 0 0.0181 0 0.0186 0 0.0171 0
Total 0.0329 153 0.0286 120 0.0288 123 0.0302 142 0.0294 143 0.0305 179 0.0284 140

VSS TSS
Dataset

DEA DQ ADPQ DPQ DIM

the cell with the lowest error. The colors do not correspond to the absolute
error values, they only indicate their order for the given dataset. In the rest
of this section, we refer to the datasets using a three letter abbreviation.
Table 4.3 shows the vertex counts and triangle counts of both P and Q

objects of the testing datasets.
The Egg dataset stands out from the others, because it is the only one

with non-zero fail count for every metric, suggesting that this model is prob-
lematic in some way. The P and Q objects of Egg together with their correct
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Table 4.3: Vertex counts and triangle counts of the P and Q objects of all
the testing datasets.

Dataset Vertex count Triangle count
P Q Total P Q Total

Arm 33902 36107 70009 65379 69985 135364
Bir 2656 3049 5705 5001 5758 10759
Bub 10912 14038 24950 21285 27643 48928
Bud 59544 51263 110807 116804 100640 217444
Coa 28107 28180 56287 53715 53829 107544
Dra 43181 39524 82705 83609 76980 160589
Egg 750729 761887 1512616 1480240 1501582 2981822
Hea 25827 24273 50100 50336 47316 97652
Hip 30519 21925 52444 59166 42254 101420
Kac 28393 28142 56535 56134 55583 111717
Osc 169862 166624 336486 336136 329268 665404
Suz 235735 236646 472381 469745 471528 941273
Tee 57024 61478 118502 106930 116652 223582
Tes 423715 422308 846023 832938 829762 1662700

(a) P (b) Q (c) correct alignment

Figure 4.4: The Egg dataset.

alignment are depicted in Figure 4.4. The most likely cause of the failure
is the presence of large planar/spherical areas that lead to many incorrect
matches, because of the simple curvature based descriptor. Surprisingly, the
dDEA metric has the lowest fail count as well as the lowest average error for
Egg, however, it seems that under the circumstances of a failing descriptor,
this result is caused by random influences. Otherwise, dDEA has the largest
average error and it is also the only metric with non-zero fail count for
two additional datasets: Arm and Hip. The lowest total average error was
achieved with the dTSS metric with dDQ and dADPQ having slightly larger,
but very similar errors. Also, without the problematic Egg dataset, the
total average errors of the metrics are dDEA: 0.0296, dDQ: 0.0242, dADPQ:
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Figure 4.5: The Q object of the Bub dataset. The non-uniform distribution
of the vertices is quite clear in the detailed view.

0.0243, dDPQ: 0.0251, dDIM : 0.0239, dV SS: 0.0236, dTSS: 0.0235, with both
the compound metrics dV SS and dTSS having lower error than all the other
metrics.

Figure 4.6 shows the ratio of the average error of dTSS (chosen as reference
because of its lowest average error) and the average errors of the remaining
metrics for all 14 datasets. The figure, together with Table 4.2, shows that
there are quite many cases where the dDEA metric shows noticeably larger
error than all the remaining metrics (Arm, Bud, Coa, Dra, Hip, Kac, Tee).
This demonstrates how unreliable a composed metric can be when it uses
the non-bi-invariant rotation metric based on distance of Euler angles and,
therefore, application of such a metric is not advisable. On several datasets,
the dDPQ metric also shows slightly, but noticeably larger error than the
other metrics (Tee, Hea, Kac, Osc), except for the Bub dataset, where the
error of dDPQ is much larger in terms of relative comparison.

For the Bub dataset, the dTSS metric has the lowest average error and, in
relative comparison, even substantially lower than dV SS, even though dV SS
and dTSS are based on the same concept. The explanation might be that the
Bub dataset has quite non-uniformly distributed vertices as shown in Figure
4.5. In such a case, the dTSS metric is expected to work more precisely than
dV SS, because it accounts for the triangle size distribution, having more
exact information about the object’s shape. Similar reason might be behind
the lower error of dTSS for other datasets, although there the non-uniform
distribution is not so pronounced as with the Bub dataset.
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Table 4.4: Fail counts of the registration with LCP used for evaluation of
the consensus with δ = δ′r(Q) for different values of δ′.

Dataset δ′

0.0025 0.005 0.01 0.02 0.04
Arm 619 8 0 0 0
Bir 887 757 633 983 1000
Bub 0 0 0 16 1000
Bud 112 0 0 0 0
Coa 59 0 0 0 0
Dra 330 1 0 0 0
Egg 215 4 0 0 0
Hea 0 0 0 0 645
Hip 708 324 219 76 3
Kac 368 0 0 0 327
Osc 0 0 0 0 0
Suz 90 8 6 438 1000
Tee 0 0 0 0 0
Tes 375 55 1 0 0
Total 3763 1157 859 1513 3975

4.3.1 Comparing to LCP
We also show results of the registration algorithm where LCP was used in-
stead of the density in the transformation space for evaluating the consensus.
The candidate transformation for which the LCP value was the largest was
selected as the result of the registration. Such an approach is quite common
and was used e.g. by the state of the art registration algorithm Super4PCS
[80].

We experimented with the δ parameter of LCP chosen as δ = δ′r(Q)
where r(Q) is the radius of Q, and we tested several values of δ′. Table 4.4
shows the fail counts of the registration with LCP used for the consensus
evaluation with different values of δ′ (run 1000 times on each dataset). There
is no universal value of δ′ and the total fail count is non-negligible for all
of the tested values. Although increasing or decreasing δ′ leads to decrease
of fail count for some datasets, at the same time it causes increase of fail
counts for other datasets. This demonstrates that the results of registration
algorithms using LCP to select the best candidate transformation depend
quite strongly on the choice of δ. On the other hand, when using the density
peak location in the space of transformations, although there are some para-
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meters to set (either one or two, depending on the metric), the registration
is not very sensitive to their setting, as shown in Figure 4.2 (note that the
coefficient growth is exponential in both directions).

4.3.2 Non-Centered Object and Density Visualization
To verify the dependence of the metrics on position as discussed in Section
4.2.1, the registration was executed 1000 times on the Arm dataset with the
composed metric dDIM , but after centering Q, it was further translated by
a vector ξ · r(Q) · [1, 1, 1]T where ξ determines the final distance of Q from
the origin. For ξ = 0, the fail count is 0 as in Table 4.2. For ξ = 2, 5, 15
and 100, the fail counts were 24, 205, 648 and 865 respectively. Centering
Q is therefore truly crucial for reliable results when using a composed met-
ric and the farther the object is from the origin, the worse results can be
expected. In order to visualize the sampling in SE(3) we use a standard
multidimensional scaling. First, we compute 3D coordinates that match the
candidate distances provided by a metric as closely as possible, obtaining a
3D point cloud. The point cloud is converted to volume data representing
the density as defined in Eq. 4.2 and visualized by standard direct volume
rendering, choosing an informative viewpoint manually. The visualizations
of the decentered dataset registrations are shown in Figure 4.7.

Fig. 4.8 shows another such visualization. It demonstrates that a wrong
alignment may produce the highest LCP. On the other hand, a cluster of
candidates of rather mediocre LCP is obtained in the vicinity of the correct
alignment.

4.3.3 Noisy Data
The plot in Figure 7.8 shows how the model registration algorithm (using
dTSS, c = 9.52) behaves on the Arm dataset in presence of Gaussian noise
with varying standard deviation. The standard deviation is relative to r(Q)
and the figure also shows the resulting alignment for deviation of 0.016. The
error grows quite slowly up to deviation of 0.018, while for higher values the
noise prevents correct registration. Similar results were obtained for other
datasets.

4.3.4 Comparing to Super4PCS
Table 4.5 shows the errors of the Super4PCS registration method, i.e. of
its implementation that was the latest at the time of the research (April 8,
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(a) TSS (b) DIM, ξ = 0 (c) DIM, ξ = 2

(d) DIM, ξ = 5 (e) DIM, ξ = 15

Figure 4.7: Projection of the candidates into E3 using MDS for the Arm
dataset with TSS and DIM with different values of ξ.

Figure 4.8: 2D visualization of the space of rigid transformation candidates.
The hue reflects the score of each candidate, while the brightness reflects the
estimated density. The alignments on the left, even though they have the
highest score, represent a wrong alignment. A much better alignment on the
right can be identified by looking for a density peak.
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Figure 4.9: Dependence of registration error on Gaussian noise with vary-
ing standard deviation relative to r(Q) for the Arm dataset. The depicted
alignment was achieved with deviation of 0.016.

2019). We ran Super4PCS with different values of the δ parameter of its
LCP evaluation for all the datasets. The value of delta is set relative to
the radius of Q as δ = δ′r(Q). The cells with error ≤ ψ are marked bold,
in all other cases the registration was considered a failure. Names of the
datasets for which the registration was succesful for at least one value of δ′
are also marked bold, for all the other datasets the registration failed for all
the values.

The largest number of successful registrations (7) was achieved using
δ′ = 0.106, 0.121 and 0.184. Since there is quite a large gap between 0.121
and 0.184, we select δ′ = 0.11 as approximately optimal because it is close
to both 0.121 and 0.106. Table 4.6 shows comparison of Super4PCS with
δ′ = 0.11 to the model RANSAC algorithm where dTSS was used as the
metric with c = 9.52. For each dataset, ICP [10] alignment was used after
the global registration with the same δ setting as Super4PCS (δ′ = 0.11). We
only show binary evaluation of whether the final registration was successful
instead of showing the error, since in the case of successful alignment the
final error is dictated by the ICP rather than by the global registration, and
in the case of incorrect result the error value is irrelevant. The running times
do not include ICP and the measurements were done on a computer with
CPU Intel Core i7-4770 (clock rate 3.4 GHz, 4 cores, L1 cache 256 kB, L2
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Table 4.5: Errors of Super4PCS with different values of δ = δ′r(Q) for all
the datasets.

δ′ Arm Bir Bub Bud Coa Dra Egg Tee Hea Hip Kac Osc Tes Suz
0.010 1.257 1.941 1.306 1.594 1.387 1.581 1.361 1.416 1.704 1.366 1.801 1.075 1.816 1.366
0.011 0.220 1.941 1.303 1.588 1.383 1.456 1.348 1.396 1.712 1.382 1.834 0.543 1.822 1.376
0.013 1.214 1.941 1.318 1.598 1.387 1.457 1.363 1.380 1.705 1.353 1.826 1.073 1.402 1.341
0.015 1.242 1.941 1.622 1.776 1.245 1.974 1.346 1.383 1.703 1.417 1.841 1.073 1.814 1.596
0.017 0.099 1.855 1.296 1.590 1.385 0.418 1.380 1.411 1.710 1.357 1.828 2.016 1.824 1.550
0.020 0.334 0.890 1.464 1.592 1.389 0.066 0.166 1.405 1.696 1.048 1.761 1.073 0.391 2.103
0.023 0.134 1.319 2.262 0.373 0.225 0.587 1.363 1.398 1.718 1.340 1.852 0.151 1.327 2.099
0.026 0.232 1.577 1.464 0.800 1.380 0.197 1.151 1.397 1.926 1.357 1.844 0.081 1.413 1.562
0.030 0.131 1.026 1.432 0.273 1.380 2.068 1.295 1.399 1.915 1.096 1.783 0.067 0.207 2.039
0.035 0.080 1.742 1.454 1.589 1.380 0.090 1.568 1.422 1.780 0.443 1.779 0.146 0.162 1.752
0.040 0.285 1.277 1.495 0.280 1.378 0.039 1.909 1.442 1.671 0.106 1.825 0.135 0.122 1.825
0.046 0.121 1.318 1.397 0.209 0.258 0.060 0.769 1.443 1.915 0.094 1.930 0.161 1.974 1.822
0.053 0.047 1.729 1.485 0.091 0.484 0.136 0.557 1.431 1.964 0.350 1.848 0.037 1.275 1.876
0.061 0.070 1.411 1.307 0.064 0.120 0.065 1.606 1.414 1.997 0.153 1.721 0.035 0.143 1.888
0.070 0.047 1.421 1.482 0.178 0.065 0.035 0.207 1.410 1.755 0.083 1.593 0.044 0.237 1.877
0.080 0.079 1.570 1.360 0.071 0.134 0.102 0.383 1.420 1.554 1.685 1.858 0.079 0.105 1.771
0.092 0.045 1.028 1.525 0.087 0.051 0.059 0.519 1.471 1.638 0.168 1.452 0.105 1.163 2.003
0.106 0.071 1.481 1.548 0.052 0.122 0.086 0.490 1.472 1.946 0.055 1.474 0.074 0.040 2.030
0.121 0.067 0.531 1.345 0.134 0.104 0.084 0.121 0.467 1.623 0.117 1.758 0.165 0.076 1.979
0.139 0.082 1.558 1.467 0.075 0.164 0.126 0.157 1.558 1.994 0.227 1.237 0.094 0.086 1.837
0.160 0.103 1.473 1.472 0.062 0.048 0.069 0.528 1.503 1.666 0.332 1.639 0.109 0.072 1.781
0.184 0.102 1.410 1.521 0.073 0.071 0.128 0.548 1.585 1.957 0.140 1.857 0.149 0.117 1.723
0.211 0.119 1.475 1.505 0.161 0.141 0.136 0.314 1.500 1.612 0.251 1.639 0.171 0.148 1.779
0.243 0.065 1.352 1.521 0.118 0.038 0.178 0.383 0.468 1.947 0.174 1.621 0.260 0.148 1.769
0.279 0.162 1.358 1.536 0.152 0.178 0.160 0.401 1.797 1.750 0.201 1.764 0.147 0.076 1.909
0.320 0.090 1.430 1.518 0.117 0.120 1.228 0.386 1.731 1.907 0.309 1.843 0.127 2.002 1.835
0.368 0.256 1.250 1.533 0.183 0.117 0.202 0.442 1.936 1.920 0.223 1.898 0.382 0.342 1.767
0.422 1.149 1.431 1.620 1.938 0.099 1.412 0.502 2.003 1.895 0.130 1.509 0.603 1.349 1.836
0.485 0.354 1.222 1.622 1.964 0.371 1.610 0.462 2.028 1.785 0.427 1.382 0.244 1.387 1.826
0.557 1.676 1.464 1.628 0.372 0.185 0.115 0.676 2.358 2.043 0.391 1.800 0.611 1.385 1.789
0.640 2.128 1.365 1.533 0.446 0.115 0.313 0.746 2.422 1.837 0.328 1.405 0.652 1.360 1.621
0.735 2.017 1.497 1.334 0.557 0.259 0.333 1.901 0.329 1.690 0.283 1.463 0.491 1.529 1.748
0.844 1.462 1.278 1.552 1.187 0.426 2.011 1.941 2.626 2.069 1.747 1.428 0.643 1.365 2.560
0.970 1.161 1.284 0.834 0.869 0.303 0.819 1.929 3.507 1.779 1.680 2.208 0.720 1.800 1.514
1.114 2.713 2.683 1.575 1.917 0.554 2.168 0.927 4.015 1.934 1.435 1.944 0.602 1.675 1.688

cache 1 MB, L3 cache 8 MB) and 16 GB of memory with clock rate of 1.6
GHz with Windows 10 64-bit operating system.

If the global registration resulted in a good alignment, then the sub-
sequent ICP further strongly increased its precision for most datasets. The
only exception was the Bir dataset, where the model registration algorithm
actually found a very good alignment, but the ICP made it much worse, res-
ulting in an unsuccessful registration. Super4PCS for this dataset resulted
in a bad alignment even without ICP. In total, including ICP did not lead
to an improvement of the registration using Super4PCS, which was again
successful with 7 datasets. The running times of Super4PCS are comparable
to those of our model registration algorithm.
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Table 4.6: Comparison of the model RANSAC registration algorithm using
dTSS with c = 9.52 to Super4PCS with δ′ = 0.11, after the global registration
ICP was performed also with δ′ = 0.11, the running times do not include
ICP.

Dataset Success Time [ms]
Model S4PCS Model S4PCS

Arm yes yes 2406 9807
Bir no no 820 298
Bub yes no 1337 596
Bud yes yes 2987 7203
Coa yes yes 1958 701
Dra yes yes 3071 9084
Egg yes no 20654 19592
Hea yes no 1369 9693
Hip yes yes 1495 1372
Kac yes no 1496 635
Osc yes yes 5018 4182
Suz yes no 6641 5525
Tee yes no 2361 1432
Tes yes yes 10926 10382

4.3.5 Limitations
Since the model RANSAC algorithm is feature-based, it naturally tends to
fail if very strong noise is present in P and Q because in such a case the
curvature based features lose reliability. For similar reason, the algorithm
does not behave well in case of objects with repetitive patterns or planar
areas (e.g. the Egg dataset) because there are multiple different spots with
similar curvatures, which creates a large potential for registration ambiguity.

The results of the algorithm depend on the size of the overlap of the
inputs, both when using the composite and the compound metrics. Either
the centering step for composite metrics or the pre-computations for com-
pound metrics may lead to skewed results when the overlap is small, which
in turn may negatively influence the registration reliability. This may occur
in practice, when for example Q is a result of merging several partial scans,
and has therefore only a small overlap with P . In general, it is therefore
advisable to choose as Q the smaller of the two input models, since it has a
larger relative portion of overlap.
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4.4 Summary
A method of identifying consensus in RANSAC surface registration has been
discussed. Instead of searching for a consensus of data points, we look for a
consensus of candidate solutions. The consensus is identified with a density
peak in the SE(3) space, which is found using the vantage point tree data
structure.

In order to locate the density peak, a proper metric is needed in the solu-
tion space. We have discussed multiple choices known in the literature and
proposed their modified versions. While composed metrics can be applied
for this purpose, they suffer from fundamental drawbacks, such as the neces-
sity of setting two free parameters and the lack of translation independence
that is merely mitigated by centering the input object. Using the distance
of Euler angles as a rotation metric is particularly discouraged, because of
its unreliable behaviour.

On the other hand, the equally fast compound metrics dV SS and dTSS

behave well, regardless of the position of Q, and they exhibit the lowest
total average error except for the Eggs dataset, where the failure is likely
caused by the used feature vector rather than by the metric. Additionally,
the proposed dTSS metric is also independent of the sampling density, which
makes it the method of choice not only in this, but also in other applications.

Our model registration algorithm turns out to work on par or better
than the state of the art algorithm Super4PCS both in terms of speed and
reliability. The algorithm is able to identify the best alignment even in
situations when the LCP score of a wrong transformation is better than
that of the near-optimal alignments. The registration is truly global, fully
independent of the initial location of the inputs.

The reliability could be further improved by incorporating more advanced
building blocks, such as better local feature vectors or more accurate can-
didate filtering, since we have chosen rather simple solutions in order to test
the consensus evaluation step. As with all global registration methods, a
refinement using a variant of ICP is expected to improve the result. The
reference implementation of our algorithm is available for download at [45].

The proposed consensus identification strategy could be applied in other
registration or symmetry detection algorithms as well, particularly easily
in those that can be interpreted in the RANSAC framework, such as Su-
per4PCS. Moreover, it could also be used in other applications, such as
dynamic surface segmentation based on motion similarity and others.

We have shown that even the composed metrics are data dependent in
certain sense, relying on the knowledge of the input data centroid. Com-
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pound metrics based on the sum of squares retain more information about
the input objects in the form of precomputed constants, however, the in-
formation is still quite limited. An interesting research direction could be
investigating the possibility of formulating metrics that take even more in-
formation about the inputs into account, however, without compromising
the computational complexity as in the case of L1 metrics.
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5 Plane Space Representation
in Mode-based Symmetry
Plane Detection

Some of the symmetry detection methods described in Chapter 3 can be
interpreted as an implementation of one specific and very popular approach.
It is to create a number of candidate transformations by matching different
points or parts of the input object and then find those transformations that
occur most often in the transformation space. This can also be described as
seeking modes (places of the highest density) in the transformation space so
we call this approach Mode-based symmetry detection and it can be classified
as a kind of the more general RANSAC approach. For reference, see e.g. the
method of Mitra et al. [83], which is most likely the first method that used
this approach and one of the most commonly known methods for symmetry
detection in general. This approach can be applied in algorithms detecting
symmetries of various types, however, in this chapter we only focus on its
application for detecting the planes of symmetry (reflectional symmetries)
of 3D objects. The content of this chapter was previously published in [50].

The method [83] together with its newer and improved variant [107] are
the two more general representatives of the Mode-based approach that can be
used to find symmetries of quite a general type. In their case the symmetry
transformations can contain rotation, with or without reflection, translation
and uniform scaling. The transformation type, however, can be restricted
to any subgroup of these general transformations, so these methods can be
used to detect reflectional symmetries (symmetry planes) as well. To find
the modes both these methods use clustering. Some form of the clustering
method [83] was used to detect symmetry planes e.g. in [72], on models of
damaged skulls, or in [79] and [62], suggesting its popularity for symmetry
plane detection.

In Chapter 4 we presented a Mode-based approach used in rigid surface
registration. In this case the candidate space contained rigid transforma-
tions and to find a single mode, a density peak estimation algorithm was
used. This approach could also possibly be used to find the global plane of
symmetry of an object, only with planes as candidates instead of rigid trans-
formations. The Hough transform-based method [16] and the Monte Carlo
algorithm used in [96] for 3D surfaces can also be interpreted as Mode-based
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approaches, only designed to detect specifically symmetry planes. However,
instead of finding the mode in a continuous environment, they divide the
space of planes into discrete bins to count plane occurrences.

Regardless of the specific algorithm, any Mode-based method for sym-
metry plane detection requires defining some representation of the space of
planes and the result of the method will always somewhat depend on the
representation selected. The important aspect of the plane space represent-
ation is how well distances between points in the space correspond to the
actual similarity/disimilarity of the planes in E3. In context of symmetry
detection, planes can also be understood as transformations reflecting points
over the given plane.

A useful observation is that the mode(s) can be found in an arbitrary non-
Euclidean space only using distances between the points in the space, e.g. as
described in [120] or in Section 4.1.3 where we also described how proximity
queries in non-Euclidean spaces can be accelerated using the Vantage Point
Tree data structure [126]. In Section 4.2 we thoroughly analyzed the problem
of computing distances between rigid transformations, however, for reflection
transformations or planes the same problem does not seem to be sufficiently
addressed in the literature despite the fact that the Mode-based approach is
quite popular in the field of symmetry plane detection.

In this chapter we describe and analyze several different representations
of the space of planes and for each representation we discuss possible ways
of defining a reasonable distance function that could be used in Mode-based
symmetry plane detection. We compare these distance functions to a single
distance function that we consider the ground truth but which cannot be
used in practice because of its large computation cost.

Some of the representations we describe could also be more appropriate
for different applications, such as visualization. In general, the information
about the plane space representations described below can be useful in any
other application, outside the scope of symmetry detection, where some form
of plane representation is needed, although the presented distance functions
might require some adjustments according to the specific application. We
therefore believe that researchers from various fields, not restricted to sym-
metry plane detection, could benefit from the results of our research.

5.1 Background
Here we provide some necessary background for the rest of this chapter. A
general plane P can be defined by the four a, b, c, d coefficients as described
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in Section 2.4.3. Here we denote n = [a, b, c]T the normal vector of the plane
and for the purpose of this chapter we always consider the coefficients to
be normalized such that ‖n‖ = 1 in which case d is the signed distance of
the plane from the origin. A function rP (x) ∈ E3 that reflects an arbitrary
point x ∈ E3 over the plane P can be then defined as shown in Eq. 5.1.

rP (x) = x− 2(nTx + d)n (5.1)

5.1.1 Candidate Creation Algorithm
In order to demonstrate and compare the plane space representations on
realistic data we use the following model algorithm for creating planes as
candidates for symmetry planes of an arbitrary set of points (point cloud).
We use the point set representation because it is more general than a triangle
mesh and, therefore, makes the information in this section useful in wider
range of applications.

Suppose a set of points X = {x1,x2, ...,xN}, xi ∈ E3, i = 1, 2, ..., N . We
first create a 3D uniform grid with the cell size lavrg

δ
× lavrg

δ
× lavrg

δ
where

lavrg is the estimated size of the object represented by X computed as the
average distance of the points of X from their centroid. We mark each cell
as either occupied if any point from X falls into it or unoccupied if no point
from X falls into it. Then we start randomly selecting pairs of points from
X and for each of these randomly selected pairs xi,xj we create a plane P
such that rP (xi) = xj.

Now, we need candidates for which there is at least some chance that
they could capture some symmetry of the object, otherwise there would be
too much clutter in the candidate space and no significant mode would be
detectable. Therefore, we perform a quick check to determine whether P is a
plausible candidate. This is done by randomly selecting another five points
from X, reflecting them over P and checking whether all of them end up in
an occupied cell of the previously created grid. If they do P is accepted as
a candidate. If at least one of the five points reflects into an unoccupied cell
then P is rejected. We keep iterating this process until we have k accepted
candidates. The key idea behind the Mode-based approach is that now there
should be significant modes in the candidate space of planes corresponding
to the strongest symmetries of the input point set X.

In order to have a well detectable mode which also well represents the
symmetry plane of the input point set, the parameters k and δ need to be
set sufficiently large. However, setting them too large would create a very
pronounced mode consisting of very good candidates but the time consump-
tion of the candidate creation process would be overwhelming. If not stated
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otherwise we set δ = 5 and k = 2000 which, in our experiments, proved to
be sufficiently large while leaving the speed of the candidate creation step
acceptable.

5.1.2 Dependence on Scale and Position
Unlike the a, b, c coefficients, which are bounded on finite interval 〈−1; 1〉,
the value of the d coefficient of any candidate plane depends on the overall
scale and position of the input object represented by the point set X. The
dependence on scale is obvious because d represents the distance of the
given candidate plane from the origin and if the size of the input object
changes, the span of the d coefficient will change as well. However, the a, b, c
coefficients will stay the same.

The dependence on position is less obvious. Imagine we translate the
input object (all points in X) by some arbitrary vector t, then for an arbit-
rary candidate plane P its d coefficient will change by tTn against the value
it would have if it was created at the original position. Since the change of
d does not depend only on t but also on the orientation of the given plane,
the change of d is inconsistent throughout the candidate planes and this
inconsistency is the more significant the farther the input object gets from
the origin. For example, suppose a trivial case where an object consists of a
single point x which lies at the origin and suppose a set of all planes passing
through x. The d coefficient of all these planes is 0. If we translate x by t,
the d coefficients of the planes that pass through x will now span from −‖t‖
to ‖t‖. Therefore, the position of the input object, i.e. its distance from
the origin, again influences the span of d but does not influence the span of
a, b, c.

Many of the distance functions for planes, presented later in this text,
are negatively influenced by the significantly different span of d and a, b, c.
To mitigate this problem, before creating the candidate planes, we always
translate the input object so that its centroid is at the origin and, where
necessary, we also normalize d by lavrg to make the span of d similar to the
span of a, b, c. For those distance functions where the translation to origin
is not necessary, this fact will be pointed out explicitly.

5.1.3 Ground Truth
It was already mentioned that in symmetry detection, any candidate plane
can be described as reflection transformation as defined by Eq. 5.1. As
was pointed out in Chapter 4, distance between transformations cannot be
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well defined without the context (the object on which the transformations
are applied), which is consistent with what was described in Section 5.1.2.
Therefore, the distance function for planes that we consider the most mean-
ingful is the point-based version of the metric used for error evaluation of
registration results in Chapter 4 (see Eq. 4.14), only with reflection trans-
formations instead of rigid ones. Given two arbitrary planes P1 and P2

the distance function measures the exact difference between the effects of
the reflections defined by P1 and P2 on the input object. Since such a
function gives us the exact evaluation of how differently the input object
is affected by the two reflections, we consider it the ground truth distance
function, we denote it DGT (P1, P2) and it is defined as shown in Eq. 5.2
where xi ∈ X, i = 1, ..., N .

DGT (P1, P2) =
N∑
i=1
‖rP1(xi)− rP2(xi)‖ (5.2)

The DGT distance function is not effected by the position of the input object,
so it does not require the translation to origin, and the object size only effects
its overall scale. Unfortunately, the time complexity of computing DGT is
O(N) where N is the point count of the input object, which makes it too
computationally expensive and, therefore, virtually unusable in any Mode-
based symmetry detection algorithm. However, we can compare it to the
other distance functions described below and measure how close they get to
it.

5.2 Plane Space Representations
In this section we describe various different ways of representing the space
of planes in E3 and for each we also describe possible distance functions
that can be used in an arbitrary Mode-based symmetry plane detection
algorithm. Furthermore, we use the algorithm described in Section 7.1.3 to
create a set of candidate symmetry planes of the armadillo object shown
in Figure 5.1 and we visualize them in various representations of the plane
space. The black line in the figure represents the symmetry plane that
we consider the correct one and the object is rotated in such a way that
this plane is perpendicular to the plane in which the figure is rendered.
We purposely selected an object that is not perfectly symmetrical but still
exhibits noticeable reflectional symmetry. Although the object is represented
by a triangle mesh, which makes it easier to visualize, only its vertices are
used as the points for the candidate creation.
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Figure 5.1: Model object with its correct symmetry plane.

5.2.1 Dual Representation in E3

Although the implicit equation of a plane has four coefficients, there are
actually only three degrees of freedom when defining a plane because the
space of planes is a 3-dimensional manifold embedded in 4-dimensional space.
Therefore, we can use a dual representation of an arbitrary plane as a point
in E3. We denote ρ(P ) ∈ E3 a dual representation of a plane P . Euclidean
metric could then be used to compute the distance between two planes P1,
P2 as Dρ(P1, P2) = ‖ρ(P1)− ρ(P2)‖.

One possibility to represent a plane in E3 is to encode its orientation
into a vector in E3 with the same direction as the plane normal vector, and
the plane distance from origin into the length of this vector. Such dual
representation can be defined as ρ1(P ) = dn. Obviously, for d → 0 such
representation gets ambiguous because all planes with d = 0 are shrunk
into a single point. To solve this problem the value of d can be shifted
by a constant µ so that these planes get spread on the surface of a sphere
with radius µ instead of being all at the origin. We set µ = 1

2 lavrg so that
rotating the normal by π and changing d by lavrg make approximately similar
change in position of the point in the dual space. The dual representation
is therefore finally defined as

ρ1(P ) =

(d+ 1
2 lavrg)n d ≥ 0

(d− 1
2 lavrg)n d < 0

.

Distances in such dual space still do not very well correspond to similarit-
ies/disimilarities of the actual planes. Mainly, two planes with d close to
0 and similar normal vectors can be on the other sides of the sphere, and
therefore more than 2µ apart, although they are actually very similar. How-
ever, such representation can be very good for visualization because each
point in the dual space represents the plane quite intuitively.
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(a) ρ1 (b) ρ2 (c) ρ3

Figure 5.2: Dual representations ρ1, ρ2 and ρ3 of the candidate symmetry
planes. The colors represent density (the darker, the larger density), the red
spot corresponds to the correct symmetry plane.

Figure 5.2a shows the generated candidates on the armadillo model in
the dual E3 space transformed with ρ1. The colored spots represent the can-
didates, their absolute coordinates are not important, only their distances.
The darker spots correspond to larger density of the points in the space,
the red spot corresponds to the correct plane from Figure 5.1. The point
of view for projecting the 3D visualization into the 2D image was selected
manually to maximize the information in the figure. It can be seen that the
correct plane is in a noticeable mode (dense spot) but this mode is split on
the surface of the sphere that corresponds to d = 0 and its non-negligible
part is on the other side. This is quite undesirable because it makes the
mode much less significant than it would be if the two parts were together
in the space.

Another duality, also called polar duality (described e.g. in [35]), uses
normalization of the plane coefficients such that d = 1 and then only uses
the a, b, c coefficients as coordinates in E3. So instead of multiplying the
normal vector by d, this time we divide it by d. This again poses a problem
for d → 0 which makes the dual points approach infinity and planes with
d = 0 cannot be represented at all by this duality. We solve this issue in
the same way as with ρ1 by shifting the d coefficient and we define this dual
representation as

ρ2(P ) =


1

(d+ 1
2 lavrg)n d ≥ 0
1

(d− 1
2 lavrg)n d < 0

.

Figure 5.2b shows the candidates transformed by ρ2 into the dual E3 space.
The correct plane is located in a noticeable mode which is again split into
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two separate parts that are very far from each other. In this case there are
also other significant modes that correspond to very different planes.

Another duality commonly used in computational geometry expresses a
plane using its coefficients in explicit representation [9]. There are three
possible explicit representations of a plane in E3:

x = − b
a
y − c

a
z − d

a
,

y = −a
b
x− c

b
z − d

b
,

z = −a
c
x− b

c
y − d

c
.

For demonstration, we select the first one, the dual representation is then
defined as ρ3(P ) = [ b

a
, c
a
, d
lavrg ·a ]. The division of d by lavrg is necessary for

normalizing the span of d. Such duality obviously cannot represent planes
parallel to the x-axis and planes with a → 0 approach infinity in the dual
space. We could possibly solve this by shifting a but this time, we do not
include lavrg into the shift because the span of a does not depend on the size
of the input object, so we get

ρ3(P ) =


[ b
a+ 1

2
, c
a+ 1

2
, d
lavrg(a+ 1

2 ) ] a ≥ 0

[ b
a− 1

2
, c
a− 1

2
, d
lavrg(a− 1

2 ) ] a < 0
.

Figure 5.2c shows the candidates in the dual space transformed by ρ3 and
in this case there do not seem to be any significant modes.

In general, the dual representations appear not to be very appropriate
for representing planes in any Mode-based symmetry detection algorithm
because they all contain singularities. Although this problem can always be
solved by shifting the value of some coefficient by a constant, the choice of
this constant is rather arbitrary and even then the distances between points
in the dual space might not well correspond to similarities of the planes.
However, the dual representations can quite easily be used for visualizing
the candidates because the dual points are 3-dimensional.

5.2.2 4D Vector Representation
Probably the most intuitive way of representing a plane is by a 4D vector
of the plane coefficients. Given a plane P we represent it by a vector p =
[a, b, c, d

lavrg
]T . In such a space we can easily define a distance function as the

Euclidean distance of the two 4D vectors. However, p and −p represent the
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(a) DED (b) DAD (c) DACD

Figure 5.3: The candidates represented by 4D vectors projected into E3 with
MDS using different distance functions.

same plane so we need to take this into account. The Euclidean distance
function is therefore defined as

DED(P1, P2) =

‖p1 − p2‖ pT1 p2 ≥ 0
‖p1 + p2‖ pT1 p2 < 0

.

In this case the points cannot be visualized directly, so we use the multidi-
mensional scaling (MDS) technique to transform the points into E3 so that
they maintain their distances, w.r.t. the given distance function, as well as
possible. However, the projection into E3 might cause some imprecision in
the visualization. Figure 5.3a shows the candidate planes projected into E3

with MDS using the DED distance function and there is a very significant
mode visible around the correct symmetry plane.

The distances in 4D vector space of planes can also be measured as angles
between the vectors because the length of the vector p does not influence
the plane P it represents. The angle distance function can be defined as

DAD(P1, P2) = arccos

(
|pT1 p2|
‖p1‖‖p2‖

)
.

Figure 5.3b shows the candidates after using MDS with the DAD distance
function and the correct plane is again placed inside a noticeable mode.

We can also use only the cosine of the angle and measure its deviation
from 1. The angle cosine distance function can be defined as

DACD(P1, P2) = 1− |pT1 p2|
‖p1‖‖p2‖

and its visualization using MDS is shown in Figure 5.3c. There is again a
noticeable mode around the correct plane.
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Obviously, the 4D representation of the plane space is much more ap-
propriate for any Mode-based symmetry detection algorithm than the dual
representations in E3. However, they are not as convenient for visualization
because in order to show the points they first need to be projected into a
lower dimensional Euclidean space which causes a loss of information.

5.2.3 Transformation Representation
As already mentioned, the space of planes can be understood as the space of
reflection transformations and, therefore, the distance between arbitrary two
planes P1 and P2 can be defined as the distance between the two reflection
transformations rP1 and rP2 defined according to Eq. 5.1. One way of doing
this is using the compound metric that was evaluated as the most suitable for
rigid transformations in Chapter 4. Since in this context we expect a point
cloud on the input, not a triangle mesh, we use its point-based version (see
eq. 4.9). It is based on sum of squared distances between the transformed
points and for reflection transformations is defined as

DSSD(P1, P2) =

√√√√ N∑
i=1
‖rP1(xi)− rP2(xi)‖2

where xi ∈ X, i = 1, ..., N . There is a notable similarity between DSSD and
the ground truth distance function DGT (see Eq. 5.2). However, as already
described in Section 4.2.2 for rigid transformations, there are two major
differences. First, DSSD uses squared distances instead of absolute ones, fa-
vouring smaller displacements over larger ones, which leads to different dis-
tances. Second, unlike DGT , DSSD can be computed in O(1), given an O(N)
preprocessing is performed beforehand. To achieve this, the transformations
must be expressed as Mx + t where M is an orthogonal transformation
matrix, t is an arbitrary translation vector and x is the transformed point.
For the details of deriving the O(1) computation we refer to Section 4.2.2.
Directly from Eq. 5.1 we get

rP (x) = x− 2nnTx− 2dn = (I− 2nnT )x− 2dn

where I is the identity matrix. If we now denote M = (I − 2nnT ) and
t = −2dn, then the reflection transformation can be expressed as

rP (x) = Mx + t.

Since the matrix M is orthogonal (and also symmetric), we can use the
same derivation as in Section 4.2.2 to compute DSSD in O(1) with O(N)
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(a) DSSD (b) DDQ

Figure 5.4: The candidates represented as transformations projected into E3

with MDS using different distance functions.

preprocessing. The DSSD distance function, as well as DGT , is not effected
by the position of the input object, so the initial translation to the origin is
not required, and the object size only effects the overall scale of the distance
function.

Figure 5.4a shows the candidates projected into E3 using MDS with the
DSSD distance function and the correct plane is again in a significant mode.
There is another smaller significant mode visible in the figure, however, this
can very likely be caused by the distortion of the MDS projection.

Dual Quaternions

Dual quaternions combine the concepts of quaternions and dual numbers
and are commonly used, mainly in robotics, to represent rigid transforma-
tions. However, in the following text we show how they can also be used
to represent a transformation of reflection over an arbitrary plane. A gen-
eral quaternion is defined as Q = q0 + q1i+ q2j + q3k where the i, j, k units
multiply according to the following rules

i2 = j2 = k2 = ijk = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik.

Quaternion multiplication is not commutative in general. A conjugate Q∗ of
a quaternion Q is defined as Q∗ = q0−q1i−q2j−q3k. If q0 = 0 then Q is so
called pure quaternion in which case it is that Q∗ = −Q. For two arbitrary
quaternions Q1 and Q2 it is that (Q1+Q2)∗ = Q∗1+Q∗2 and (Q1Q2)∗ = Q∗2Q

∗
1.

A size or norm of a general quaternion Q is defined as ‖Q‖ =
√
QQ∗ which

is always a non-negative real number. We denote v(x) = xi + yj + zk a
quaternion that represents an arbitrary point x = [x, y, z]T ∈ E3. If u is
an arbitrary unit vector and we set Q = cosα + v(u)sinα, then Qv(x)Q∗
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represents the point x rotated by angle 2α around the axis that passes
through the origin and has the direction of u. Also, for any unit vector u
and any α, Q is a unit quaternion, i.e. QQ∗ = Q∗Q = 1. Similarly, if we
set Q = v(u) (as a special case of α = π

2 ) then Qv(x)Q represents the point
x reflected over the plane with normal u that passes through the origin.
Notice, that this time Q at the right side is not conjugated. For details
about quaternions we refer to [38].

A dual quaternion is defined as

Qd = Q+ εQε = q0 + q1i+ q2j + q3k + ε(qε0 + qε1i+ qε2j + qε3k)

where Q and Qε are quaternions and ε is the dual unit which commutes with
the quaternion units i, j, k and it is that ε2 = 0. A quaternion conjugate
of Qd is defined as Q∗d = Q∗ + εQ∗ε , a dual conjugate of Qd is defined as
Qd = Q− εQε. These conjugations can be combined into Q∗d = Q∗ − εQ∗ε .

We denote vd(x) = 1 + εv(x) = 1 + ε(xi + yj + zk) a dual quaternion
that represents an arbitrary point x = [x, y, z]T ∈ E3. If Q is a quaternion
that represents rotation and Qε = v(t)Q

2 where t = [tx, ty, tz]T is an arbitrary
translation vector then for Qd = Q+εQε, it can be shown that the expression
Qdvd(x)Q∗d represents a rigid transformation in the following way. Since
Q∗d = Q∗− ε (v(t)Q)∗

2 and (v(t)Q)∗ = Q∗v(t)∗ the expression can be expanded
as

Qdvd(x)Q∗d = (Q+ ε
v(t)Q

2 )(1 + εv(x))(Q∗ − εQ
∗v(t)∗

2 ).

By multiplying the brackets while respecting that ε2 = 0 we get

Qdvd(x)Q∗d = QQ∗ − εQQ
∗v(t)∗
2 + εQv(x)Q∗ + ε

v(t)QQ∗
2

and since QQ∗ = 1 we further get

Qdvd(x)Q∗d = 1− εv(t)∗
2 + εQv(x)Q∗ + ε

v(t)
2 .

Because v(t) is a pure quaternion and therefore v(t)∗ = −v(t), the expres-
sion finally yields the form

Qdvd(x)Q∗d = 1 + εQv(x)Q∗ + εv(t) = 1 + ε(Qv(x)Q∗ + v(t))

which represents the point x rotated using the quaternion Q and then trans-
lated by t. This shows how dual quaternions can be used for representing
and computing rigid transformations. Note that Qd represents the same
transformation as −Qd with the identity being represented by either 1 or
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−1. Also, the transformations can be concatenated by multiplying the cor-
responding dual quaternions and if Qd represents a rigid transformation
then Q∗d represents its inverse. This in turn means that given two dual qua-
ternions Qd1, Qd2 representing rigid transformations, these transformations
are the same only if Qd1Q

∗
d2 = 1 or Qd1Q

∗
d2 = −1. For details about dual

quaternions we refer to [100] or [94].
Consider now a plane P and a dual quaternion Qd = Q + εQε defined

such that Q = v(n) and Qε = v(t)Q
2 where t = −2dn. Now Qd represents a

transformation that first rotates by π around the axis that passes through
the origin and has the direction of n, and then translates by −2dn. However,
if we apply the transformation on −x instead of x, it can be easily shown
that the transformation expression expands as

Qdvd(−x)Q∗d = 1− εQv(x)Q∗ + εv(t).

Because Q = v(n) is a pure quaternion, hence Q∗ = −Q, we can adjust the
expression as

Qdvd(−x)Q∗d = 1 + εQv(x)Q+ εv(t) = 1 + ε(Qv(x)Q+ v(t)) =

= 1 + ε(v(n)v(x)v(n)− v(2dn)) = vd(rP (x))

which exactly represents rP (x). This shows that a dual quaternion can also
represent a reflection transformation by representing a rigid transformation
that transforms −x to rP (x). Therefore, to measure distances between re-
flection transformations we can use a distance function for dual quaternions.

We denote vec(Qd) = [q0, q1, q2, q3, qε0, qε1, qε2, qε3]T ∈ E8 an 8-dimensional
vector that is equivalent to Qd. Given a plane P , we create the corres-
ponding dual quaternion Qd such that Q = v(n) and Qε = v(−2dn)Q

2lavrg
, i.e.

Qd = v(n) + εv(−2dn)v(n)
2lavrg

. The division by lavrg is again to normalize the
d coefficient (which of course cannot be done if the dual quaternion is
intended to be used for computing the reflection transformation). Since
v(−2dn) = −2d v(n) and because v(n) is a pure unit quaternion we can get
that

Qε = −2d v(n)v(n)
2lavrg

= d v(n)∗v(n)
lavrg

= d

lavrg

so Qd can be finally expressed as shown in Eq. 5.3.

Qd = v(n) + ε
d

lavrg
= ai+ bj + ck + ε

d

lavrg
(5.3)

Notice that the transition from the implicit equation of a plane to the cor-
responding dual quaternion is very straightforward because the a, b, c, d
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coefficients of the plane exactly correspond to four of the eight values of the
dual quaternion and the remaining four values are 0.

There are two common distance functions for dual quaternions. The
first one uses differences between the equivalent 8-dimensional vectors [94].
Suppose two arbitrary planes P1 and P2 represented by dual quaternions
Qd1 and Qd2 respectively. Such distance function can be defined as

min{‖vec(Qd1)− vec(Qd2)‖, ‖vec(Qd1) + vec(Qd2)‖}

but given Eq. 5.3 this is exactly the same as DED. The second distance func-
tion [33] uses a difference transformation Qd1Q

∗
d2 and computes its distance

from the identity, i.e. from 1 or −1. It is defined as

DDQ(P1, P2) = min{‖vec(1−Qd1Q
∗
d2)‖, ‖vec(1 +Qd1Q

∗
d2)‖}.

Figure 5.4b shows the candidates projected into E3 using MDS with DDQ

and the correct plane is in an obvious mode.

5.3 Results
We compared the distance functions by generating the candidate symmetry
planes of a given object (using the model algorithm described in Section
7.1.3), computing distances between them using the given distance function
and comparing them to distances computed using the ground truth distance
function. We did this for the six different test objects shown in Figure
5.5, taken from datasets [32, 67]. The objects are represented by triangle
meshes for easier visualization, but we again only used their vertices as the
input points for the candidate creation process. The Armadillo and Bunny
objects are simplified because the computation of DGT on their original
version would be too timely for the experiments we performed.

Let C = {P1, P2, ..., Pk}, k = 2000 be the set of candidate planes created
for a given input object. The error of a given distance function D against
the ground truth is defined as

Err(D) = 1
Count(k)

k∑
i=1

k∑
j=i+1

∣∣∣∣∣DGT (Pi, Pj)
Avrg(DGT ) −

D(Pi, Pj)
Avrg(D)

∣∣∣∣∣
where

Avrg(D) = 1
Count(k)

k∑
i=1

k∑
j=i+1

D(Pi, Pj)

is the average distance between candidates in C and Count(k) = 1
2(k2 −

k) is the total number of candidate pairs used for the computation. The
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(a)
Armadillo
10026

(b)
Bunny
9831

(c)
Lion
2213

(d)
Ant
3495

(e)
Formula
10969

(f)
Space ship

3099

Figure 5.5: The test objects used to generate the candidate sets for comparing
the distance functions. The number under the name of each object expresses
its point count.

Table 5.1: Errors of the distance functions for the candidate sets for different
objects.

Arm Bun Ant For Lio Shi Average
DED 0.120 0.277 0.163 0.093 0.130 0.234 0.169
DAD 0.133 0.281 0.157 0.098 0.144 0.236 0.174
DACD 0.299 0.388 0.264 0.250 0.306 0.352 0.309
DSSD 0.012 0.023 0.009 0.014 0.011 0.012 0.013
DDQ 0.118 0.277 0.162 0.093 0.129 0.232 0.168
Dρ1 0.382 0.399 0.503 0.596 0.326 0.425 0.438
Dρ2 0.401 0.408 0.488 0.563 0.360 0.489 0.451
Dρ3 0.280 0.446 0.269 0.730 0.362 0.447 0.422

normalization by Avrg is used because the overall scales of the distance
functions do not matter so the differences are computed after both DGT and
D are divided by their mean values.

Table 5.1 shows the errors of all the distance functions described above
for all the test objects. For completeness, we include the dual representations
in the comparison.

The smallest error is obviously achieved using DSSD which is probably
due to DSSD and DGT being based on the same principle. However, it is
still rather surprising that the DSSD function which uses squared distances
is so similar to DGT that uses absolute distances. The DED, DAD and DQD

all exhibit very similar errors (with DQD usually having the lowest of these
three) which are overall lower than those of DACD and the distances in the
dual spaces, but in case of DACD this can be explained by its resemblance
to the cosine function (DACD = 1 − cos(DAD)). The function Dρ3 exhibits
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similar or lower error than DACD on some objects (Arm, Ant) but also
considerably larger error on different ones (For, Shi) which suggests that
Dρ3 is quite unpredictable.

The graphs in Figures 5.6, 5.7, 5.8 show the relation between DGT and
the other distance functions. We generated 50 candidates on the Armadillo
object and for each pair of the candidates we put its distance computed
using DGT on the horizontal axis and the distance computed using a given
different distance function on the vertical axis. We divide each value by the
mean of the given distance function computed by Avrg. If some distance
function D was exactly the same as DGT (apart from overall scale) then
there would be a perfect linear dependency and the points for D would lie
on a perfect line in the graph.

Figure 5.6 shows the relations of DSSD, DED and DACD to DGT . The
functions DAD and DDQ are not included in this figure because they are too
similar to DED, this similarity is shown separately in Figure 5.7. The dual
representations are also shown separately in Figure 5.8. For different objects
the graphs are slightly different but overall very similar.

There is an obvious almost linear dependency between DGT and DSSD

(see Fig. 5.6), however, DED, DAD and DQD exhibit relation to DGT that is
also quite near linear dependency (see Fig. 5.7). For DACD the resemblance
to cosine is visible in the graph. On the other hand, the dual representations
show rather unstable behavior (see Fig. 5.8). This is mostly caused by the
shift in some of the coordinates in the dual space but without this shift all
the dual representations would suffer from singularities which is even worse
and makes them virtually unusable. It is possible that shifting by a different
constant could lead to better results, at least for some objects, however, the
choice of the shifting constant is arbitrary and there does not seem to be
any reasonable way to set it appropriately.

Table 5.2 shows the Pearson correlations [86] between all pairs of the
distance functions (including DGT ) for the data shown in Figures 5.6, 5.7,
5.8. Value of 1 indicates perfect linear dependency and the closer the value
is to 0 the weaker the linear dependency is. Expectedly, DSSD shows the
best linear correlation with DGT . However, the correlations of DED, DAD,
DDQ and even DACD with DGT are all rather high, all above 0.9. On the
other hand, the distances in the dual spaces exhibit mostly low correlation
with DGT . Notably, the correlations among DED, DAD and DDQ are all
very high, confirming that these three distance functions are indeed all very
similar.
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Figure 5.6: Relations between DSSD/DED/DACD and DGT for the Armadillo
object.

Figure 5.7: Relations between DDQ/DED/DAD and DGT for the Armadillo
object.

Figure 5.8: Relations between Dρ1/Dρ2/Dρ3 and DGT for the Armadillo ob-
ject.
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Table 5.2: Pearson correlations of the distance functions for the Armadillo
object.

GT ED AD ACD SSD DQ ρ1 ρ2 ρ3
GT 1.0000 0.9723 0.9644 0.9120 0.9998 0.9738 0.5361 0.3265 0.7238
ED 0.9723 1.0000 0.9989 0.9679 0.9713 0.9998 0.5537 0.3460 0.7621
AD 0.9644 0.9989 1.0000 0.9767 0.9635 0.9983 0.5499 0.3474 0.7548
ACD 0.9120 0.9679 0.9767 1.0000 0.9105 0.9664 0.5196 0.3111 0.7262
SSD 0.9998 0.9713 0.9635 0.9105 1.0000 0.9728 0.5351 0.3286 0.7214
DQ 0.9738 0.9998 0.9983 0.9664 0.9728 1.0000 0.5516 0.3423 0.7637
ρ1 0.5361 0.5537 0.5499 0.5196 0.5351 0.5516 1.0000 0.9248 0.4217
ρ2 0.3265 0.3460 0.3474 0.3111 0.3286 0.3423 0.9248 1.0000 0.1934
ρ3 0.7238 0.7621 0.7548 0.7262 0.7214 0.7637 0.4217 0.1934 1.0000

5.3.1 Theoretical Comparison
Based on the results, the most appropriate representation of the space of
planes in any Mode-based symmetry detection method is the transforma-
tion representation with the DSSD distance function. But the results also
suggest that, except for the dual representations, all the distance functions
are rather similar and none of them deviates significantly from DGT which
makes all of them well applicable. One only has to keep in mind that all
the distance functions except DSSD require translating the input object to
the origin, otherwise the normalization of the d coefficient would have to be
done differently. But if the practical results are put aside, there are yet some
theoretical differences between the various representations.

Since the dual and the 4D vector representations are basically Euclidean,
using these representations the candidates can easily be stored in some Eu-
clidean data structure, such as a kD-tree or a grid, that can be used for fast
proximity queries if needed. In case of the DAD and DACD distance func-
tions some structure can possibly be built using the polar coordinates in 4D.
Also, there are quite many possible algorithms for mode-seeking in Euclidean
data. The transformation representations and the DSSD and DDQ distance
functions are non-Euclidean and therefore slightly more restrictive in terms
of the accelerating data structures and possible mode seeking algorithms
that can be used. However, as already pointed out, such possibilities exist
[120, 126] (see also Section 4.1.3). Also, the implementation of the DSSD

and DDQ is more complex since DSSD requires some matrix representation
and basic operations of matrix algebra and DDQ requires implementing the
operations of dual quaternion algebra. On the other hand, the dual and 4D
vector representations only require the ordinary algebraic operations with
real numbers and vectors.

We also note that, although the DDQ distance function does not seem to
bring any considerable improvement over the other simpler distance func-
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tions, the idea of representing reflections by dual quaternions seems novel
and can possibly find its use in different applications or if some better dis-
tance functions for dual quaternions occur in the future. It could also be
used when creating new symmetry detection algorithms to represent the
planes, possibly taking advantage of the dual quaternion algebra.

5.4 Summary
We have described several representations of the space of planes that can
be used in any Mode-based algorithm for symmetry plane detection and we
have also described how distances can be computed in the various space
representations. We have shown that the 3-dimensional dual space repres-
entations are not very appropriate for this purpose but they can easily be
used for visualization purposes. In order to represent the space of planes
appropriately in the Mode-based symmetry detection, spaces of higher di-
mensionality need to be used and the transformation representation, which
appears to be the most appropriate one, is even non-Euclidean. However,
the results suggest that, apart from the 3D dual spaces, all the plane space
representations are well applicable in the context of Mode-based symmetry
detection, although, as described above, there are some theoretical differ-
ences between them that need to be taken into account.
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6 Symmetry Plane Detection
Using Differentiable
Symmetry Measure

In the previous chapter we analyzed different ways of representing planes in
methods for symmetry plane detection that are based on the popular Mode-
based approach. In this chapter, we describe a new method for detecting
the global symmetry plane of a 3D object which is based on a completely
different approach. The content of this chapter was previously published in
[53].

Since reflectional symmetry is probably the most often occurring sym-
metry in real world objects, having a reliable and robust method for sym-
metry plane detection in 3D data can be very useful for many applications.
In general, it is desirable for the method to be capable of detecting sym-
metries in objects that are only approximately symmetrical (see e.g. Fig.
6.1a) or symmetries in objects damaged by noise (see Fig. 6.1b). Some
applications, such as object reconstruction [105, 112, 117], even require the
symmetry detection to work on objects where some parts are missing, which
strongly disrupts the symmetry and makes it much more difficult to detect.
See, for example, the objects in Figures 6.1c and 6.1d. Although the global
reflectional symmetry in them is quite weak, a human observer is still able
to see it and a good symmetry detection method should be able to find it.

(a)
Real human face

(b)
Noisy Lion

(c)
Partial

Armadillo

(d)
Embrasure

Figure 6.1: An approximately symmetrical object [18] - (a) a noisy object -
(b) and two objects with missing parts - (c), (d).

In the following, we propose a surprisingly simple, differentiable sym-
metry measure, usable for evaluating symmetry of a 3D object, and we use
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it to design a robust and flexible global symmetry plane detection method.
The proposed method can be used on perfectly as well as approximately
symmetrical objects and we show that it is also capable of detecting the
plane of symmetry for objects with extensive missing parts, as well as for
noisy objects. Furthermore, the proposed method takes a general discrete
set of points on the input and therefore puts virtually no constraints on
the input data, which can be very useful because a more advanced object
representation, such as a manifold mesh, is not always available.

Many previous approaches use some form of descriptors (e.g. [16, 83,
107, 112]), mostly cuvature-based, i.e. the quality of their results depends
on the quality of the descriptor, which in turn depends on the properties of
the input object. The proposed method works very well without descriptors,
yet it is also very flexible, so that if more information about the input object
is available, the method can be easily extended to use this information in its
favor. Therefore, any descriptor can be used as the additional information
for the method, as will be shown, but in general, this is not necessary.
This altogether makes the proposed method very robust, flexible and widely
applicable. We will also show that the method is mostly superior to other
existing methods in terms of robustness, accuracy and speed. Although we
only consider a 3D case, the proposed symmetry measure and the method
built on it can easily be extended into more dimensions (or fewer, if needed)
and the symmetry measure can also be generalized for different types of
symmetry.

6.1 Symmetry Measure
We again represent a general plane P as described in Section 2.4.3 and we
denote p = [a, b, c, d]T a 4D vector of the plane coefficients. In this chapter
we do not implicitly consider the plane coefficients to be normalized in any
way. A vector function r(p,x) ∈ E3 that reflects a point x = [x, y, z]T ∈ E3

over a plane P represented by p is defined as

r(p,x) = x− 2
nTpx + d

nTpnp
np

where np = [a, b, c]T is the normal vector of the plane P . The components
of the function r(p,x) are continuous and differentiable w.r.t. p except for
p = [0, 0, 0, d]T , which does not represent a valid plane. Consider a set of
points X = {x1,x2, ...,xn},xi ∈ E3, i = 1, ..., n which represents a sampled
3D object. In theory, the points in X can be samples acquired from arbitrary
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3D object representations, including volumetric ones, and all that follows is
applicable regardless of the original representation from which the point set
was extracted. However, we only experimented with surface data so in this
work we consider X to represent a sampled 3D surface, e.g. vertices of a
polygonal mesh, samples of a parametric surface, points of a raw point cloud,
etc. We propose a symmetry measure that gives an evaluation of how much
the point set X is symmetrical with respect to a given plane P , represented
by p. The measure is defined as follows

sX(p) =
n∑
i=1

n∑
j=1

wijϕ(||r(p,xi)− xj||). (6.1)

The function ϕ(l) is some radial function such that ϕ(0) = 1 and its value
decreases and approaches 0 as l increases, wij are weights of point pairs
and will be discussed bellow. By default, the weights are not used, i.e.
wij = 1 for all i, j. The function ϕ is called a similarity function because
it transforms distance of two points into their similarity. The symmetry
measure sX considers all possible pairs of points in X. For each pair xi,xj ∈
X the point xi is reflected over the plane P , represented by p, and its
distance from xj is computed and transformed into similarity using ϕ. These
similarities are summed together for all pairs, giving the symmetry measure
value. The idea behind the symmetry detection method proposed below is
that maximizing the symmetry measure sX(p) for p should force as many
points as possible to reflect over P as close as possible to other points. This
idea well fits in the nature of the task of global approximate symmetry
detection, which is mainly to balance the size of the matching parts of the
object (how many points reflect close to other points) and the precision of
the match (how close to other points they reflect).

The idea of using some form of symmetry measure to find symmetries in
shapes is not new (see e.g. [60, 96, 127]). However, the symmetry measure
we propose provides several significant advantages that allow for designing
a very fast, robust and flexible symmetry plane detection method. First
of all, if a proper ϕ function is used, the measure is differentiable. This
is a very useful property since it allows analytically computing its gradient
and provides a natural way of quickly finding its maximum using some fast
gradient-based optimization method. It can also be computed efficiently,
while remaining differentiable, as described bellow. Furthermore, the meas-
ure maintains the relations between every two points, which allows using the
weights wij to adjust the importance of given point pairs based on additional
information, if some is available, as will be demonstrated later. Although
using the weights is certainly not necessary in majority of cases, in some spe-
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cific situations it can be useful and this option makes the symmetry measure
very flexible. The measure is well suitable for approximate or weak symmet-
ries and it can be computed for any set of points, not requiring a closed or
manifold surface or any other specific object representation. It can also be
easily extended into higher dimensions by just adding more coordinates to
the vector p and easily generalized for different symmetry types by replacing
the r function with a different transformation.

6.1.1 Similarity Function
The symmetry measure sX(p) is differentiable w.r.t. p (except for p =
[0, 0, 0, d]T ) when ϕ(l) is differentiable for l ∈ 〈0;∞) and d

dl
ϕ(0) = 0. This

holds, for example, for the Gaussian function and also for most of the Wend-
land’s functions [123]. Although the Gaussian function is simple and easy
to implement, for reasons that will be obvious soon, we rather used the
following modified Wendland’s function instead

ϕ(l) =

(1− 1
2.6αl)

5(8( 1
2.6αl)

2 + 5 1
2.6αl + 1) αl ≤ 2.6

0 αl > 2.6
.

The value α is the shape parameter of the function. The multiplier 1
2.6 is

our modification which ensures that the function has a similar shape and
spread to the Gaussian (e−(αl)2) for the same value of α. The main difference
between the Gaussian and our Wendland’s function is that the Wendland’s
function equals 0 for αl > 2.6, i.e. it is locally supported. This means
that the contribution of any point xi ∈ X to the value of sX(p) is fully
determined by the points of X that are not farther than 2.6

α
from r(p,xi)

which will prove very useful in Section 6.1.2.
If no two points of X are closer than 22.6

α
then the contribution is de-

termined by at most one point of X which is the closest to r(p,xi) and the
maximum value of this contribution is 1. Therefore, the maximum possible
value of sX(p) is n and it can only occur in the case when each point of X
reflects over P precisely to another point of X, which can only happen in
the case of perfect symmetry. This implies that if we set α ≥ 2 2.6

lmin
, where

lmin is the smallest distance between two points of X, and X is perfectly
symmetrical, then the global maximum of sX(p) will be always in the plane
of perfect symmetry.

However, with such a value of α, the function sX(p) would have many
local maxima, especially if lmin was small, making it difficult to optimize.
Also, in practice, objects are never perfectly symmetrical and we therefore
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aim to detect approximate symmetries rather than perfect ones, so we in-
stead set α according to the size of the input object as α = 15

lavrg
, which in

most cases makes the span of ϕ considerably larger and sX(p) smoother and
easier to optimize. The value lavrg is the average distance of the points in X
from their centroid and the value 15 was chosen as approximately optimal
based on vast experiments. We also note that the proposed symmetry detec-
tion method is not very sensitive to this value, as will be shown in Section
6.4. Nevertheless, in case of finding perfect symmetry, setting α = 2 2.6

lmin

could still be used for some final refinement but we do not include this into
our symmetry detection method.

6.1.2 Efficient Computation
A brute force computation of sX(p) has time complexity of O(n2) but for
many pairs xi,xj ∈ X the similarity ϕ(||r(p,xi)−xj||) is 0, so it only needs
to be computed for pairs where ||r(p,xi)−xj|| ≤ 2.6

α
. We use a uniform grid

with the cell size 2.6
α
× 2.6

α
× 2.6

α
. During the computation of sX(p), after a

point xi is reflected over the given plane and ends up in a cell C, only points
in C and cells adjacent to C are used for the symmetry measure computa-
tion. This way, due to the locality of the Wendland’s function, sX(p) can be
computed efficiently and remain first-order differentiable. Higher-order dif-
fierentiability can easily be achieved using some higher-order differentiable
Wendland’s function, but in our application we only need the first-order dif-
ferentiability and the function we use is less computationally expensive than
the higher-order differentiable ones.

In general, however, any other locally supported function that fulfills
the above mentioned differentiability conditions can be used without affect-
ing the efficient computation and differentiability of the symmetry measure
provided its spread parameter and the grid cell size are set correspondingly.
This also adds to the flexibility of the symmetry measure.

6.1.3 Simplification
Using the above described computation, the symmetry measure can well be
used to quantify symmetry for a given plane even when the input object has
quite a large number of points. But for the purpose of symmetry detection,
where the symmetry measure must be evaluated repeatedly, it can still be too
computationally expensive. However, in extensive experiments we observed
that the symmetry measure well represents the symmetry of a point set even
after the set gets simplified to a rather low number of points, given a proper
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simplification method is used. One way to simplify a set of points is to
downsample it randomly but this approach is insufficient, since it results
in a point set that does not represent the shape of the original object very
well. Instead, we use the following simplification algorithm, which is quite
simple and very fast. A 3D grid is created for the input point set with
the cell size lavrg

k
× lavrg

k
× lavrg

k
and each occupied cell gives one point of the

simplified point set by averaging all points contained in the cell. It is desired
to simplify the point set to approximately m points, so the simplification of
the original point set is repeated several times with increasing value of k
until the resulting point count reaches at least m, usually it gets slightly
above m.

The left column of Figure 6.2 visualizes the symmetry measure for three
objects simplified to approximately 1000 points using the above described
algorithm. Each point q ∈ 〈−1; 1〉 × 〈−1; 1〉 × 〈−1; 1〉 in the 3D space
corresponds to a single plane with normal vector np = 1

||q||q and d = lavrg ·
(||q|| − 1

2). The symmetry measure increases as the color goes from purple
to light blue. The 1

2 shift in the d coefficient causes the empty sphere in
the middle, we only consider d ≥ 0. For each object, the viewpoint was
chosen to maximize the perceived information. For visualization simplicity,
the objects are represented by triangle meshes but only their vertices were
used as the original point sets and input for the simplification. In Figures
6.2a and 6.2b it appears as if there are two significant maxima but this is
caused by planes with normal np being the same as planes with normal −np

for d = 0 and, in these two cases, the plane corresponding to the global
maximum passes very near the origin, so d is close to 0. This causes the
light spot of the global maximum to be split into two spots on the opposite
sides of the empty sphere whose surface corresponds to d = 0. In Figure
6.2c, there is only one spot of the global maximum because the plane it
represents does not pass so near the origin. Next to each visualization, there
is the corresponding object together with the plane that represents the global
maximum of the symmetry measure. In all three cases the global maximum
corresponds to a very good symmetry plane of the given object, even though
it is simplified to only approximately 1000 points. The original point counts
are in the captions.

6.1.4 Locating Maxima
To find a local maximum of the symmetry measure, we employ a quasi-
Newton optimization method L-BFGS [74], which uses the gradient of the
symmetry measure, exploiting its differentiability, and it usually converges,
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(a) Lion
2213 points

Lion convergence

(b) Armadillo
172974 points

Armadillo convergence

(c) Partial Armadillo
64647 points

Partial Armadillo convergence

Figure 6.2: The symmetry measure visualized for Lion - (a), Armadillo [67]
- (b) and its partial version - (c), simplified to approximately 1000 points
(original point counts are in the captions), the symmetry measure increases
as the color goes from purple to light blue, the objects are shown with the
plane in the global maximum of the measure, the right column shows the
convergence regions for the given objects.
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to a sufficient precision, in only several iterations. Computation of the gradi-
ent can be accelerated in the same way as the computation of the symmetry
measure itself (see Section 6.1.2). This is because the first-order derivative
of ϕ(l) also equals 0 for αl > 2.6. We also tried using the Nelder-Mead op-
timization method [90], which does not require the gradient. It also worked
but needed a much larger number of iterations making the optimization no-
ticeably slower, which suggests the usefulness of the analytically computed
gradient. Furthermore, differentiability can be useful even in case of non-
gradient methods, because it makes the symmetry measure free of sudden
changes, providing more stability to the optimization.

Before starting the L-BFGS optimization, the point set should be trans-
lated together with the initial plane somewhere near the origin because in
a large distance from the origin (large d) even a slight change of the plane
normal vector direction can cause a significant change of the plane position,
which can negatively influence the convergence of the optimization method.
In order to find the global maximum of some function, generally the initial
point needs to be somewhat close to it. The right column of Figure 6.2 shows
a visualization of the plane space, for the same three objects using the same
parameterization as in the top row, where the red spots correspond to a re-
gion of planes from which the L-BFGS optimization converged to the global
maximum - the convergence region. The objects were again simplified to ap-
proximately 1000 points. For Lion and Armadillo, the convergence regions
are very large. For partial Armadillo, due to its much weaker symmetry, the
region is smaller but still considerably big, with the angle between normal
vectors of any two planes on the opposite sides of the region exceeding 45◦.
This indicates that in order to find the global maximum, the starting plane
of the optimization does not need to be particularly close to it, even in the
case of quite weakly symmetrical objects. This property of the symmetry
measure will be exploited in the proposed symmetry detection method.

6.2 Proposed Symmetry Detection Method
The proposed global symmetry plane detection method roughly follows the
common RANSAC scheme, which is very often used in symmetry detection
and related areas. The key idea of RANSAC is generating a large number of
candidate solutions based on the input data, which creates a good enough
probability of a sufficiently good solution being among them. Each of the
candidates is evaluated for its fitness, so creating unnecessarily large number
of candidates can easily lead to a time consuming computation. But in our
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case, since the numerical optimization converges to the global maximum of
the symmetry measure from quite a large distance, we do not need to find
a solution that close to the best one. We only need to find one in the con-
siderably big convergence region, suggesting that a rather sparse sampling
of the candidate space will be sufficient. Determining with certainty if a
candidate lies in the convergence region is impossible, but a good indication
is the symmetry measure itself. It can be expected that planes near the
global maximum have a higher symmetry measure than those far from it.

The overview of the proposed method follows. Several candidate sym-
metry planes are created and only a small number of them, with the largest
symmetry measure, are selected as having the largest potential of being in
the convergence region. Then the optimization is started from these few
planes and the resulting plane with the largest final symmetry measure is
selected. The other planes to which the optimizations converge can be used
as secondary planes in case of objects with multiple significant symmetries,
as will be described later. For reasons described in Section 6.1.4, before the
symmetry detection itself, the input set of points is translated so that its
centroid is at the origin and in the end the inverse translation is applied to
the resulting symmetry plane(s).

6.2.1 Creating the Candidate Planes
Meaningful candidate planes could be created by taking each pair of points
xi,xj ∈ X, i 6= j and creating the plane of symmetry of these two points.
But using this approach directly on X results in an overwhelming number of
planes, at least when X consists of more than a few tens of points. There-
fore, we first simplify X using the algorithm described in Section 6.1.3 with
m = 100, creating a new set of points Xcand with approximately 100 to 110
points. The candidate plane creation is then performed on Xcand, creating
approximately 5000 to 6000 candidate planes, which is still unnecessarily
many. However, we observe that many of the candidates are very similar,
which means there is no need to evaluate all of them.

Candidate Pruning

We use the following distance function to measure the distance between two
planes represented by pu, pv

D(pu,pv) =

||p̂u − p̂v|| nTpunpv ≥ 0
||p̂u + p̂v|| nTpunpv < 0
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where p̂ = 1
||np|| [a, b, c,

d
lavrg

]T and npu, npv are the normal vectors of the
planes. This is basically the DED distance function from Chapter 5 only
modified for non-normalized planes. A theoretically more appropriate dis-
tance function can be derived when representing the candidates as reflection
transformations as described in Chapter 5 (see also Chapter 4 and [98]).
However, as also shown in Chapter 5, the distance function we use here
shows very similar behavior in practice (given the object is centered, which
we did at the beginning), is simpler, easier to implement and does not require
conversion to matrix represented transformations. When creating the can-
didates, if a newly created candidate pv is closer than δ = 0.1 to the closest
previously created candidate pu, the new one is not added to the candidate
set. Instead, pu is replaced with avrg( 1

||npu||pu,
1

||npv ||pv), computed as

avrg(pu,pv) =

pu + pv nTpunpv ≥ 0
pu − pv nTpunpv < 0

.

If pu is already an average of ψ candidates, ψ > 1, then pv is only added
to the average which is computed as avrg( 1

||npu||pu,
1

ψ||npv ||pv). To accelerate
locating the closest candidate, we use a 4D grid with cell size δ × δ × δ × δ
where for each candidate p, the vector p̂ is stored. This is plausible because
D is a Euclidean distance. The grid query is similar to the one described
in Section 6.1.2 for the 3D grid, only differing in that when locating the
closest candidate to p, the query is executed for both p̂ and −p̂ because they
represent the same plane. We observe that candidates created by averaging a
very low number of planes can quite safely be considered outliers. Therefore,
we further remove all candidates created by averaging less than ψmin = 4
planes, which basically means that there are at most 3 pairs of points inXcand

that are roughly symmetric w.r.t. the given candidate plane, which is too few
to generate a meaningful candidate. The remaining candidates represent the
final candidate set, which usually consists of only a few hundreds of planes,
so the candidate space is sampled rather sparsely but still sufficiently.

6.2.2 Selecting the Best Candidates
Once the candidates are created, we use the algorithm from Section 6.1.3
with m = 1000 to create another simplified version of X with approximately
1000 points, denoted Xsimp. Then we compute the symmetry measure sXsimp

for all the candidate planes. In case of objects with weaker or multiple less
significant symmetries, it is not safe to only select the best candidate to
initialize the optimization because its relatively large symmetry measure
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can be caused by its proximity to some significant local maximum rather
than the global one. So we select S candidates with the largest symmetry
measure and start the optimization from all of them. As the candidate
pruning ensures that the candidates are not too similar, it is unlikely that
the optimization converges to the same plane from all of them. In the end,
we get S local maxima of the symmetry measure, among which we select the
one with the largest symmetry measure and declare it the resulting plane of
symmetry. We use S = 5.

6.2.3 Detecting Multiple Planes
Since the above described approach provides S local maxima of the sym-
metry measure the method can be easily adjusted to find multiple sym-
metry planes of the input object. It is very likely that two or more planes
among the S local maxima will be very similar, therefore, to avoid detecting
the same plane multiple times, we do the following. We sort the S planes
representing the local maxima according to their symmetry measure in a
descending order and we iterate through the sorted list from the first to the
last plane. The first plane is always accepted as one of the resulting sym-
metry planes and any other plane is only accepted if its distance D from the
closest already accepted plane is larger than 0.25. The method can find at
most S significant symmetries this way. Therefore, when used to detect mul-
tiple planes, it is advisable to increase the value of S for the price of slightly
larger time consumption. We use S = 20 instead of the original 5, which
is sufficient in most applications. Because the local maxima can represent
symmetry planes of varying significance, we further recommend accepting
only planes with symmetry measure above some predefined threshold. The
value of the threshold depends on the intended application but for a general
purpose we recommend a value about 70% of the symmetry measure of the
best detected plane.

6.2.4 Using the Weights
Until now we have been ignoring the weights wij in the symmetry measure
sX (see Equation 6.1) and considered all of them equal to 1. But when using
the weights the method can be much more flexible. The weight wij can be
expressed as wij = wsijw

d
ij(p) where wsij is a static weight and wdij(p) is a

dynamic weight which depends on the plane P represented by p. Now the
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symmetry measure sX can be expressed as

sX(p) =
n∑
i=1

n∑
j=1

wsijw
d
ij(p)ϕ(||r(p,xi)− xj||).

The dynamic weights can, for example, represent the symmetry of normal
vectors or directions of principal curvatures in corresponding pairs of points
with respect to a given plane. The static weights can be set to represent the
importance of given pairs of points. In other words, the more it is desired
for the point xi to end up in or near the point xj after reflecting it over
the plane of symmetry the higher the static weight wsij should be. The
importance can be set manually by the user or as a similarity of some kind
of feature function values in the given two points. As this feature function,
for example, some type of curvature can be used, since it can be expected
that in two symmetrical points there are similar curvature values.

In the rest of this section we show two modifications of the proposed
method that use the weights in a beneficial manner. The first modification
uses similarity of Gaussian curvature values to set the static weights and
the symmetry of normal vectors for the dynamic weights. The Gaussian
curvature as the feature function was chosen because it has previously shown
itself useful for quantifying point similarity on 3D shapes [47] in context of
symmetry detection. This modification will be described in Section 6.2.5.
How this weighting can be used will also be shown in Section 6.3.4. The
second modification only uses the static weights, which are set according to
point-to-point distance, to force the method to detect a plane perpendicular
to the largest dimension of the object. It will be described in Section 6.2.6.
The results and possible purpose of both these modifications will be shown
in Section 6.3.4.

6.2.5 Using Gaussian Curvature and Normal
Symmetry

Here we describe the first modification which uses the Gaussian curvature
values and normal vectors. The curvature values can help to identify simil-
arity of features in the input object, which can be useful in case of objects
with severe partiality where the whole object is completely asymmetrical
but some features still exhibit symmetry. The normal vectors can further
help to make the resulting symmetry more accurate. Let us now suppose
that the input object is not represented by a general set of points but by a
manifold triangle mesh on which the Gaussian curvature and a unit normal
vector can be computed for each vertex. The normal vectors of all vertices
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are computed by summing the normal vectors of triangles adjacent to the
given vertex and normalizing the resulting vector. The values of Gaussian
curvature are computed as described in [81].

Apart from the set of pointsX = {x1,x2, ...,xn} that represent vertices of
the mesh we now also have a set of unit normal vectors N = {n1,n2, ...,nn}
and a set of Gaussian curvatures G = {g1, g2, ..., gn} where ni is the unit
normal vector in the point xi and gi is the Gaussian curvature in the point
xi. It also needs to be defined how the normal vectors and the values of
Gaussian curvature will be determined when the simplification algorithm is
applied. When a new point of the simplified point set is created by averaging
the points in a given cell of the simplification grid, its normal vector is
determined by averaging the normal vectors in all points in the cell and
normalizing the resulting vector. Its Gaussian curvature is taken from the
point in the cell for which the absolute value of its Gaussian curvature is the
largest.

Symmetry of Normal Vectors

The dynamic weights are set using the symmetry of normal vectors in ver-
tices. In order to measure the reflectional symmetry of two unit normal vec-
tors in two points, we first have to define a function rn(p,n) which reflects
a unit normal vector n over the plane P represented by p. This function is
defined as

rn(p,n) = n− 2
nTpn
nTpnp

np.

The symmetry of two normals ni and nj is defined as the similarity of
rn(p,ni) and nj. To quantify such similarity we apply the similarity function
ϕ(l) on the angle between rn(p,ni) and nj. As ϕ our Wendland’s function is
used with the shape parameter α set as α = 4. This value of α was chosen so
that for angle π

16 (that is 11.25◦) the similarity is approximately 0.5 because
it is reasonable that only for low angles the similarity is significant (close to
1), otherwise the value could be quite close to 1 even for rather asymmetrical
pairs of points. The dynamic weights wdij(p) are therefore defined as

wdij(p) = ϕ(arccos(rn(p,ni)Tnj)), with α = 4.

Similarity of Gaussian Curvature Values

The static weights are set using the Gaussian curvature values as follows

wsij =


min(|gi|,|gj |)
max(|gi|,|gj |) |gi| ≥ gavrg

h
∧ |gj| ≥ gavrg

h
∧ gigj > 0

0 otherwise
.
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The weight is non-zero only when both curvatures gi and gj have the same
sign and their absolute values are both greater than the threshold gavrg

h
where

gavrg is the average of absolute values of Gaussian curvatures in all points
and h is a constant which we set as h = 100. This ensures that Gaussian
curvatures with very small absolute values are not considered because they
are usually present in points without significant features.

Additional Changes

When such weighting is used, we do not use the default candidate pruning,
because it does not reflect the importance of given point pairs defined by the
weights. Instead, we use the weights to prune the set of candidate planes in
a smarter way. When creating a candidate plane P , represented by p, as a
symmetry plane of xi ∈ Xcand and xj ∈ Xcand, we test whether the weights
wsij and wdij(p), computed usingNcand andGcand, are above certain thresholds
and if not, the given plane is not considered a candidate anymore. The sets
Ncand and Gcand are the sets N and G (respectively) corresponding to the
simplified point set Xcand. The normal vector information and Gaussian
curvature information are quite damaged by the simplification process and
therefore the thresholds for the weights should not be set very large. Spe-
cifically we consider the plane P , created as a symmetry plane of xi ∈ Xcand

and xj ∈ Xcand, a candidate plane if wsij > 0 and wdij(p) > 0.25. Also, since
with this weighting the symmetry measure gets more complex (less smooth)
and more difficult to optimize, we use m = 200 instead of m = 100, when
simplifying X to create Xcand, to sample the space of candidate planes more
densely.

6.2.6 Using Point-to-Point Distance
Here we describe the second modification that uses the point-to-point dis-
tances to set the weights. There are many objects which are symmetrical
with respect to more than one plane and in some cases only some of these
planes are desired to be detected. For example, imagine an object with con-
siderably different sizes in different dimensions (width, height, depth). In
such cases, the user might want to always detect the plane along the smal-
ler dimensions and perpendicular to the largest dimension to maximize the
object’s span across the detected symmetry plane. In order to achieve such
behavior a very simple weighting can be applied by setting the static weights
to reflect the distance between the corresponding points. Specifically, we set
them as wsij = ||xi−xj ||

lavrg
. The dynamic weights remain unused, i.e. wdij(p) = 1.
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When such weights are plugged into the symmetry measure, pairs of points
with larger mutual distance will be treated as more important. Therefore,
the method will try to find such a symmetry plane for which there is the
best symmetry between the pairs with the largest distance. The rest of the
method remains unmodified in this case. Similar weighting could also be
used to achieve the opposite effect and force the method to detect planes
along the largest dimension and perpendicular to the smaller ones, but we
did not perform any experiments in this way.

6.3 Results
The proposed method was implemented in C# and its results were acquired
on a computer with CPU Intel R© CoreTM i7-4770 and 16 GB of memory
running a Windows 10 operating system. Until stated otherwise, we present
results of detecting the single most significant symmetry plane, because this
is what our method is primarily designed for, using the basic version of
the proposed method where the weights in the symmetry measure are not
used (wij = 1). Later we will also show some results of multiple plane
detection and of the two modifications mentioned above. We always use the
proposed method with its default parameter values introduced throughout
the previous text.

We compare our method to the View-based method [69]. Although it is
not very appropriate for weakly symmetrical objects, it shows good accuracy
for objects with stronger symmetry, is fast and robust to noise and works
on an arbitrary triangle mesh, not requiring any further property such as
manifoldness. Therefore, we consider it one of the state-of-the-art methods
for symmetry plane detection. Moreover, its implementation is publicly
available [68]. In our experiments we used the implementation of the View-
based method from [68] with its default parameter setting proposed in [69].

We further compare our method to the Clustering-based method by Shi
et al. [107], which is an improved version of one of the most commonly known
symmetry detection methods by Mitra et al. [83]. Apart from using a more
appropriate metric in the transformation space, [107] is very similar to [83],
so comparison to [107] can, in some sense, be considered a comparison to [83]
as well. The Clustering-based method is designed to detect symmetries of
much more general types, not just reflectional ones. We used the implement-
ation of [107] provided to us by its authors and adjusted by themselves to
specifically detect reflectional symmetries (symmetry planes). If the method
found multiple symmetries, the most significant one was selected as the res-
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ult according to the authors’ instructions. The default parameter values
were also provided to us by the authors. The Clustering-based method was
run on Linux Mint 18.3.

There are other relevant methods for symmetry plane detection but
mainly because their implementation is not available (as also mentioned
by [69]), we compare to [69] and [107]. For fair comparison to the View-
based and Clustering-based methods (which require a triangle mesh) and
because triangle meshes are the most common way of representing 3D ob-
jects in computer graphics, the test objects we used are all triangle meshes.
The basic version (with wij = 1) of our method only uses the vertices of
each mesh as the input set of points. However, unlike [69] and [107], the
basic version of our method could as well be used for different representa-
tions including raw point clouds, since it only works with points and does
not require connectivity information.

Figure 6.3 shows 26 objects of varying shapes and properties, together
with their symmetry planes detected by the proposed method. The objects
are always rendered so that the detected plane (marked by the line) is per-
pendicular to the plane of the figure. They were taken from various datasets
[1, 32, 67, 108, 116] and the four faces were provided to us by the authors
of the Fidentis project [18]. The point counts of all the objects are in Table
6.1.

The Figures 6.3a - 6.3i contain artificial and mostly strongly symmetrical
objects, 6.3j - 6.3u show realistic 3D-scanned objects and 6.3v - 6.3z objects
with missing parts, usually damaged artificially by clipping, except for the
Embrasure, which was damaged naturally before it was scanned. The pro-
posed method detected correct symmetry planes for all the objects, including
the incomplete ones, where detecting a naturally appearing symmetry plane
is generally quite challenging.

Under each object its point count is shown and there are also the V and
C letters, which stand for the View-based and Clustering-based method,
respectively, followed by either a check mark - 3, in case the corresponding
method provided a correct symmetry plane, mostly visually similar to the
one our method detected, or a cross mark - 7, in case the result of the method
was wrong or considerably imprecise. With the Clustering-based method we
further use the check mark in brackets - (3), which means that it did not
work with its default parameter configuration but we were able to find such a
configuration which made it provide a plausible symmetry plane for the given
object. The View-based method was only tested with its default parameter
values since changing them did not lead to noticeable improvement in its
results, only to larger computation time. The implementation of the View-
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(a)
Beetle

V:3;C:3

(b)
Cow

V:3;C:(3)

(c)
Elephant
V:3;C:(3)

(d)
Homer
V:3;C:3

(e)
Mannequin
V:3;C:(3)

(f)
Lion

V:3;C:3

(g)
Ant

V:3;C:7

(h)
Formula
V:3;C:3

(i)
Starship
V:3;C:-

(j)
Face 1

V:7;C:(3)

(k)
Face 2
V:7;C:3

(l)
Face 3

V:3;C:3

(m)
Face 4

V:3;C:3

(n)
Bunny

V:7;C:(3)

(o)
Armadillo
V:–;C:7

(p)
Buddha
V:–;C:–

(q)
Lucy

V:–;C:–

(r)
Column
V:–;C:7

(s)
Clipped
Armadillo
V:–;C:7

(t)
Clipped
Armadillo
V:–;C:7

(u)
Clipped
Armadillo
V:–;C:7

(v)
Embrasure
V:–;C:–

(w)
Clipped
Face 1
V:7;C:3

(x)
Clipped
Face 2
V:7;C:7

(y)
Clipped
Face 3
V:7;C:3

(z)
Clipped
Face 4
V:7;C:7

Figure 6.3: Several objects with their symmetry planes detected by the
proposed method, the symbols after the V/C letter state wheter the View-
based/Clustering-based method detected a plausible plane for the given object.
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Table 6.1: The number of points of each of the testing objects.

Object Point count Object Point count Object Point count

Beetle 988 Face 1 2500
Clipped
Armadillo
(first)

135601

Cow 2903 Face 2 2500
Clipped
Armadillo
(second)

134989

Elephant 19753 Face 3 2500
Clipped
Armadillo
(third)

64647

Homer 5103 Face 4 2500 Embrasure 117535

Mannequin 6737 Bunny 34834 Clipped
face 1 2224

Lion 2213 Armadillo 172974 Clipped
face 2 1782

Ant 3495 Buddha 543103 Clipped
face 3 1401

Formula 10969 Lucy 750001 Clipped
face 4 1602

Starship 3099 Column 69512

based method crashed, for unknown reason, when used on any object with
more than approximately 35000 vertices and the one of the Clustering-based
method also crashed for several objects, probably due to non-manifoldness.
These cases are indicated by a dash.

The View-based method detected correct symmetry planes on 11 out of
18 of the objects which its implementation was able to process. It seems
to work flawlessly on the strongly symmetrical objects (9 out of 9 correct)
but expectedly the objects with weaker symmetries (2 out of 5 correct) and
missing parts (0 out of 4 correct) are problematic for this method. The
Clustering-based method was able to correctly detect planes on 14 out of
22 of the objects its implementation processed but only on 9 of them it
worked well with its default parameter configuration, on the other 5 it only
worked after tuning the parameters for the specific objects. It suggests
that this method is rather sensitive to its parameter setting but it shows
a larger potential on weakly symmetrical and incomplete objects than the
View-based method.

Figure 6.4 shows two selected fail cases of the View-based and two of
the Clustering-based method - one of a noticeably imprecise detection and
one of a completely wrong detection. These results were obtained using the
default parameter settings. On the Ant object the Clustering-based method
found no symmetry.

The results imply that the proposed method is considerably more robust
than both the View-based and Clustering-based methods, mainly when used
on objects with weaker symmetry and missing parts.
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(a)
Face 1
View-
based

(b)
Clipped Face 4

View-
based

(c)
Armadillo
Clustering-

based

(d)
Clipped Face 4
Clustering-

based

Figure 6.4: Two examples of imprecisely - (a), (c) and two of completely
incorrectly - (b), (d) detected planes of the View-based - (a), (b) and the
Clustering-based - (c), (d) methods.

For objects with missing parts, comparison to [112] would be suitable
because it is a state-of-the-art method for symmetry plane detection for
objects with missing parts. Unfortunately, despite our effort, we were unable
to acquire its implementation and there are no numerical results in [112],
so no fair comparison to this method is possible. But the proposed method
was tested with good results on several objects which are the same or very
similar to those used in [112] - the objects in Figures 6.3r, 6.3s, 6.3t, 6.3u and
6.3v. However, [112] requires a manifold triangle mesh and, due to the use of
the Heat Kernel descriptor, does not work on featureless objects. These are
quite constraining properties that make the method [112] much less general
and less applicable than our method.

It will now be shown that even when used on objects where the View-
based and Clustering-based methods detect a plausible symmetry plane, the
proposed method mostly shows higher accuracy, which could not be seen in
the visual results but can be demonstrated by a numerical measurement.

To measure the error of a detected symmetry plane, we apply the Metro
[24] distance measure to evaluate the distance between the original object
and the object created by reflecting the original one over the detected plane.
The same error measurement was used by the authors of the View-based
method in [69]. The Metro distance provides two values, the mean and the
max error. The max error is the Hausdorff distance, which is very sensitive
to outliers and often shows larger error for correct symmetry planes than
for obviously incorrect ones. For this reason, we consider the max error
inappropriate for measuring symmetry detection accuracy and we only use
the mean error.
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Table 6.2: Comparison of the proposed, View-based [69] and Clustering-based
[107] methods in terms of Metro [24] mean error, the lowest error for each
object is marked bold, the second lowest is in italic,∞ indicates no symmetry
was found, the average error excludes Ant and Starship.

Object Metro mean error

View-
based
method

Clustering-
based
method

Proposed
method
(aligned
objects)

Proposed
method
(rotated
objects)

Beetle 0.00619 0.00586 0.00055 0.00055
Cow 0.00730 (0.00116) 0.00047 0.00072
Elephant 0.00030 (0.00357) 0.00035 0.00046
Homer 0.00125 0.00627 0.00090 0.00097
Mannequin 0.00960 (0.00838) 0.00905 0.00838
Lion 0.00717 0.00368 0.00107 0.00101
Ant 0.00138 ∞ 0.00042 0.00055
Formula 0.00124 0.00523 0.00035 0.00044
Starship 0.00424 N/A 0.00154 0.00157
Face 1 0.03086 (0.01778) 0.00815 0.00812
Face 2 0.05604 0.02569 0.01156 0.01191
Face 3 0.01704 0.01922 0.00955 0.00943
Face 4 0.01716 0.02245 0.00571 0.00567
Average 0.01401 0.01084 0.00434 0.00433

Table 6.2 shows the error values of the symmetry planes detected by
the View-based and Clustering-based methods and by the proposed method
on several objects from Figure 6.3. Since the proposed method is not fully
rotation invariant, we present two error values for each object - one for an
axis-aligned object and another for a randomly rotated version of the same
object. These two values are always very similar, implying that the accur-
acy of the proposed method does not depend much on the orientation of the
object. The errors in brackets were obtained after parameter tuning consist-
ently with what is stated in Figure 6.3. The proposed method shows mostly
the lowest error (usually several times lower than the other two methods),
except for the Elephant, where the View-based method is slightly more pre-
cise, and the Mannequin, where the Clustering-based method shows slightly
smaller error than the proposed method on the aligned version, but it was
achieved after parameter tuning, without which it did not find a plausible
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Table 6.3: Running times (in seconds) of the proposed method and the imple-
mentations of the View-based [69] and Clustering-based [107] methods, the
shortest time in each row is marked bold, the second shortest is in italic.

Object Point
count

Time [s]

View-
based
method

Clustering-
based
method

Proposed
method
single-
thread

Proposed
method
multi-
thread

Beetle 988 0.41 16.9 0.54 0.25
Lion 2213 0.45 18.0 0.51 0.23
Face 1 2500 0.45 18.9 0.45 0.21
Face 2 2500 0.45 20.6 0.46 0.22
Face 3 2500 0.45 19.3 0.48 0.23
Face 4 2500 0.45 18.1 0.51 0.27
Cow 2903 0.46 21.7 0.63 0.31
Starship 3099 0.48 N/A 0.50 0.23
Ant 3495 0.49 17.6 0.65 0.29
Homer 5103 0.55 19.1 0.47 0.23
Manneq. 6737 0.60 30.1 0.42 0.22
Formula 10969 0.69 23.7 0.66 0.30
Elephant 19753 1.00 32.7 0.46 0.25
Bunny 34834 1.44 145.6 0.58 0.25
Armadillo 172974 N/A 1190.0 0.64 0.38
Buddha 543103 N/A N/A 0.78 0.55
Lucy 750001 N/A N/A 0.90 0.68

plane. The average error in the bottom row does not include Ant and Star-
ship and it is considerably smaller for the proposed method than for the
other two methods.

Table 6.3 shows the running times of the proposed method and the imple-
mentations of View-based and Clustering-based (with default parameters)
methods for several objects. Since some parts of our method can be eas-
ily parallelized, we show times of both single-thread and multi-thread im-
plementations. The Clustering-based method appears incomparably slower
than the other two methods, so we further exclude it from the timing com-
parison.

The graph in Figure 6.5 shows timing comparison of the proposed method
to the implementation of the View-based method with respect to the point
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Figure 6.5: Comparison of the running times of the proposed method and
the implementation of the View-based method [69].

count. The multi-threaded implementation of our method is faster than
the View-based method. The single-threaded version is comparable to the
View-based method for objects with point count up to approximately 10000
but after this point the running time of our method grows much less, which
is due to the fast simplification (see Section 6.1.3).

Unfortunately, the running times of the View-based method for the last
three objects are not available, however, [69] states that the method pro-
cessed an object with 467252 points in 48.2s on a computer with CPU Intel R©
Xeon R© X5675 (clock rate 3.07 GHz) which is roughly comparable to our
machine. Since our method processed an object with 750001 points in 0.9s,
this suggests that for objects with larger point count our method is signific-
antly faster than the View-based method.

6.3.1 Noisy Objects
We created noisy versions of four different objects by adding a random vec-
tor [randx, randy, randz]T · lavrg · mag to each point of the object, where
randx, randy and randz are uniform random values from 〈−1; 1〉 and mag
is a constant which determines the noise magnitude. Figure 6.6 shows the
symmetry planes detected by the proposed method on these objects, where
the noise was created with mag = 0.05 for the objects in the top row,
and with mag = 0.1 for those in the bottom row. Although the noise is
very strong, the detected symmetry planes are still visually correct. The
Clustering-based method found a plausible plane only for the Beetle with
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V:3;C:(3) V:3;C:7 V:3;C:7 V:3;C:7

V:3;C:7 V:3;C:7 V:3;C:7 V:7;C:7

Figure 6.6: The symmetry planes detected by the proposed method on four
objects with added noise with mag = 0.05 - top row, and with mag = 0.1 -
bottom row.

mag = 0.05 but only after parameter tuning, suggesting that this method
is not suitable for objects with significant noise, which is also admitted in
[107]. The View-based method only failed on the Lion with mag = 0.05,
which can be considered an exception, implying that this method is compar-
able to our method in robustness to noise. The failure of the View-based and
two selected failures of the Clustering-based method are depicted in Figure
6.7.

In the above mentioned cases the noise was uniformly distributed across
the whole surface, so the random deviations of all points approximately

(a) Lion
mag = 0.05
View-based

(b) Mannequin
mag = 0.05
Clust.-based

(c) Lion
mag = 0.05
Clust.-based

Figure 6.7: Two imprecisely - (a), (b) and one incorrectly - (c) detected
planes on the noisy objects by the View-based - (a) and the Clustering-based
- (b), (c) methods.
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Figure 6.8: The symmetry planes detected by the proposed method - top
row, and by the View-based method - bottom row, on four objects with non-
uniformly distributed noise.

cancel out throughout the object and its symmetry actually does not suffer
that much. Figure 6.8 depicts the same four objects with added noise with
mag = 0.05 but the noise is only added to one half of each object. The
top row shows the planes detected by the proposed method, which are all
visually correct, and the bottom row shows the planes detected by the View-
based method, which are noticeably inaccurate. These results imply that the
proposed method is more robust to non-uniformly distributed noise than the
View-based method and, therefore, more robust to noise in general.

6.3.2 Tests on a Larger Dataset
We tested our method on the Thingi10K [128] dataset, which consists of
10000 3D objects represented by triangle meshes. Results of our method
for all objects in the dataset can be found here [52]. From the dataset we
extracted all objects that could be processed by the implementations of both
the View-based and Clustering-based methods (manifold with up to 30000
vertices). We randomly selected 100 objects from this set and replaced ob-
jects without any significant reflectional symmetry with new random ones,
which we repeated until there were no objects to replace. We ran the pro-
posed, View-based and Clustering-based (with default parameters) methods
for all the resulting 100 objects and for each method we manually observed
the results and counted correct detections.

The results are in Table 6.4. Cases where the detected plane captured a
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Table 6.4: Number of Correct/Imprecise/Incorrect detections for the 100
random objects from Thingi10k [128].

View-based Clustering-based Proposed Proposed
(sampled)

Incorrect 10 30 3 0
Imprecise 6 13 2 1
Correct 84 57 95 99

significant symmetry are marked as Correct. Those that were quite close to
some correct symmetry plane, but with a noticeable imprecision, are marked
as Imprecise, and those that were completely wrong as Incorrect. The incor-
rect detections also include cases where the Clustering-based method found
no symmetry (12 cases). The proposed method shows the highest number
of correct detections with 3 incorrect and 2 imprecise detections. This is
caused by some objects in the dataset being heavily undersampled in some
areas and oversampled in others, e.g. typical CAD models that often con-
tain densely sampled details but their planar or otherwise monolithic areas
are only covered by large triangles and therefore very few or no vertices.
Since for our method we only used the vertices and not the triangles, this
property sometimes forced the method to detect a symmetry of some small
oversampled detail, which was globally incorrect. However, this can easily
and quickly be resolved by uniformly sampling the surface instead of only
taking the vertices as the input point set. We used the MeshLab’s [23] strat-
ified triangle sampling to extract a better quality point set for each of the
100 objects, after which our method achieved 99 correct detections (see the
last column of Table 6.4).

6.3.3 Detecting Multiple Planes
The method can also be used to detect multiple symmetries, as described
in Section 6.2.3. We used it on three different objects and only accepted
planes with symmetry measure larger than 70% of the best plane’s sym-
metry measure. The objects with the detected planes are shown in Figure
6.9. The number under each figure denotes the symmetry measure of the
plane relative to the measure of the best plane for the given object. The
computation times in the caption are of the single-/multi-thread implement-
ation.
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(a) 1.00 (b) 0.84 (c) 0.78 (d) 1.00 (e) 0.72

(f) 1.00 (g) 0.90

Figure 6.9: All the planes detected by the proposed method on the Embrasure
- (a), (b), (c) (time: 0.89/0.40 s), Formula - (d), (e) (time: 1.66/0.58 s)
and Starship - (f), (g) (time: 0.84/0.32 s).

6.3.4 Results of the Modified Versions
We mentioned two modifications of our method in Section 6.2.4 which both
employ the weights in the symmetry measure in some way. Their results
follow.

Gaussian Curvature and Normal Symmetry Weighting

Curvatures in general are very good for detecting local features of 3D mod-
els, especially those representing human faces or human heads [64]. In the
following text, we will show that the first modified version of our method,
which uses the Gaussian curvature similarity and the normal vector sym-
metry to set the weights wij (see Section 6.2.5), can be used to detect the
symmetry plane of very small parts of human faces, as long as at least some
local features are preserved.

Figure 6.10 shows the symmetry planes detected using this modification
on heavily damaged versions of two of the scanned human faces. The figure
also contains the original non-damaged faces for comparison. In all three
cases the symmetry planes are detected correctly, despite the fact that the
objects contain very little symmetry information, because there are still some
symmetrical local features preserved. Also, the normal vector symmetry
weighting makes the symmetry detection more accurate. When the non-
weighted version was used on these objects, it found a completely incorrect
plane in all cases.
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(a) (b) (c) (d) (e)

Figure 6.10: Faces 2 and 3 with symmetry planes - (a), (c) and small parts
of Face 2 - (b) (980 points, time: 1.84/0.62 s) and Face 3 - (d) (1026 points,
time: 1.72/0.72 s), (e) (803 points, time: 1.52/0.52 s) with symmetry planes
detected by the proposed method with the Gaussian curvature and normal
symmetry weighting.

(a) (b) (c) (d)

Figure 6.11: A cylindrical object and its symmetry plane detected by the non-
weighted version of the proposed method - (a) and symmetry plane detected
by the proposed method with the distance weighting for this and two other
objects- (b), (c), (d).

Distance Weighting

The second modification, which uses point-to-point distances as weights (see
Section 6.2.6), can be used to force the method to detect a plane along the
smaller and perpendicular to the larger dimension of the input object. For
example, see the cylindrical object depicted in Figure 6.11a together with the
plane detected on it by the non-weighted version of the proposed method.
In some cases, the user might prefer to find the plane shown in Figure 6.11b
instead, although the object is slightly less symmetrical with respect to this
plane. This plane is exactly the one detected by the proposed method with
the distance weighting. Figures 6.11c and 6.11d depict additional two objects
with the symmetry planes detected using the distance weighted modification
of our method. In both cases the plane captures some non-negligible sym-
metry in the object (the wheels in the Formula and the fenders in the Beetle)
and is also perpendicular to its largest dimension. This is despite the fact
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that in both cases there is one considerably stronger symmetry along the
largest dimension, which the distance weighting suppresses.

6.4 Parameters
The basic version of the proposed method (with wij = 1, detecting a single
plane) has several parameters whose default values were presented through-
out this chapter at the first mention of each one. The default values were set
based on extensive testing and the method does not require any parameter
tuning in vast majority of cases. Nevertheless, there could be situations
where the knowledge of the parameters’ meaning could be useful. Most of
the parameters represent the typical trade-off between reliability or accuracy
and computational efficiency.

• The target point count of Xsimp influences the precision of the detec-
tion. The larger the point count, the more accurately the symmetry
measure represents the symmetry of the object and the more precise
the detection is. At the same time increasing this value makes the
method slower. The default is 1000.

• The target point count of Xcand determines the number of created
symmetry candidates which grows quadratically with it. With more
candidates, there is bigger chance of finding one sufficiently close to
the global maximum of the symmetry measure but it also takes more
time to prune and evaluate them. The default is 100.

• The δ parameter determines the roughness of the candidate pruning
step. With lower δ more candidates are kept, increasing chance of
good candidates being among them but also making the evaluation
step more timely. Lower δ also requires selecting larger value of S (see
below). The default is 0.1.

• Candidates that were created by averaging less than ψmin planes during
the pruning step are further removed. With larger ψmin less candidates
are kept and the evaluation step is less timely but there is also bigger
chance of removing good candidates, decreasing reliability. The default
is 4.

• In the end, S best candidates are selected to start the optimization
from. Increasing S makes the last step more timely but also increases
the chance of locating the global maximum of the symmetry measure.
The default is 5.
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The only parameter which is not part of the efficiency-to-quality trade-off
is the α spread parameter of the similarity function ϕ in the symmetry
measure. Although its value also influences the time consumption, it is not
true that changing it to make the method slower also makes it provide better
results and vice versa. We set it as α = 15

lavrg
by default and below we will

show that the result of our method is not very sensitive to its value.
Above we showed that for several objects the Clustering-based method

[107] requires parameter tuning. We observed that the results of the method
are the most sensitive to the value of the parameter which sets the threshold
for candidate pruning, let us denote it ε. The method creates a number of
candidates by matching pairs of points and for each candidate it performs a
quick relevance test and only keeps candidates that pass the test. In [107]
this is done by using the candidate to transform the local neighborhood
of one of the two generating points and computing its average distance to
the local neighborhood of the second point. If the distance is lower than ε
the candidate is kept, otherwise removed. In the original Clustering-based
method by Mitra et al. [83] the test is done using distances in signature space
represented by curvature values where the distance between the signatures
of the two generating points must be lower than some threshold in order
to accept the candidate. This approach, according to [107], is less robust
to noise than the one they use. However, the curvature values are also
computed using local neighborhoods of the points so the two approaches
are essentially very similar. Nevertheless, the sensitivity to the setting of
the threshold parameter implies that the result of the clustering step is very
sensitive to the quality of the candidates on its input.

Figures 6.12 and 6.13 show the sensitivity of the proposed method (top
row) to the value of α and of the Clustering-based method [107] (bottom row)
to the value of ε. For both methods we used different multiples of the de-
fault parameter values. We selected two objects where the Clustering-based
method works with its default parameter setting but for different objects
the optimal value of ε can be different from the default one. For the two
lowest values of ε the Clustering-based method does not find any symmetry
for either of the two objects. Increasing ε makes it provide incorrect results.
The proposed method detects good symmetries for all the values of α except
for the lowest one where it start being imprecise because the spread of ϕ
starts getting too large and ϕ ceases to well represent point similarity.
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Figure 6.12: Results of the proposed method after changing the value of α -
top row, and of the Clustering-based method [107] after changing the value
of ε - bottom row, for the Beetle object.
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Figure 6.13: Results of the proposed method after changing the value of α -
top row, and of the Clustering-based method [107] after changing the value
of ε - bottom row, for the Clipped Face 3.
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6.5 Another Application of the Symmetry
Measure

In many applications (e.g. designing fields on symmetric surfaces [92]) it is
desirable not only to find the symmetry plane but also to know which points
are actually symmetrical with respect to the detected plane and, eventually,
how much symmetry there is between them. Many of the existing methods,
including the View-based and Clustering-based methods, do not implicitly
provide such information. On the other hand, the symmetry measure used
in the proposed method is essentially a sum of many terms where each
represents the amount of symmetry between given two points, which can be
used if needed. In some cases, for a given point xi ∈ X, we might want
to find such a point xj ∈ X for which there is the strongest symmetry
between xi and xj w.r.t. a given plane P represented by p. This only
means finding such a point xj, for which the value wijϕ(||r(p,xi)− xj||) is
the largest. Furthermore, if each point xi is colored according to this value,
the symmetry of the object can be visualized as shown in Figure 6.14. The
lighter the color, the larger the symmetry value. Figures 6.14a, 6.14b, 6.14c,
6.14d show the coloring for wij = 1. Figure 6.14e shows it for the case
when the weights wij are set according to the distance weighting, resulting
in almost no symmetry near the plane and the most symmetry in the wheels.
Unlike some other methods, the concept of the proposed method also gives
us a straightforward way to derive the symmetry information, with respect
to any plane, for arbitrary points of the input object.

(a) (b) (c) (d) (e)

Figure 6.14: Four objects with their points colored according to the amount
of symmetry with respect to their symmetry plane with no weights used - (a),
(b), (c), (d) and using the distance weighting - (e) (darker - less symmetry,
lighter - more symmetry).
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6.6 Limitations
Although the proposed method was shown to be fast and robust in several
ways, it still has some limitations and drawbacks. First, as mentioned in
Section 6.3.2, the method does not handle well objects with very non-uniform
point sampling. For triangle meshes this can be easily resolved using some
uniform sampling technique but for raw point clouds it might be problematic
and could be addressed in the future, possibly using the weights in the
symmetry measure.

Second, when using the method for detecting multiple symmetries, a
threshold needs to be set on the symmetry measure to only accept symmet-
ries that are strong enough to be meaningful. There is, however, not yet a
general way of determining this threshold for arbitrary input data. Finding
it is also left for future research efforts. Last, we showed that our method
handles well objects with missing parts and objects with noise. However,
our preliminary experiments show that if a single object has both significant
missing parts and strong noise, the method often tends to fail. This might
be possible to solve by some parameter tuning which would probably also
lead to increased computational cost.

6.7 Summary
We proposed a new method for symmetry plane detection, based on a simple
and flexible differentiable symmetry measure, and we have shown that it
works very accurately for both strongly and weakly symmetrical objects
and also for objects with significant noise or missing parts. We further
demonstrated that in terms of robustness, accuracy and speed the proposed
method outperforms the View-based [69] method and the Clustering-based
[107] method which represents an improved version of the well known method
of Mitra et al. [83].

Tests on a larger dataset showed that the proposed method exhibits good
reliability on random objects of varying properties but they also revealed
that it is not good at handling objects with significantly irregular sampling.
We also showed how our method can be modified to detect multiple symmet-
ries of a single object. Implementation of the proposed method is available
for download at [52].

There are many possible ways of how the method can be modified, exten-
ded or generalized. The weights in the symmetry measure make the method
very flexible and there are situations when using them can be very beneficial.
We showed two specific ways of setting the weights and we also showed their
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results to prove their usefulness. Further examining the possibilities of these
weights and finding more beneficial uses for them is a viable direction for
future research.

121



7 Rotational Symmetry
Detection Using
Reflectional Symmetries
and Quaternions

While there are quite many existing methods for finding reflectional sym-
metries in 3D shapes, many of which are relatively robust in different ways
(see Section 3.1), the options for finding rotational symmetries appear to
be significantly sparser and most of them have some major limitations (see
Section 3.2). Some can only find circular symmetries which means they only
work on rotational shapes and only find the axis, not the angle. Other meth-
ods constrain the detected symmetries by having the axis pass through some
reference point, such as the object’s centroid which limits their applicability
in cases of weaker symmetries or missing parts.

There are, of course, also methods that are capable of detecting more
general symmetries (see Section 3.3). However, modifying such methods to
find symmetries defined by a rotation around an axis would probably be
difficult or even impossible because such a transformation is rather specific
and different from, e.g., a general rigid transform with which such methods
usually can work. On top of this, these more general methods are usually
also quite computationally expensive.

To our knowledge, no existing method for detecting rotational symmet-
ries in 3D objects can find both the axis and angle of rotation and be robust,
at least to some extent, to weak symmetries and missing parts at the same
time. However, as mentioned above, there are quite a few approaches for
finding reflectional symmetries that are robust in several ways including our
method presented in Chapter 6. This implies that finding a way of using po-
tential reflectional symmetries to find plausible rotational symmetries would
be highly beneficial because many of the existing approaches for reflectional
symmetries in 3D data could be extended to find the rotational ones. In this
chapter we present a new method for finding rotational symmetry in 3D ob-
jects by using this very idea to extend our previously described method for
reflectional symmetry detection. The content of this chapter was previously
published in [49] and its main contributions are following:
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1. We propose a simple way of creating plausible candidates for rotational
symmetries by combining suitable pairs of approximate reflectional
symmetries.

2. We generalize the symmetry measure and the step of its maximization
from Chapter 6 to work for rotational symmetries using a very simple,
yet efficient, quaternion-based parameterization of the rotation trans-
formation that seems novel in this area and stems from algebraically
converting the quaternion rotation formula to a vector expression.

3. We combine these two contributions to extend the overall approach
from Chapter 6 into a robust and efficient method for detecting rota-
tional symmetry in a 3D point set.

Note that contributions 1 and 2 are both very well usable on their own and
can be implemented in a different context as well. However, we believe that
their combination provides a great basis for an overall very good solution to
rotational symmetry detection.

7.1 Rotational Symmetry Detection Method
Let r(p,x) be a transformation that reflects an arbitrary point x over a
given plane p. If we have two reflections r1 = r(p1,x), r2 = r(p2,x) with
non-parallel planes p1, p2, composing r1 and r2 results in rotation around
the axis, which is an intersection of the planes p1, p2, by the angle which
is a double of the oriented angle between the planes [36]. In many cases a
rotational symmetry in a 3D object follows this rule and is actually a com-
position of two reflectional symmetries. If an object has perfect reflectional
symmetry w.r.t. both planes p1 and p2, the rotations r(p1, r(p2,x)) and
r(p2, r(p1,x)) must also be its perfect symmetries - the object reflected over
both p1 or p2 remains unchanged, i.e. it also remains unchanged when re-
flected over both these planes in succession (note, however, that the converse
implication does not hold, i.e. not all rotationally symmetric objects have
necessarily reflectional symmetries).

An object with a rotational symmetry often has multiple reflectional
symmetries where the reflection planes intersect in the axis of the rotational
symmetry and the rotation angle of the symmetry can be derived from the
planes using the rule above. Let us demonstrate the idea on simple 2D cases
(we replace reflection planes with lines and an axis of rotation with a center
of rotation). Figure 7.1 shows three objects with several marked lines of
reflectional symmetries. In Fig. 7.1a, when the triangle is reflected over the
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Figure 7.1: 2D examples of reflectional symmetries where composing reflec-
tions over the lines results in rotational symmetries.

symmetry line a (turning the point x into x′) and then over b (turning x′

into x′′) the resulting transformation is a rotation by 120◦ around the center
O which lies at the intersection of the two lines that make an angle of 60◦.
Such a rotation is a symmetry of this object. Similarly, in Fig. 7.1b we get
symmetry with 90◦ rotation around the center O for lines a and b or b and
c and 180◦ for a and c. In Fig. 7.1c we get 72◦ rotational symmetry around
O with a and b or b and c and 144◦ with a and c.

This idea is applicable in 3D as well. Therefore, if we have a reliable al-
gorithm for finding planes of reflectional symmetries or plausible symmetry
plane candidates, we can use them to generate meaningful candidates for
rotational symmetries. It also holds when the symmetries are only approx-
imate, i.e., no perfect reflectional symmetry exists. We use the method from
Chapter 6 as the underlying symmetry plane detection algorithm and we
propose its extension for finding rotational symmetries in 3D objects us-
ing the idea described above. We generate potential rotational symmetries
from the reflectional ones and evaluate their fitness to select the best ones
(see Section 7.1.3), in the end we perform refinement in the rotation space
(see Section 7.1.4) using a proposed quaternion-based parameterization (see
Section 7.1.2). Note, however, that this core idea could possibly be imple-
mented with many other different symmetry plane detection approaches, as
well as the proposed rotation refinement. A brief overview of the method
from Chapter 6 follows.
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7.1.1 Recapitulation of The Symmetry Plane
Detection Method

In this section we briefly recapitulate the underlying symmetry plane detec-
tion method that is used as basis for our rotational symmetry detection and
was described thoroughly in Chapter 6. The method takes a set of points in
E3 as input and tries to find its best plane of reflectional symmetry. This
is done by maximizing an objective function called symmetry measure. The
symmetry measure sX(T) is for a point set X = {x1,x2, ...,xn},xi ∈ E3, i =
1, ..., n defined as

sX(T) =
n∑
i=1

n∑
j=1

ϕ(||T(xi)− xj||) (7.1)

where ϕ(l) is so-called similarity function which transforms distance into
similarity (the larger the distance l the lower the value of ϕ(l)) and T is a
geometric transformation which in this case is T(x) = r(p,x). To simplify
some parts of the brief description we set ϕ(l) = ϕ̂(αl) where α is the
spread parameter of ϕ and ϕ̂ is just ϕ with its spread parameter set to 1.
The final function ϕ is then just ϕ̂ with its argument scaled by the spread
parameter α which is by default set as α = 15

lavrg
where lavrg is the average

distance of the points in the input point set from their centroid (see Section
6.1.1). The goal is to maximize sX w.r.t. the parameters of the plane p.
The computation of sX basically comes down to reflecting each point in X
over p, computing its similarity to all points of X and summing all these
similarities. The more similar the reflected point set X is to the original X
the larger the value of sX should be. As ϕ̂(t) a specific Wendland’s [123]
function is used such that it closely resembles the Gaussian for t ≥ 0 but is
locally supported. It is a piece-wise polynomial differentiable function and
it is that ϕ̂(0) = 1, d

dt
ϕ̂(0) = 0 and ϕ̂(t) = 0 for t > 2.6. See Section 6.1.1 for

details and the exact definition of ϕ. With such a choice of ϕ the measure
sX is differentiable w.r.t. the parameters of the transformation T if T is
parameterized differentiably. It can also be made higher-order differentiable
if needed by choosing a higher-order differentiable Wendland’s function.

The overall process of finding the best symmetry plane has several steps:

1. Two different point sets are created by simplifying the input set of
points X using a fast grid-based simplification algorithm. One denoted
Xsimp with target point count 1000, and one denoted Xcand with target
point count 100. The actual point counts are usually slightly larger
than these values.
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2. The point set Xcand is used to create candidates for symmetry planes.
This is done by taking every pair of points in Xcand and creating the
symmetry plane of that pair. If a new candidate is similar (distance
smaller than δ) to some already created candidate it is not added into
the candidate set but merged with the similar one. The number of
resulting candidates is usually in the order of hundreds.

3. Each candidate is evaluated using the symmetry measure but instead
of computing it for the original point set X it is computed for the sim-
plified Xsimp which has approximately 1000 points. Such point count
is still sufficient to well represent the symmetry of the input object
and the computation of the symmetry measure is usually significantly
faster than for the original point set X. Since the similarity function
ϕ is locally supported the points outside its support region can be ex-
cluded to further decrease the computational cost. This is done using
a 3D grid as an auxiliary data structure. Now, S candidates with the
largest symmetry measure sXsimp

are selected for further processing.
By default S = 5.

4. Local numerical optimization using the gradient-based L-BFGS method
[74] is started from all the S candidates from the previous step to max-
imize their symmetry measure sXsimp

. This provides S local maxima
of the measure among which the one with the largest measure value is
selected as the resulting symmetry plane of the input point set X. The
other local maxima can potentially be used as secondary symmetries if
the input object has more than one significant reflectional symmetry.

After the optimization step, we could theoretically use the two best sym-
metries and if they were perfect, their combination would provide a perfect
rotational symmetry. However, we aim for a robust method that also works
for objects with weak symmetries, significant noise, or even for incomplete
objects. In such cases testing only one rotation created by two reflectional
symmetries does not have to be reliable enough. Furthermore, better results
can be expected when optimizing the final rotation instead of optimizing
the reflectional symmetries used to create it. This is why we omit step 4
completely.

Instead, we propose a method for detecting rotational symmetry of a
set of points in E3 built upon the first 3 steps of the method described in
Chapter 6. We use the best reflectional symmetry candidates outputted by
step 3 and pair them to create candidates for rotational symmetries. Then
we use the symmetry measure from Eq. 7.1, modified to work with rotations,
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to evaluate the candidates and select a few best ones. As the final step, we
perform the optimization directly in the space of rotations which is much
more natural and, as will be shown in Section 7.1.4, can well compensate
for the imprecision of the non-optimized reflectional symmetry candidates.
Intuitively, this approach seems not to work for the detection of rotational
symmetries in objects that are not reflectionally symmetric. However, we
will show in Section 7.2 that it mostly works even in such cases. The details
of the overall process of finding rotational symmetries will be provided in
the rest of this section, as well as the description of any changes we made in
the first three steps of the underlying symmetry plane detection method.

7.1.2 Symmetry Measure
In the following text we describe our modification of the symmetry measure
to take rotation as the input transformation instead of reflection. We dis-
covered that for finding rotational symmetries the symmetry measure needs
to represent the symmetry of the input point set slightly more precisely than
in the case of reflectional ones. This is probably because the rotation trans-
formation has more degrees of freedom than a reflection. Therefore, we set
the target point count of Xsimp to 3000 instead of 1000 for the simplification
algorithm and we use ϕ with slightly smaller radius by setting α = 20

lavrg

instead of α = 15
lavrg

. Both these parameter values were set based on vast
experiments to maximize the balance between the quality of the results and
computation cost.

The symmetry measure allows finding its significant maxima by applying
a rather sparse sampling of the candidate space and being able to converge to
them from quite large distances using numerical optimization (see Section
6.1.4). This saves a lot of time in the candidate evaluation step because
the candidate count does not need to be very large. Since the symmetry
measure is differentiable, and mainly because its gradient can be computed
analytically, any gradient-based optimization technique can be employed to
locate the maxima quickly. Such techniques are usually faster than those
that do not require the gradient because they often need a much smaller
number of iterations. Furthermore, the differentiability makes the measure
smooth, free of discontinuities and sudden changes in any direction which can
make the optimization easier and faster in general, even with non-gradient
methods. Therefore, when modifying the symmetry measure to work with
rotations instead of reflections, it is useful to keep it differentiable with the
possibility to compute its gradient analytically, retaining the option of using
gradient-based methods and generally keeping the optimization efficient.
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Rotation Parameterization

As mentioned, the symmetry measure is differentiable if the transformation
T is parameterized differentiably. In our case, T is a rotation around an axis.
Rotations are usually represented by matrices but in our case this would
be cumbersome due to the need to keep the rotation matrix orthogonal
throughout the parameterization. Angle-based parameterizations, on the
other hand, commonly suffer from singularities, such as poles, which might
negatively influence the stability of the optimization. We would also like
to keep the parameterization simple, easy to implement and possible to
differentiate analytically. To fulfill these conditions, we propose using the
following and rather simple quaternion-based representation instead.

First, we briefly remind the basics of quaternion algebra. Let Q = a +
bi+cj+dk be a quaternion where i, j, k are elements of the quaternion basis
and i2 = j2 = k2 = −1, ij = k = −ji, jk = i = −kj, ki = j = −ik. A
quaternion conjugate of Q is defined as Q∗ = a− bi− cj−dk and the length
of a quaternion is given as ‖Q‖ = ‖Q∗‖ =

√
QQ∗ =

√
a2 + b2 + c2 + d2 (for

more details about quaternions we again refer to [38]). We denote v(x) =
xi+yj+zk a quaternion that represents a vector or point x = [x, y, z]T ∈ E3.
Inversely, we denote q(u) = [x, y, z]T ∈ E3 a vector representation of a
quaternion u = xi+ yj + zk.

Any quaternion can be expressed as Q = a+ v([b, c, d]T ). Subsequently,
any unit quaternion can be expressed as Q = cos(β)+sin(β)v(u) where u is a
unit vector. Then the expression Qv(x)Q∗ represents the point x rotated by
the angle 2β around the axis that passes through the origin in the direction of
the vector u. By denoting a = cos(β), v = [b, c, d]T = sin(β)u, Q = a+v(v)
we can expand this as

Qv(x)Q∗ = (a+ v(v))v(x)(a− v(v)) =

a2v(x)− av(x)v(v) + av(v)v(x)− v(v)v(x)v(v).

Now using the rule that the product of two vectors a, b in quaternion algebra
is v(a)v(b) = −a·b+v(a×b) (see [38]) we can further expand the expression
as

a2v(x)−a(−x ·v+v(x×v))+a(−v ·x+v(v×x))− (−v ·x+v(v×x))v(v).

As the cross product is anticommutative we can replace v(v × x) with
−v(x× v) and since the terms a(x · v) and −a(v · x) cancel out we can
continue with the expansion as follows

a2v(x)− 2av(x× v) + (v · x)v(v) + v(x× v)v(v).
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The last term can be further expanded into

v(x× v)v(v) = −(x× v) · v + v((x× v)× v)

and because the vectors x×v and v are orthogonal the first term−(x×v)·v is
0. Using the well known vector triple product rule, i.e. having three vectors
a, b, c it is (a × b)× c = (a · c)b− (b · c)a, we get

v(x× v)v(v) = v((x · v)v− (v · v)x) = (x · v)v(v)− (v · v)v(x).

By plugging this back into the rotation formula we get

Qv(x)Q∗ = a2v(x)− 2av(x× v) + 2(x · v)v(v)− (v · v)v(x)

and to use the transformation in the symmetry measure it needs to be ex-
pressed in the vector space which leads to

q(Qv(x)Q∗) = a2x− 2a(x× v) + 2(x · v)v− (v · v)x. (7.2)

The vector expression can be easily differentiated and is useful also for im-
plementation purposes because vector operations are easier to implement
then operations in quaternion algebra.

Since in general the rotation axis does not pass through the origin we can
select an arbitrary point s = [sx, sy, sz]T that lies on the axis and express
the rotation as q (Qv(x− s)Q∗) + s. The rotation transformation can be
parameterized using the coefficients of the quaternion Q, i.e. a, b, c, d, and
the coordinates of the point on the axis s, i.e. sx, sy, sz. A general quaternion
Q = a + bi + cj + dk is not unit and since only unit quaternions represent
rotations we need to incorporate normalization into the parameterization.
We therefore define the rotation transformation as

T(x) = rot(Q, s,x) = q
(

1
‖Q‖

Qv(x− s) 1
‖Q‖

Q∗
)

+ s

= q
(

1
‖Q‖2Qv(x− s)Q∗

)
+ s = 1

a2 + b2 + c2 + d2 q (Qv(x− s)Q∗) + s.

By again denoting v = [b, c, d]T , Q = a+v(v) and using the vector expression
from Eq. 7.2 we can finally rewrite the transformation as

rot(Q, s,x) = 1
a2 + v · v

q (Qv(x− s)Q∗) + s =

1
a2+v·v

(
a2(x− s)−2a((x− s)× v)+2((x− s) · v)v−(v · v)(x− s)

)
+ s.
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This easy-to-implement formula is obviously differentiable w.r.t. all seven
parameters a, b, c, d, sx, sy, sz (except for a = b = c = d = 0 which is not a
rotation) and it only uses basic algebraic operations.

As a result, by substituting T(x) = rot(Q, s,x) we get a symmetry
measure in the form

sX(rot) = sX(Q, s) =
n∑
i=1

n∑
j=1

ϕ(||rot(Q, s,xi)− xj||) (7.3)

with the following useful properties all of which are only possible due to
the simple, yet efficient, quaternion-based parameterization of the rotation
transformation:

1. It is still differentiable w.r.t. all parameters of the transformation and
its gradient can be analytically computed.

2. Apart from the square root function needed to compute Euclidean
distances it only uses basic algebraic operations (ϕ is piece-wise poly-
nomial) - no need for trigonometric functions and conversions between
angles and their sines/cosines.

3. It lacks major singularities, such as poles that appear in the case of
angle-based representations of the rotation, allowing for more stable
computation and optimization.

Small Angle Penalization

The use of the symmetry measure from Eq. 7.3 often tends to rotations with
a random axis and the rotation angle as small as possible, often near 0. The
method obviously finds the rotation as close as possible to the identity which
is not a symmetry but would provide the best possible match. We discovered
that this phenomenon is wholly suppressed if rotations with angles with an
absolute value below 30◦ are forbidden.

While this is easy to ensure when creating the candidates (see later in
Section 7.1.3) modifying the symmetry measure to enforce this in the op-
timization step (see later in Section 7.1.4) is slightly more difficult since we
still want to keep it differentiable. Therefore, we use the symmetry measure
in the following form:

sX(Q, s) =
 n∑
i=1

n∑
j=1

ϕ(||rot(Q, s,xi)− xj||)
Pen(Q) (7.4)

where Pen(Q) is a function that penalizes angles with small absolute values.
Let γ be the rotation angle, we need Pen(Q) = 0 for |γ| < 30◦ but we
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Figure 7.2: The penalization function for cos(β) transiting through t1 and t2,
the function is even and continues to be 1 to the left (up until cos(β) = −t1)
and 0 to the right.

need it to start decreasing at some larger angle, we choose 43◦ for this
threshold, i.e. Pen(Q) = 1 for |γ| > 43◦ and for |γ| ∈ 〈30◦, 43◦〉 it decreases
with |γ|. The 43◦ value was chosen so that the method is still capable of
detecting symmetries with rotation angle around 45◦ and the 2◦ difference
is to provide some safe margin. We could define Pen for the angle γ but
to avoid using trigonometric functions we instead define Pen around the
cosine of β = 1

2γ which can be easily obtained from the quaternion Q as
cos(β) = a√

a2+v·v . We set t1 = cos(21.5◦), t2 = cos(15◦). The rotation is by
2β for cos(β) so for − cos(β) it is by 360◦ − 2β, i.e. by 2β in the opposite
direction. Therefore, Pen needs to satisfy Pen(Q) = 1 for | cos(β)| < t1,
Pen(Q) = 0 for | cos(β)| > t2 and be decreasing with increasing | cos(β)| for
| cos(β)| ∈ 〈t1, t2〉. Our similarity function ϕ̂(t) is differentiable and behaves
in the needed way for t ∈ 〈0, 2.6〉 so we just need to transform 〈t1, t2〉 to this
interval. So we define

ˆPen(t) =

1 t ∈ 〈−t1, t1〉
ϕ̂
(
(|t| − t1) 2.6

t2−t1

)
otherwise

which is differentiable for any t because ϕ̂(t) is differentiable, d
dt
ϕ̂(0) = 0 so

the transition through t1 and −t1 to the constant 1 is differentiable as well
and the constant between −t1 and t1 is differentiable trivially (see Fig. 7.2).
Now, we simply define Pen(Q) = ˆPen( a√

a2+v·v) which is differentiable w.r.t
all four parameters of Q (again except for a = b = c = d = 0) and therefore
the symmetry measure in Eq. 7.4 is differentiable as well. Fig. 7.3 shows
how the Pen function changes with the rotation angle γ.

Of course, this basically prevents the method from detecting symmetries
with rotation angles below 43◦. However, for any rotational symmetry with
the rotation angle |γ| < 180◦ there should be also significant symmetries
with the same rotation axis and rotation angles with different k-multiples of
γ, some larger then 43◦. Therefore, in the case of symmetry with |γ| < 43◦
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Figure 7.3: The penalization function w.r.t. the rotation angle γ = 2β, the
function continues to be 1 to both sides up until γ = 180◦/− 180◦.

the method should find a corresponding and similarly good symmetry with
some rotation angle kγ, k ∈ Z, |kγ| ≥ 43◦, so we do not actually lose
the symmetry. The corresponding lower angle symmetry could possibly be
detected additionally by dividing the symmetry angle by different integers
k and testing the resulting rotations but we leave this for future work.

7.1.3 Candidate Creation and Pruning
The first stage of our method consists of creating candidates for rotational
symmetries. At the beginning we simply run steps 1, 2 and 3 of the original
symmetry plane detection method (see Section 7.1.1) only with Xsimp and
α changed as described at the beginning of Section 7.1.2. Since we will use
pairs of planes outputted by step 3 to create the rotation candidates and
we need a decent amount of them, the default value of S = 5 is too small,
so we increase it to S = 30 which proved to be more than enough in most
cases. We therefore get a set of candidate planes {pi}, i = 1, ..., 30. For each
pair of planes pi, pj, i 6= j we compute the line of their intersection and an
angle γ = 2 arccos(ni ·nj) where ni, nj are unit normal vectors of planes pi,
pj respectively. Now if |γ| > 30◦ we create two candidate rotations around
the intersection line by angles γ and −γ. The point s on the rotation axis is
chosen so that it is the closest point on the axis to the centroid of the input
object. From now on, we consider the rotation angle to be always positive
where the rotations in the opposite direction are defined using the opposite
axis direction.

Similar to the original symmetry plane detection method, we incorpor-
ate pruning into the candidate creation process to reduce the final candidate
count, i.e., to save time in the candidate evaluation step, and to ensure that
there are no too similar candidates which would result in the optimization
(see the next section) being started multiple times from almost the same
place. Checking the similarity of two rotation transformations could be done
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using the theoretically appropriate distance function based on vertex sum of
squares (see Section 4.2.2). However, it proved to be unnecessarily complex
and computationally expensive mainly for the need to transform the candid-
ates from quaternion-based to matrix-based representation. We discovered
that the following much simpler approach provides almost identical results.
When a new rotation candidate c = (Q, s) is created we set its weight
w(c) = 1 and find whether any previously created candidate ci = (Qi, si)
exists such that

‖Q−Qi sgn(Q ·Qi)‖ < εQ,

‖s− si‖ < εs

where Q · Qi represents a quaternion dot product which corresponds to
dotting the four-dimensional vectors with the same coordinates as the qua-
ternion coefficients. If so, we merge the candidates into a new one cnew =
(Qnew, snew), w(cnew) = w(c) + w(ci) where snew is a weighted average of s
and si with w(c)

w(c)+w(ci) and w(ci)
w(c)+w(ci) as the corresponding weights. Similarly,

Qnew is computed using the standard SLERP quaternion interpolation [38]
between Q and Qi with the same weights. We set the thresholds experi-
mentally as εQ = 0.05, εs = 0.05lavrg, but we note that the method is not
very sensitive to the exact value of either of them. We recenter snew such
that it is again the closest point on the axis of cnew to the centroid and the
same process is then performed for cnew to see if it should be merged with
some other candidate.

The number of resulting candidates is usually in the lower or mid-hundreds.
We compute the symmetry measure from Eq. 7.4 with Xsimp for each one of
the candidates. The calculation of sXsimp

is accelerated in the same way as
in Chapter 6 by exploiting the locality of ϕ and using a 3D grid to find the
points that could be in its support region. Finally, we select M candidates
with the largest measure where M = 5 by default.

7.1.4 Optimization
As the final step, local optimization using the L-BFGS [74] method is star-
ted from the M candidates outputted by the previous step to find M local
maxima of the symmetry measure sXsimp

from Eq. 7.4. Computation of the
gradient of sXsimp

is accelerated using the 3D grid in the same way as the
computation of sXsimp

itself. The one local maximum with the largest meas-
ure is then selected and can be declared the resulting rotational symmetry
of the input point set X and considered the output of our method. The
other local maxima can potentially be used as secondary symmetries.
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(a) Original object (b) Plane 1 (c) Plane 2 (d) Rot. - 56.75◦ (e) Rot. - 60.01◦

Figure 7.4: The process of obtaining the rotational symmetry from the re-
flectional symmetry candidates, (a) shows the original object, (b) and (c)
depict the candidate symmetry planes with the object colored according to the
strength of the symmetry (the lighter the color, the stronger the symmetry in
the given point), (d) shows the initial rotational symmetry candidate created
by the two planes, the object is now colored according to the rotational sym-
metry, (e) shows the final rotational symmetry acquired by the optimization
started from the initial one, the rotation angles for (d) and (e) are in the
captions.

Fig. 7.4 demonstrates the overall process of acquiring the final rotational
symmetry from the initial symmetry plane candidates. Fig. 7.4a shows the
original object; note that it is strongly but not perfectly symmetrical. For
visualization simplicity, the object is represented by a triangle mesh but we
used only its vertices as the input point set. Figures 7.4b and 7.4c show
the two initial symmetry plane candidates respectively - the object is shown
from two different viewpoints (side view, bottom-top view) in such a way
that the candidate plane (marked by the red line) is perpendicular to the
plane of the figure. The object is colored so that the points that are sym-
metric w.r.t. to the plane are light (the lighter the color, the stronger the
symmetry) while the others are dark. Notice that although there is non-
negligible reflectional symmetry w.r.t. both these planes, neither of them
is very precise. Fig. 7.4d shows the initial candidate rotation created by
the two planes. The coloring now shows symmetry w.r.t. to the rotation
transformation, the rotation axis is shown in the figure and the angle is in
the caption. Obviously, the symmetry is not very good - the axis is tilted
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and the angle is more than 3◦ off (60◦ is expected for this object). Finally,
Fig. 7.4e depicts the resulting rotational symmetry outputted by the numer-
ical optimization started from the initial one. We note that the candidate
symmetry planes are often more precise than those in Figures 7.4b, 7.4c and
that this scenario is not entirely common. However, it demonstrates how
robustly the symmetry measure, combined with the optimization approach,
extends the core idea of combining candidates for reflectional symmetries
into a solution for detecting rotational symmetries. From two rather weak
reflectional symmetries we acquired an imprecise rotational symmetry can-
didate, which was then turned into a very strong symmetry by optimizing
(maximizing) the symmetry measure in the space of rotations, which can be
done quite easily using the proposed quaternion-based rotation parameter-
ization. This robustness is very useful if the input object has rotational but
not reflectional symmetries, as detailed later in Section 7.2.

The method attempts to find the best possible rotational symmetry. Sup-
pose the input object has multiple similarly significant symmetries with the
same axis and different k-multiples of (almost) the same angle. In that case,
the method chooses mostly randomly which one is the best. For example, if
there is a strong symmetry with rotation angle 60◦, the resulting symmetry
would have the corresponding axis and the rotation angle will basically be
a random choice between 60◦, 120◦ and 180◦. The method simply chooses
the k-multiple for which there is the best match according to the symmetry
measure, even if the difference is marginal compared to the other k-multiples.
However, from the user perspective, the smallest possible k-multiple might
be preferred in these scenarios. We observe that such rotation is very often
present among the other four detected local maxima of the symmetry meas-
ure. Therefore, our method has one more optional step which we execute by
default. We simply check all the four other detected secondary rotations and
if any of them has almost the same symmetry measure as the best detected
rotation (we allow at most 1% difference) but has a smaller rotation angle,
we chose it as the output instead. If multiple rotations satisfy this condition,
we choose the one with the smallest rotation angle. Even with this step the
method cannot find rotations with angles below 43◦ (see Section 7.1.2). So
if the smallest k-multiple of the angle of the best symmetry is, e.g., 30◦ the
method will most likely output its 60◦ equivalent.

In the case of perfect symmetry, the rotation angle is always 360◦
k

, k ∈ Z
and, therefore, the resulting angle of the detected rotation could always
be rounded to the nearest such value. However, this is not the case with
approximate/weak symmetries. Since we do not seek the rotation axis and
angle separately but rather search for a compound rotation, changing the
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angle alone would also require finding a new axis that provides optimal
symmetry with the new angle. Even then, the new rotation with the rounded
angle generally does not have to provide a better symmetric match than the
original rotation for non-perfectly symmetrical objects. This is why we leave
the resulting angle as outputted by the optimization as part of the resulting
rotation but the rounding step can be very easily implemented if preferred
by the user.

7.1.5 Identifying Circular Symmetry
Our method cannot straightforwardly detect circular symmetries because
they cannot be represented by specific geometric transformations and the
symmetry measure cannot be applied for them. Therefore, if the input
object possesses circular symmetry, our method will identify its axis and
the rotation angle will be mostly arbitrary. However, we perform a simple
check to identify whether the outputted symmetry could be contained in
a potential circular symmetry. We take the axis of the outputted rotation
and generate rotations with different angles γ around this very axis. We
use all prime numbers between 43◦ and 180◦ as the values of γ so that
there are no reoccurring multiples of some smaller angles. We compute the
symmetry measure for all these rotations, and if their average is at least 2

3
of the symmetry measure of the outputted rotational symmetry, we report
potentially significant circular symmetry around the axis of the outputted
rotation. The 2

3 threshold might seem very low but note that we aim our
method also for objects with missing parts and in such cases, the average
measure would be noticeably lowered because large areas can be misaligned
for some angles.

7.2 Results
The proposed method was implemented in C#, all the experiments were per-
formed on a computer with CPU Intel R© Core i7-10700F (frequency: 2.9GHz,
turbo boost: 4.8GHz, 8 cores, L1 cache: 512kB, L2 cache: 2MB, L3 cache:
16MB) and 32GB memory (frequency: 3.2GHz) running a Windows 10 oper-
ating system. Figure 7.5 shows the results of our method on several objects
from various different datasets [30, 34, 59, 128]. For each object, there is
a side view with the detected axis and a top-down view with the axis in
the center and the red arc depicting the rotation angle of the detected sym-
metry. The angle is also in the caption, sometimes followed by a circle which
means that the method indicated potential circular symmetry for the given
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(a) Table, 180◦ (b) Tree, 71.23◦, # (c) Vase, 120◦

(d) Ribbon, 45◦ (e) Gear, 48.01◦, # (f) Snowflake, 60◦

(g) Cup, 42.53◦, # (h) Hydrant, 180.01◦, # (i) Plastic, 180◦

Figure 7.5: Results of the proposed method on several objects with both strong
and weak symmetries and with missing parts, each figure shows a side view
with the detected axis, a top-down view with the axis in the center and a
red arc depicting the detected rotation angle which is also in the caption, the
circles indicate detected possible circular symmetry.

object. All the objects are represented by triangle meshes because this is
the most common object representation in computer graphics and it eases
visualization. However, we only take the vertices as the input point set for
our method. Furthermore, some of these objects are 3D scans of real objects
and were probably created by triangulating raw point clouds (for the Cup
we are certain of this) so using their vertices is the same as running the
method on the original point cloud. Since the proposed method is not en-
tirely rotationally invariant (mainly due to the grid-based simplification) all
the objects were randomly rotated before starting the symmetry detection.

There are several objects with strong symmetries, some with weaker sym-
metries and even some incomplete objects (the bottom row). The Cup was
incomplete originally, for Plastic and Hydrant the missing parts were re-
moved artificially by clipping. For the Cup and Gear the detected angle is
rather arbitrary because there is a quite strong circular symmetry in both
cases so other angles would be plausible as long as the axis is the same. The
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similar applies for the Hydrant where the approximate 180◦ angle corres-
ponds to the strongest symmetry but different angles with the given axis
would still provide pleasing approximate symmetries. In fact, for different
random rotations of the Hydrant our method sometimes detects the sym-
metry with a different arbitrary angle, still providing a plausible symmetry
just not the best one possible. This can, however, be easily mitigated by
increasing the M parameter, determining the number of best candidates se-
lected for the optimization, from the default 5 to approximately 10 or more.
For the Tree object the angle of the detected symmetry is 71.23◦, which
seems correct since an angle around 72◦ can be expected, and circular sym-
metry is indicated. This is due to its weak symmetry and overall conic shape
which might not be obvious from the top-down view but is quite clear from
the side view.

Notice that some of the objects do not have reflectional symmetries (Vase,
Snowflake and somewhat even Gear) but the proposed method still finds a
very good rotational symmetry for all of them. This is because the symmetry
plane candidates that approximately intersect in the axis of rotational sym-
metry still have a noticeably larger symmetry measure than other arbitrary
planes and they are more than likely to be among the best planes passed to
the rotation creation step. Let us demonstrate this on a very simple shape
depicted in the top row of Fig. 7.6. Fig. 7.6a shows the detected rotational
symmetry axis for this object, the detected angle is 180◦. Figures 7.6b and
7.6c show the two planes that were used to create the initial candidate whose
optimization lead to the final symmetry, whereas Fig. 7.6d shows a random
plane passing through the object, the symmetry coloring is the same as in
Fig. 7.4. Unlike the random plane, the first two planes capture symmetry
in a rather large portion of the object’s points, although its whole shape ac-
tually does not have a reflectional symmetry, which explains why they end
up among the best symmetry plane candidates. Of course, the rotational
symmetry created by such planes in similar cases cannot be expected to be
very precise but this is solved by the robustness of the optimization step (see
Section 7.1.4).

The bottom row of Fig. 7.6 provides the same demonstration for an
S-shaped object with even less reflectional symmetry showing that the pro-
posed method can truly find even rotational symmetries which are not cre-
ated by significant reflectional symmetries. However, it should be noted that
the probability of failure is naturally larger in such cases because the chance
of hitting the right rotation candidate is more driven by random influence
than by the reflectional symmetry of the object. Increasing the values of
some parameters such as S (number of selected reflections) and M (rota-
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(a) Detected rotational
symmetry, 180◦

(b) Plane 1 (c) Plane 2 (d) Random plane

(e) Detected rotational
symmetry, 180◦

(f) Plane 1 (g) Plane 2 (h) Random plane

Figure 7.6: Two different shapes without reflectional symmetries, the first
figure in each row shows the detected rotational symmetry, the second and
third show the two symmetry plane candidates, which created the initial ro-
tation, with symmetry coloring (the objects are oriented so that the planes
are orthogonal to the figure plane) and the last figure depicts a random plane
with symmetry coloring (the small yellow image in the top row provides per-
spective).

tions) can generally improve the chance of success but for the cost of longer
computation time.

Table 7.1 demonstrates the computational efficiency of the proposed
method. As some parts of the method can be easily parallelized, we show
the computation time of both single-thread (s.t.) and multi-thread (m.t.)
implementation. The running time obviously does not depend much on
the object’s point count, which is ensured by the fast simplification that is
also included in the measurements. The single-thread implementation runs
mostly under 3 seconds but since nowadays multi-core CPUs are standard,
we are confident that our method can mostly run under or around 1 second,
as suggested by the last column.

For some objects, other significant symmetries can be found by looking
at the remaining local maxima of the symmetry measure outputted by the
optimization step. Fig. 7.7 shows a dodecahedron-like object with the first
three detected rotational symmetries. The fourth symmetry has a similar
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Table 7.1: Computation times of the proposed method, first column shows
the point counts of the objects, second column shows the computation times
of the single-thread and the last column of the multi-thread implementation,
times include simplification.

Object Point count Time s.t. [ms] Time m.t. [ms]
Plastic 617 492 209
Vase 3115 2459 1117

Snowflake 3264 2109 490
Cup 4104 2074 542
Gear 14566 3075 858

Ribbon 16160 1814 494
Hydrant 72012 2467 644
Tree 134194 1380 467
Table 151026 2227 683

(a) First symmetry, 180◦ (b) Second symmetry, 120.05◦

(c) Third symmetry, 72◦

Figure 7.7: The best three detected rotational symmetries of a dodecahedron-
like objects.

angle to the second but different axis (however, the images would be al-
most identical) and the fifth is similar to the third. By increasing M and
optimizing more candidates we could possibly obtain even more different
symmetries.

To demonstrate the robustness of our method to noise we added the
vector [randx, randy, randz]T · lavrg ·mag to every point of the input object
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(a) Noisy Ribbon,
mag = 0.05, 44.95◦

(b) Noisy Snowflake,
mag = 0.05, 59.91◦

(c) Noisy Ribbon,
mag = 0.1, 44.58◦, #

(d) Noisy Snowflake,
mag = 0.1, 59.21◦, #

Figure 7.8: Ribbon and Snowflake with added uniform noise, in (a,b) with
mag = 0.05 and in (c,d) with mag = 0.1.

where randx, randy, randz are uniform random values from 〈−1, 1〉, lavrg is
the average distance of points of the object from their centroid and mag

determines the noise magnitude. Fig. 7.8 depicts the detected symmetries
for the Ribbon and Snowflake objects with mag = 0.05 (top) and mag =
0.1 (bottom). For mag = 0.1 the method indicates circular symmetries
because the noise noticeably decreases the precision of the present symmetry
so the differences between symmetries with different angles are much smaller,
presuming the axis is correct. Still, the detected symmetries are very good
for all these noisy objects.

The chart in Fig. 7.9 shows how the noise magnitude influences the
precision of the symmetry detection. We used four different objects (Snow-
flake, Ribbon, Vase and Gear) and we normalized them in size such that
lavrg = 1. For each object we added noise of varying magnitude and applied
our method to find rotational symmetry. Then we used the resulting rota-
tion to transform the original noise-free object and measured its distance
from its non-transformed version using the Metro mean error [24] similarly
as we did in Section 6.3 or as done in [69]. Due to the normalization, the
units of both the error and noise magnitude are percents of lavrg. The error
starts growing noticeably only after the noise magnitude reaches roughly 5%,
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Figure 7.9: The influence of noise magnitude on the precision of our method
measured by Metro mean error [24].

which corresponds to the top of Fig. 7.8, and a significant increase in error
starts only after roughly 10%, which corresponds to the bottom of Fig. 7.8.
Overall, the error seems to grow rather slowly with the noise magnitude,
confirming the robustness of the proposed method to noise.

7.2.1 Comparisons
As already mentioned, not many methods for rotational symmetry detection
exist. Moreover, their implementation is usually not publically available, at
least not to our knowledge, and no benchmark datasets with ground truth
rotational symmetries seem to exist. More importantly, most of the meth-
ods aim at some specific type of data either in terms of required shape,
object representation or some other properties. Therefore, providing any
qualitative or quantitative comparison to the existing methods would be
very difficult on its own, let alone providing an objective one. Nevertheless,
we at least show an experimental comparison to a simple yet surprisingly
well-performing PCA (Principal Component Analysis [124]) method and we
provide a side-by-side comparison to the existing methods based on inform-
ation available in the corresponding papers.

The PCA algorithm outputs three principal directions. Provided the in-
put point set has strong rotational symmetry, one of the three directions
should be the direction of its symmetry axis [115] that passes through its
centroid. We manually selected the one of the three possible axes that
seemed to be the closest to a plausible symmetry axis. For the strongly
symmetrical shapes (Ribbon, Gear, Snowflake, Vase or even Table) this ap-
proach provides a surprisingly accurate axis of rotational symmetry. How-
ever, when used on weakly symmetrical objects, this method failed to detect
a plausible axis or it was at least noticeably inaccurate, as can be seen in Fig.
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(a) Tree (b) Cup (c) Plastic (d) Hydrant

Figure 7.10: Results of the PCA method, the best of the three possible axes
was chosen manually, the small yellow images show the corresponding results
of our method from Fig. 7.5 for easier comparison.

7.10. This renders any PCA-based method practically unusable for detect-
ing weaker symmetries, at least without aggressive refinement. Also, PCA
obviously cannot find the rotation angle, and in practice, some algorithm
would be needed to select the best of the three possible axes automatically.

We selected 100 random objects from the Thingi10k dataset [128] (10000
objects represented by triangle meshes of varying shapes and properties),
we removed all objects that obviously did not exhibit any rotational sym-
metry and replaced them with new random objects and we kept repeating
this until we acquired 100 random objects with at least some form of rota-
tional symmetry. Then we used both our method and PCA to find rotational
symmetry for each of these 100 objects. As mentioned in Chapter 6 the sym-
metry measure is not very robust to strongly non-uniform point distribution
(e.g., typical CAD models) and PCA has the same problem. However, since
the objects are meshes, this can be easily solved by some surface sampling
technique. As the Thingi10k dataset contains quite a few such problematic
objects we first used MeshLab’s [23] stratified triangle sampling to resample
the objects and we applied both symmetry detection methods on the res-
ampled point sets. We manually observed the detected symmetries and
determined their correctness as objectively as possible, the results are repor-
ted in Table 7.2. If the resulting symmetry axis was plausible (one with a
significant symmetry around it, not necessarily the best possible one for the
object), it was marked as correct. If it was close to a plausible axis but with
noticeable imprecision, it was marked as imprecise and in other cases it was
marked as incorrect. The angle was marked as correct if the axis was correct
or imprecise and it was within 1◦ of a correct angle w.r.t. the given axis or
in case of circular symmetry. If the deviation was greater than 1◦ but up to
5◦, it was marked as imprecise, otherwise incorrect (in case of incorrect axis
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Table 7.2: Comparison of the proposed method to PCA on 100 randomly
selected resampled objects with some rotational symmetry.

Axis
correct

Axis
imprecise

Axis
incorrect

Angle
correct

Angle
imprecise

Angle
incorrect

Proposed 92 5 3 93 2 5
PCA 78 15 7 - - -

Table 7.3: Side-by-side comparison of existing methods for rotational sym-
metry detection in 3D including the proposed method.

Method General
axis

Can
detect
angle

Can handle
weak symmetry
or missing parts

Input object
representation

Supported
shape

Proposed Yes Yes Yes Point set Any
Sun and Sherrah
1997 [115] No Yes No Any with

normals Any

Martinet et al.
2006 [77] No Yes No Surface Any

Korman et al.
2015 [60] No Yes No Binary volume Any

Sipiran 2017 [110] Yes No Yes Mesh Rotational
Sipiran 2018 [111] Yes No Yes Mesh Rotational
Ecins et al.
2018 [31] Yes No Yes Point set

with normals Rotational

Gothandaraman
et al. 2020 [39] No Yes No Point set Any

PCA No No No Point set Any

the angle was marked as incorrect automatically). Note that, since PCA
always finds three axes and we selected the best one of them manually for
each object, the chance of at least one of them being imprecise at worst is
quite large, which explains its rather low number of incorrect axis detections
(still larger than our method nevertheless). However, the number of correct
ones is noticeably larger for our method, which further has the advantage of
also finding the angle of the rotational symmetry.

Table 7.3 shows side-by-side theoretical comparison of the methods for
detecting rotational symmetries in 3D mentioned in Section 3.2 including
ours and PCA. The first column indicates whether the given method can
detect symmetry with a general axis or only with an axis passing through
some reference points which severely limits applicability for detecting weaker
symmetries. The second column indicates whether the method also finds the
rotation angle of the symmetry while the third column states if the method
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can handle weakly symmetrical objects or missing parts. The fourth column
says what object representation is required on the input where point set is
the most general one while a triangle mesh or other surface representations
are the least general ones and binary volume stands for any representation
where it can be determined whether a point lies inside or outside the input
shape. At last, the fifth column states what type of shape the method
requires to work properly. Note, however, that we did not experimentally
verify any of this information (except for PCA and our method) and we state
what we derived from the corresponding publications. The proposed method
appears to be the most general one of all, detecting symmetry with general
axis plus the rotation angle, handles well objects with weak symmetries and
missing parts, only requires a set of points on the input and does not put
any constraints on the shape of the input object.

7.3 Limitations
The proposed method also has some limitations. First of all, it obviously
depends on the quality and properties of the selected underlying symmetry
plane detection approach, in our case the method from Chapter 6. As already
mentioned, the symmetry measure is not suitable for objects with very non-
uniformly distributed points and the method can be expected to fail on such
data. However, in the case of triangle mesh or other surface representation,
it can easily be resolved using some surface sampling technique. Also, our
method might be rather fast but still significantly slower than the original
symmetry plane detection algorithm from Chapter 6. This is primarily due
to the increased target point count of Xsimp from 1000 to 3000. Therefore,
in the future it would be more than appropriate to find a way of keeping the
method sufficiently robust without this change. At last, it can be expected
that the method will fail with non-negligible probability in cases when the
rotational symmetry is not composed of reflectional ones. But, while this
might be true theoretically, it turns out that in practice the method works
even in these cases as we showed and explained throughout the previous
sections.

7.4 Summary
We proposed a new method for detecting rotational symmetries in 3D objects
using a simple idea of combining potential reflectional symmetries and modi-
fying the optimization step from Chapter 6 for rotations with a quaternion-
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based parameterization which seems to be novel in the symmetry detection
field. We showed that the method is well capable of detecting both strong
and weak symmetries including partial symmetries for objects with missing
parts and is robust to noise as well as computationally efficient. The robust-
ness and precision of the proposed method could potentially be improved
even more by adjusting some of its parameters, such as the target point
count of the simplified point set or the number of best-selected rotation
candidates. This would, however, come with the cost of larger computa-
tion time and as the results suggest, it is unnecessary in most cases. These
adjustments can be used in the opposite way as well, i.e. if precision and
robustness are not a priority, the method can be made faster.

Furthermore, to our knowledge, the proposed method is the most general
one of the existing methods for rotational symmetry detection. Also, the
main theoretical contributions of this chapter could be used in other context
as well and possibly combined with different approaches for symmetry plane
detection. The implementation of our method can be downloaded from [52].

The parameters of the proposed method are overall the same as those of
the underlying symmetry plane detection method and their default values
have been introduced throughout the paper. The meaning and effect of
each parameter have already been described rather thoroughly in Section
6.4. The only additional parameters in the proposed method are εQ, εs (see
Section 7.1.3), which have the same effect on the candidate rotations as
the δ parameter (see Section 7.1.1) has on candidate planes in the original
method, and M (see Sections 7.1.3 and 7.1.4) which has the same effect as
S (see Section 7.1.1) in the original method.

As described in Chapter 6, the symmetry measure allows incorporating
weights that can be used to adjust importance of given point pairs based
on some additional information, such as similarity of some local descriptors.
In the future, it would be meaningful to examine this possibility also in the
context of our rotational symmetry detection method. Also, it might be
possible to extend our core idea to find symmetries w.r.t. isometries which
can be composed of three reflections. We leave this for future work as well.
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8 Additional Contributions

In this chapter we provide an overview of some of our additional, mostly
smaller, contributions that we do not believe to be significant enough to
be contained in their own chapters but are still worth mentioning. These
contributions are often in the form of cases where other researchers used our
previously described methods or discoveries in their own work or proceeded
to extend/modify them in some way, sometimes in partial cooperation with
the author of this thesis.

8.1 Local Reflectional Symmetry Detection
Building on our previous work from Chapters 4 and 6 and the work of Mitra
et al. [83] we designed a method for finding local relfectional symmetries
in 3D point clouds. The content of this section was previously published in
[51]. We only describe the method briefly and show some of its results.

We proposed a very simple local shape descriptor for point cloud data
based on the Principal Component Analysis [124] (PCA) which can be used
for symmetric point matching. It stems from taking points in a neighbor-
hood of fixed size around a given point and computing the PCA of the
points contained in this neighborhood. The PCA provides three orthogonal
eigenvectors that correspond to the principal directions of the points in the
neighborhood, and three eigenvalues that correspond to the variances of the
points in the directions of the given eigenvectors.

The eigenvalues provide a compact information about the shape of the
local neighborhood that is invariant under rotation, translation and, if con-
sidered in absolute values, reflection. Since it is expected that two points
with similar shapes of their neighborhoods will have similar absolute values
of the eigenvalues provided by the PCA descriptor, the eigenvalues can be
used for finding potentially symmetric pairs of points. When representing
the set of absolute values of the three eigenvalues by vectors in E3, finding
the potentially symmetric pairs of points (points with similar values of these
3D vectors) can be done efficiently using any Euclidean data structure - we
use a uniform 3D grid.

Any pair of points matched in this way provides evidence of some sym-
metry but this symmetry does not have to be reflectional. However, the
existence of potential reflectional symmetry can be verified by checking ex-
istence of reflectional symmetry between one or more of the corresponding
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Figure 8.1: A scene with a reflecionally symmetric couch in the middle
colored using the eigenvalues of the PCA descriptor as RGB values (data
source: [34]).

eigenvectors of the two neighborhoods w.r.t. the plane which is constructed
as a symmetry plane of the given pair of points - if the two neighborhoods
are symmetric w.r.t. the plane the eigenvectors of the neighborhoods will be
symmetric as well. The pairs that do not pass this check are discarded and
the others are kept as potentially reflectionally symmetric pairs of points and
the symmetry plane of each of these pairs represents a symmetry candidate.
The set of all candidate planes is kept for further processing. The symmetry
pairing is combined with point cloud simplification (the same approach as
described in Section 6.1.3) to ensure smaller computation cost. Also, be-
fore the pairing process is performed, we first find and remove points whose
neighborhood is roughly planar because planar neighborhoods add too much
potential for false positive matches.

Fig. 8.1 shows a 3D scene where each point is colored using the eigen-
values of the PCA shape descriptor - the RGB values of the colors are set
using the absolute values of the eigenvalues and it can be noticed that the
symmetric counterparts of the couch have noticeably similar colors. Fig.
8.2 depicts the same scene and the pairs of points that were matched as
potentially symmetric and passed the reflectional symmetry check - they are
connected by the black lines. The points are still colored using the PCA
eigenvalues but the grey color now represents the points that were removed
as planar.

We follow the theory, described at the beginning of Chapter 5 and used,
e.g., by [83] that the significant symmetries should now form modes in the
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Figure 8.2: A scene with the PCA-based descriptor symmetric matching - the
symmetrically matched pairs of points are connected by the black lines, the
coloring corresponds to the descriptor eigenvalues, the grey color indicates
planar areas.

space of candidate transformations - planes in our case. To find the modes
we use the density peak location algorithm we introduced in Section 4.1.3
modified to find multiple modes instead of just the strongest one. After
finding the most significant density peak, we remove all candidates that
contributed to its density value and run the location algorithm again. This
is repeated multiple times until the density at the detected peak is not
significant enough. As the distance function for planes in the density peak
location we use the DED function from Section 5.2.2. Because the distance
function is Euclidean, we use a 4D uniform grid as accelerating data structure
in the same way as used in Section 6.2.1 instead of the Vantage Point Tree
that was originally used in Section 4.1.3.

Each of the detected modes now represents a possible local symmetry
plane. For every one of these planes we extract the set of points that are
approximately symmetric w.r.t. that plane and use them to represent the
symmetric region of the plane, i.e. we have a set of possibly reflectionally
symmetric regions (can be overlapping) and for each region we have one plane
which is an estimate of its symmetry plane. The symmetry plane estimate for
a given region might not be accurate after only the density peak estimation.
Therefore, we now treat each of the regions as globally symmetric and use the
symmetry measure from Section 6.1 and the optimization step from Section
6.1.4 initialized with the symmetry plane estimate of the given region and
with the region points as the input point set. After acquiring the results
of the optimization for all the regions we further discard symmetries whose
symmetry measure is too small which suggests that they are probably results
of false positive matching. The remaining optimized planes now represent
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the final detected reflectional symmetries.
Fig. 8.3 shows several results of the method for scenes from the data-

set [34]. The scenes are represented by triangle meshes but we only used
the vertices as the input point set, the black rectangles in each scene rep-
resent all the detected symmetries the method found. The caption of each
result states the point count of the scene and the computation time of the
method. In the last scene (Fig. 8.3f), there are some smaller objects with
reflectional symmetries which the method did not detect suggesting that it
has its limitations. On the other scenes in the figure the method provided
satisfactory results. The method also appears to be fairly fast and, because
there is still potential for further optimizations (including multi-threaded
implementation), it could possibly be even much faster in the future. For
detailed description of the method, its parameter setting, discussion of its
limitations and for more results we refer to [51].

8.2 Uses of Registration and Transformation
Distance Metrics

In this section we mention some cases where the product of our research
described in Chapter 4 appeared in the work of other researchers.

The registration method described in this chapter, using the Triangle
Sum of Squares metric (see Section 4.2.2) for transformations in the density
peak estimation step, was extended by Arvanitis et al. [6] to work on noisy
point clouds. The triangles for the metric are defined using closest neighbors
of points. They then used this extended version of the method in their own
approach for identifying objects in partially scanned and cluttered point
clouds. The registration method is used to align each model from a set of
target objects to a given input scene.

Dvořák et al. [28] used the Vertex Sum of Squares transformation met-
ric, analyzed thoroughly in Section 4.2.2, in their tracking method for time-
varying surfaces. At last, Miroslav Levora, when working on his bachelor’s
thesis [66], reimplemented the entire registration algorithm in the C pro-
gramming language (the original implementation was in C#) using vari-
ous optimizations. The new implementation was approximately three times
faster than the original one.

150



(a) 387540 points, 12.3s (b) 439089 points, 12.5s

(c) 1891185 points, 133.7s (d) 287875 points, 8.6s

(e) 566153 points, 16,1s (f) 233600 points, 7.7s

Figure 8.3: The results of our local symmetry plane detection method on sev-
eral 3D scanned scenes from the [34] dataset, the detected symmetry planes
are marked by the black rectangles, the captions state the point counts of the
scenes and computation times.
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8.3 Uses of Symmetry Plane Detection
Here we mention several cases where the material from Chapter 6 was used
or extended/modified by others.

A researcher named Renan Sales Barros from the University of Amster-
dam contacted us in 2019 regarding the implementation of our symmetry
plane detection method. He was developing a method for detecting subtle
brain hemorrhages in CT-scanned human heads. He needed to do alignment
of the heads and wanted to use the symmetry information for this purpose.
Since the scan often does not contain the entire head he needed a robust
symmetry plane detection method that would work on objects with some
missing parts and asked us for the implementation of our method. As the
content of Chapter 6 was not published at the time, we provided him the
implementation of an older version of the method which was consistent with
the one described in the author’s Master’s thesis [43]. He sent us four images
of the results he acquired using our method on his data. These results are
shown in Fig. 8.4, notice that the head in the rightmost image at the top is
missing its whole face.

Roughly a year after he informed us that he did not use our method after
all but was still interested in our symmetry detection research and recent
improvements.

Eliška Mourycová [85] in her Bachelor’s thesis managed to modify our
symmetry plane detection method, with good results, for detecting sym-
metries in planar (2D) curves. The author of this doctoral thesis was con-
sulting/cooperating on this research. Fig. 8.5 shows the symmetry axes
detected by her method on three planar curves (top row) and on the same
data damaged by noise (bottom row). The red points represent the input
data, the black lines are the detected symmetry axes.

Eliška Mourycová is also currently working, in cooperation with the au-
thor of this thesis, on another modification of our method which aims to find
the spherical surface of reflectional symmetry instead of a plane of reflec-
tional symmetry. Apart from some other modifications, the transformation
of over-plane reflection was changed in the method to a transformation that
reflects points over a given spherical surface. The goal is to find a spherical
surface over which the input 3D point set would reflect to approximately fit
onto itself. So far, there are only preliminary results for spheres with fixed
radius but they look promising. These results are shown in Fig. 8.6, the
yellow points represent the input point set and red points demonstrate the
detected spherical surface of symmetry.

Štěpánka Krutinová, in her Bachelor’s thesis [63], attempted to use our

152



Figure 8.4: Results of an older version of our symmetry plane detection
method on four CT-scanned human heads (figures provided by Renan Sales
Barros).
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Figure 8.5: Symmetry axes detected on 2D objects using the method described
in [85] which is a modification of our symmetry plane detection algorithm
(Figures taken from [85]).

Figure 8.6: Preliminary results of symmetry sphere detection (figures
provided by Eliška Mourycová).

symmetry plane detection method to find symmetries of interesting parts of
large scenes acquired using the Earth observation techniques. The author
of this doctoral thesis was consulting on this research. It appeared that
the method only provides satisfactory results when the interesting points of
the scenes were selected manually. However, some promising results were
acquired when the interesting parts were selected using Laplacian filtering,
see Fig. 8.7. The image on the left shows a scene with the manually selected
points colored red and the symmetry plane (the black line) detected on the
selected points. These points probably represent a road or a street. The
image on the right shows only the points of this scene that were selected
automatically by the Laplacian filtering and their detected symmetry plane.
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Figure 8.7: Left - a scene with manually selected points (red) and their
symmetry plane (black line), right - points of the scene selected by Laplacian
filtering and their symmetry plane (figures taken from [63]).

Figure 8.8: Symmetry planes found when assigning larger weights to the
selected (red) areas (figures taken from [5]).

Ondřej Anděl, in his Master’s thesis [5], also used our method for finding
symmetries in the Earth observation data, this time by utilizing the weights
in the symmetry measure (see Section 6.1). A given area of the scene is
selected and pairs of points in this area are assigned greater weights than the
rest of the points. Selection of these areas is done in different ways including
manual selection or k-means clustering. Fig. 8.8 shows a scene with three
different areas selected as clusters by the k-means clustering algorithm (the
red parts). The black lines show the detected symmetries for the case when
the selected areas have five times greater weights than the rest of the scene.

Kateřina Uhrová in her Master’s thesis [118] experimented with different
parameter settings of our symmetry plane detection method and also with
different uses of the weights in the symmetry measure (see Section 6.1).
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Figure 8.9: Non-uniformly sampled objects with planes detected by our sym-
metry plane detection method without using the weights (top row) and with
the weights set using point density and point-to-point distances (bottom row)
(figures taken from [118]).

The author of this doctoral thesis was consulting on this research. The
results were interesting and especially the use of the weights for mitigating
the effect of non-uniform point sampling, which poses a problem for the
method, appeared promising, see Fig. 8.9. The top row shows objects
with very non-uniform vertex sampling (only vertices are used as the input
for the method) and the planes detected by the method without using the
weights. The bottom row shows the same objects with planes detected
with the weights set using point density in combination with point-to-point
distances. The results in the bottom row are obviously better.

Dominik Ráček used our symmetry plane detection method in his bach-
elor’s thesis [101] for constructing cutting planes of 3D models of human
faces. He used an implementation of the method which is currently present
in the production version of FIDENTIS Analyst II project [91] which is being
developed by researches at the Masaryk University, Faculty of Informatics
and uses our method for symmetry plane detection on human faces.

At last, David Jesenko et al. [55, 56] used the method for prediction of
water level of lake Cerknica in Slovenia. Using the fact that the symmetry
of the lake changes based on the current water level, our method was used
to find the symmetry plane of the lake which was then used to predict the
water level.

8.4 Other
Apart from the above content of this chapter there are some other contribu-
tions that can be mentioned.
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The implementation of our reflectional and rotational symmetry detec-
tion methods (described in Chapters 6 and 7) are currently being used by a
few other students in their bachelor’s theses.

Previous work of the author of this thesis, mainly on the topic of re-
flectional symmetry detection (Chapter 6) helped the graphics group at the
University of West Bohemia, Department of Computer Science and Engin-
eering receive a research grant GACR 21-08009K, Generalized Symmetries
and Equivalences of Geometric Data, Czech Science Foundation. At the mo-
ment of submitting the thesis the graphics group is working on the project
with the Department of Mathematics and a research group at the University
in Maribor in Slovenia and the author of this thesis is participating in it.

At last, based on the work of Ondřej Anděl mentioned in the previous
text, the research group at our department managed to establish cooperation
with researchers at the Czech Technical University in Prague regarding user
testing of human perception of symmetry.
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9 Conclusion

In this work we focused on automatic detection of symmetries in geometric
objects, mainly in 3D space. We first provided some necessary theoretical
background to understand the meaning of symmetries and described the
link between symmetry detection and the problem of registration. Next, we
described various existing methods and approaches for detecting symmetries
of different types and briefly also for rigid surface registration. The largest
part of the text then presented our own contributions to the field of rigid
surface registration and symmetry plane detection.

First, we proposed a new approach to consensus evaluation for RANSAC-
based registration methods using density peak location in the transformation
space which was inspired by previous work in symmetry detection. We tested
this approach in a model RANSAC registration algorithm and we compared
it to the conventional evaluation strategy based on overlap measurement.
Since the density peak location algorithm requires defining a distance met-
ric in the space of rigid transformations, we tested and analyzed several
different metrics, both practically and theoretically, and presented the res-
ults. We also proposed an improvement of the most suitable of the existing
metrics. This new improved metric now seems to represent the best choice
for measuring distances between rigid transformations of 3D triangle meshes.

In the context of symmetry plane detection we first focused on what we
call the Mode-based approach which can actually also include the density
peak evaluation algorithm we proposed previously for surface registration.
We analyzed and tested various ways of representing planes in the meth-
ods that implement the Mode-based approach for symmetry plane detec-
tion because the choice of the plane representation can impact the results
considerably. We mainly focused on possible distance functions that can be
defined for the various representations to measure similarities/dissimilarities
between the planes and we reported the results. As part of this we also pro-
posed a new way of representing planes using dual quaternions and using
the dual quaternion algebra to compute reflections over planes.

We further proposed a new method for symmetry plane detection in
discrete point sets (point clouds) based on a differentiable symmetry measure
and a gradient-based numerical optimization. The method showed itself to
be very fast, robust and also quite general. It handles well noisy objects and
even objects where significant parts are missing and is mostly superior to
other existing methods.
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Next, we proposed using pairs of potential reflectional symmetries and
a quaternion-based parameterization of the rotation transformation to find
rotational symmetries in 3D point sets. The method also utilizes the previ-
ously described symmetry measure and appears to be the most robust and
general method for finding rotational symmetries in 3D objects among the
methods that are known to us.

At last, we mentioned some of our smaller contributions including a new
method for finding local reflectional symmetries in 3D scenes represented by
point sets using a simple PCA-based local shape descriptor.

Most notably, the ideas and approaches we used in our methods appear
to be flexible enough to be reused in the future, in the form of extensions or
modifications, to solve even greater challenges. We proved this in Chapter 7
where we used the overall approach and core ideas from the symmetry plane
detection method presented in Chapter 6 and by performing several novel
modifications we turned it into a method for detecting rotational symmet-
ries. However, the overall approach remained the same - use sparse sampling
of the transformation space so that the number of evaluated candidates is
not unnecessarily large, select only a few candidates that have a chance of
being close to good symmetries, apply numerical optimization to maximize a
specific differentiable symmetry measure computed on a properly simplified
version of the object and select the best local maximum found. Extensions
for other symmetry types would very likely be possible as well since the
transformation in the symmetry measure can be changed to any other type.
Therefore, it could be possible to modify the method for detecting rigid sym-
metries, where the transformations could be differentiably parameterized by
dual quaternions, or even general affine symmetries where the parameter-
ization could be done on the standard matrix representation directly. This
would, however, require redesigning the process of creating candidate sym-
metries. For this purpose, some form of a local shape descriptor could be
used but a more convenient approach would be using the 4-point congruent
sets [2, 80] and their affine invariant properties.

In Section 8.3 we also showed a modification of the method for symmetry
detection in 2D curves and preliminary results of another modification that
attempts finding the spherical surface of reflectional symmetry in 3D point
sets instead of the symmetry plane. Although these modifications were not
done by the author of this work directly, they confirm the flexibility of the
overall approach. A possible way of future research could include extending
the approach even further to allow detecting symmetries that are represented
by reflections over more general surfaces such as general quadratic surfaces.
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The weights in the symmetry measure (see Section 6.1) also showed to
be a useful tool for adjustments and modifications. We showed two possible
uses for them already in Chapter 6 but some different uses of the weights
were found by others as described Section 8.3. All of these uses, especially
the one for mitigating the effect of non-uniform sampling, suggest that the
weights provide a great tool for additional adjustments and extensions of the
approach and increase its flexibility even more. The weights could also be
possibly used for detecting symmetries in volumetric data, rather than point
clouds, by assigning static weights to pairs of voxels based on the similarity
of their values. Finding more beneficial ways of employing the weights in
the symmetry measure is another potential way of future work.

By our opinion, showing that a single approach to symmetry detection
can exist that is robust, reliable, accurate, computationally efficient and
at the same time is flexible and generic enough to allow modifications and
extensions in so many different ways as suggested above, is the largest con-
tribution of this thesis.

We believe that the material presented in Chapter 4 regarding rigid sur-
face registration, RANSAC consensus evaluation and transformation dis-
tance metrics, is also well reusable in other applications as was partly shown
in Section 8.2. Furthermore, the method for finding local reflectional sym-
metries in 3D point clouds, briefly described in Section 8.1, utilizes content
of three different chapters of this work. It uses a modified version of the
density peak location algorithm from Chapter 4 to find modes in the the
candidate space of planes. From Chapter 5 it uses one of the analyzed dis-
tance functions for planes in the density peak location process and from
Chapter 6 it uses mainly the point cloud simplification and optimization of
the symmetry measure on the locally symmetric parts. The distance func-
tion for planes from Chapter 5 is also used in the symmetry plane detection
method in Chapter 6 in the candidate pruning step to find similar planes.
This further suggests the flexibility a reusability of the research outcomes
presented throughout this thesis.
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A Activities

A.1 Publications on International
Conferences

• Hruda, L., Kolingerová, I., and Lávička, M. Plane space representation
in context of mode-based symmetry plane detection. In Computational
Science – ICCS 2020 (Cham, 2020), V. V. Krzhizhanovskaya, G. Zá-
vodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos, and
J. Teixeira, Eds., Springer International Publishing, pp. 509–523. [50]
(80%)

My contribution: theoretical analysis of the plane space representa-
tions and distance functions, derivation of the dual quaternion repres-
entation, evaluation methodology, implementation, experiments, text
writing.

• Jesenko, D., Hruda, L., Kolingerová, I., Žalik, B., and Podgorelec,
D. Detection of water levels in lake cerknica using sentinel-2 data and
symmetry. In 3rd International Conference on Advances in Signal Pro-
cessing and Artificial Intelligence (ASPAI’ 2021) (2021), pp. 66–69.
[55] (10%)

My contribution: consulting, proofreading, writing a small part of
the text.

• Hruda, L., Kolingerová, I., and Podgorelec, D. Local reflectional sym-
metry detection in point clouds using a simple pca-based shape
descriptor. In Proceedings of the 18th International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and Ap-
plications - Volume 1: GRAPP (2023), pp. 52–63. [51] (90%)

My contribution: core idea, design of the overall method, imple-
mentation, experiments, text writing.
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A.2 Publications in Impacted Journals
• Hruda, L., Dvořák, J., and Váša, L. On evaluating consensus in ransac

surface registration. In Computer Graphics Forum (2019), vol. 38,
Wiley Online Library, pp. 175–186. [46] (50%), citations: 1 (WoS
/ Scopus / Scholar, excludes publications with any co-author intersec-
tion)

My contribution: theoretical analysis of the transformation distance
metrics, derivation of the metric based on triangle sum of squares (this
was also done in parallel by doc. Váša), implementation of the metrics
and their integration into the registration algorithm, experiments and
comparisons, significant participation on text writing.

• Hruda, L., Kolingerová, I., and Váša, L. Robust, fast and flexible sym-
metry plane detection based on differentiable symmetry measure. The
Visual Computer (Jan 2021). [53] (80%), citations: 3 (WoS: 2,
Scopus: 1, Scholar: 2, excludes publications with any co-author in-
tersection)

My contribution: core idea, design and implementation of the over-
all method, experiments, comparisons, text writing.

• Hruda, L., Kolingerová, I., Lávicka, M., and Maňák, M. Rotational
symmetry detection in 3d using reflectional symmetry candidates and
quaternion-based rotation parameterization. Computer Aided Geo-
metric Design 98 (2022), 102138. [49] (80%)

My contribution: theoretical and practical verification of the core
idea, derivation of the quaternion-based rotation parameterization,
design and implementation of the overall method, experiments, com-
parisons, text writing.

A.3 Other Topic-Related Publications
• Hruda, L., and Dvořák, J. Estimating approximate plane of symmetry

of 3d triangle meshes. In Proc. Central European Seminar on Com-
puter Graphics (Smolenice, Slovakia, 2017). [47] (50%)

My contribution: participation on designing the method, imple-
menting the method, performing experiments and text writing.
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• Jesenko, D., Hruda, L., Kolingerová, I., Žalik, B., and Podgorelec, D.
Symmetry-based method for water level prediction using sentinel 2
data. Sensors & Transducers 256, 2 (2022), 12–18. [56] (10%)

My contribution: consulting, proofreading, writing a small part of
the text.

A.4 Non-Related Publications
• Hruda, L., and Kohout, J. Generic caching library and its use for vtk-

based real-time simulation and visualization systems. In VISIGRAPP
(1: GRAPP) (2018), pp. 154–164. [48] (90%)

My contribution: design and implementation of the caching library,
part of the experiments, writing major part of the text.

• Dvořák, J., Káčereková, Z., Vaněček, P., Hruda, L., and Váša, L. As-
rigid-as-possible volume tracking for time-varying surfaces. Computers
& Graphics 102 (2022), 329–338. [28] (5%), citations: 1 (WoS /
Scopus / Scholar, excludes publications with any co-author intersec-
tion)

My contribution: consulting, proofreading.

A.5 Participation in Scientific Projects
• GACR 21-08009K, Generalized Symmetries and Equivalences of Geo-

metric Data, Czech Science Foundation

• SGS-2019-016, Synthesis and Analysis of Geometric and Computing
Models, Ministry of Education, Youth and Sports of the Czech Repub-
lic

• SGS-2022-015, New Methods for Medical, Spatial and Communication
Data, Ministry of Education, Youth and Sports of the Czech Republic

A.6 Oral Presentations
• Hledání symetrie v geometrických modelech (Language: Czech), 13.

11. 2018, seminar of the graphics group at the University of West
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Bohemia, Faculty of Applied Sciences, Pilsen

• Hledání symetrie v geometrických modelech (Language: Czech), 6.
12. 2018, finale of the Czechoslovakian IT SPY 2018 master’s thesis
competition, Prague

• On evaluating consensus in RANSAC surface registration (Language:
English), 2. 7. 2019, training presentation for the SGP 2019 conference
and a seminar of the graphics group at the University of West Bohemia,
Faculty of Applied Sciences, Pilsen

• On evaluating consensus in RANSAC surface registration (Language:
English), 10. 7. 2019, Symposium on Geometry Processing 2019,
Milan, Italy

• Local reflectional symmetry detection in point clouds using a simple
PCA-based shape descriptor (Language: English), 21. 2. 2023, GRAPP
2023, online presentation in the form of a pre-recorded video

A.7 Other
• 2nd place in the Czechoslovakian IT SPY 2018 master’s thesis compet-

ition

• GRAPP 2023 Best Student Paper Award

• h-index of 2 according to WoS and Scopus (excludes self-cites but in-
cludes cites by publications with the same co-authors)
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