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Abstract

This dissertation focuses on the development of algorithms for automati-
cally adaptive hp-FEM that can be used to solve both stationary and time-
dependent partial differential equations (PDEs) in two spatial dimensions.
The hp-FEM is an advanced version of the classical finite element method
which employs elements of varying diameter h and polynomial degree p to
obtain superior (exponential) convergence rates. However, the method puts
high demands on its implementation and presents a number of open problems.

In this work we review the basics of 2D hp-FEM and then show how to extend
a standard hp-FEM solver to support meshes with hanging nodes, which is
a prerequisite for automatic hp-adaptation of the approximate solution. Our
original algorithm and data structure enable the use of arbitrarily irregular
meshes that can reduce both the size of the discrete problem and the com-
plexity of the hp-adaptation algorithm. Practical implementation details and
examples are included.

Next we review several existing hp-adaptation strategies for stationary PDEs,
in particular an existing algorithm based on the reference solution approach.
We design a new algorithm that is both simpler and faster, while delivering
better or comparable results, as we demonstrate on two standard benchmark
problems.

The next topic is the solution of systems of PDEs. We motivate the use of
different meshes for different equations in the system and present an original
algorithm for the assembly of the stiffness matrix of such multi-mesh systems.
The goal is to save degrees of freedom and to prepare the solver for dynamic
meshes in time-dependent PDEs. We test the implementation on a model
problem of thermoelasticity.

Finally, we use the new multi-mesh assembling and the adaptive Rothe method
to obtain computations with meshes that can change with time, in order to
speed up the solution of time-dependent problems that exhibit moving features
in their solution. We develop an algorithm that automatically adjusts the mesh
between successive time steps and test it on two nonlinear model problems
from the areas of incompressible fluid flow and combustion physics.
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Anotace

Tato dizertace se zaméfuje na navrh algoritmti pro automaticky adaptivni
hp-FEM pro tcely feSeni staciondrnich i ¢asové zavislych parcidlnich diferen-
cidlnich rovnic (PDR) ve dvou prostorovych rozmérech. Metoda hp-FEM je
zdokonalena verze klasické metody koneénych prvku, kterda vyuziva elementy
ruznych poloméru h a polynomidlnich stupnu p k dosazeni vynikajici (expo-
nencidlni) rychlosti konvergence. Klade ovsem velké naroky na implementaéni
stranku a pfindsi fadu otevienych problému.

V této préaci shrnujeme zdklady hp-FEM ve 2D a poté popisujeme rozsiteni
standardniho fesice hp-FEM o podporu siti s visicimi uzly, kterd je predpokla-
dem pro automatickou hp-adaptaci pfiblizného feSeni. N4s puvodni algoritmus
a datova struktura umoznuji pouziti libovolné neregularnich siti, jez mohou
vést ke zmenseni diskrétniho problému a ke zjednoduSeni algoritmu pro hp-
adaptivitu. Popisujeme i praktické implementaéni detaily a ptiklady.

Daéle shrnujeme nékolik existujicich strategii hp-adaptivity pro stacionarni
PDR, zejména existujici algoritmus zalozeny na tzv. referenénim feSeni. Navr-
hujeme novy algoritmus, ktery je jednodussi a rychlejsi, pricemz ale dosahuje
lepsich nebo srovnatelnych vysledku, jak ukazujeme na dvou standardnich
testovacich problémech.

Dalsim tématem je feseni soustav PDR. Obhajujeme moznost pouziti ruznych
siti pro rizné rovnice v soustavé a pfinasime puvodni algoritmus pro ses-
taveni matice tuhosti takového systému (tzv. multi-mesh assembling). Cilem
je uspora stupnu volnosti a piiprava regi¢e na dynamické sité u ¢asové zavis-
lych rovnic. Implementaci testujeme na modelovém piikladu z termoelasticity.

Novy algoritmus pro multi-mesh assembling v zdvéru vyuzivame spolu s adap-
tivni Rotheho metodou k vypocétum na sitich, které se mohou ménit v ¢ase, za
ucelem zrychleni feSeni casové zavislych problému, které vykazuji pohybujici se
ukazy v jejich feseni. Vyvijime algoritmus, ktery dokaze automaticky upravo-
vat sit mezi jednotlivymi ¢asovymi kroky a testujeme jej na dvou nelinedrnich
modelovych problémech z oblasti nestlacitelného proudéni a fyziky hofeni.
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Chapter 1

Introduction

Today, the development of most fields of engineering and natural sciences
would be unthinkable without the use of computers. Computer simulation
has become an essential part of electric, mechanical and civil engineering as
well as of many areas of physics, chemistry and biology. Indeed, computational
science is now regarded as the third mode of science, complementing the two
classical domains of experimentation and theory.

Many natural and engineering processes can be described and modeled by par-
tial differential equations (PDEs), and their numerical solution has been one of
the first and most important applications of computers since their invention.
Among the most prominent numerical methods for the solution of PDEs is the
hugely popular finite element method (FEM), now widely used in countless
applications. Due to the increasing power of computers and an ever-growing
demand on the accuracy and scalability of the numerical methods, a number
of variants of the FEM have been developed over the past decades.

This thesis is concerned with adaptive hp-FEM, a particular modern version
of the finite element method with outstanding theoretical properties, but at
the same time presenting many open problems and practical difficulties. In
this thesis we review the theoretical foundations of hp-FEM in 2D, develop
novel hp-adaptive algorithms for both stationary and time-dependent PDEs
based on arbitrary-level hanging nodes and multi-mesh assembling, provide
practical implementation details and data structures and finally present nu-
merical examples demonstrating the performance of the methods on several
model problems.

1.1 History of hAp-FEM

The origins of the finite element method can be traced back to the 1940s to
the works of Courant [I4], who himself was relying on earlier developments of



variational methods for PDEs by Rayleigh, Ritz and Galerkin. By the end of
the 1950s the key concepts of the FEM had stabilized to the form used today
and during the 1960s the method was already being routinely used in a wide
variety of engineering disciplines, e.g., electromagnetism, fluid dynamics and
structural analysis [56]. In the 1970s a rigorous mathematical foundation for
the method was provided by Ciarlet [I3] and Strang and Fix [49]. The essential
characteristic of the method is the division of the computational domain into
a finite number of polygonal sub-regions, called elements. The ability of the
method to handle complex, non-rectangular geometries is one of the most
attractive advantages over methods based on finite differences (FDM).

The accuracy of the approximate solution, within the Galerkin framework,
depends solely on the choice of the finite-dimensional subspace, i.e., on the
size and type of elements in the mesh. This is especially true for problems
exhibiting singularities and multiscale behavior. The need for mesh adaptation
and error estimation was quickly recognized and the h-adaptive version or h-
FEM was born. In h-FEM problematic parts of the solution are resolved by
successive subdivision of elements on which the estimated error is too large.
A posteriori error estimation, an essential part of all adaptive schemes, has
since become a vast research area of its own. For some of the first works, see
[3, [4]. Although h-adaptivity has proved extremely useful for many problems
with singularities, the approximation error can typically only be reduced with
some negative power of the number of degrees of freedom.

An alternative approach to the enlargement of the finite-element subspace is
based on increasing the polynomial degree of the approximation on selected
elements. This scheme is referred to as p-FEM or p-adaptivity and is more
successful than h-FEM for problems with a very smooth solution. However, it
yields unsatisfactory convergence rates for problems with singularities. This
observation led Babuska and Guo to propose the hp version of the FEM [5]
28, 29], in which a higher polynomial degree p is selected for elements where
the solution is sufficiently smooth, while the element size h is reduced near
oscillations and singularities. It was proved that unlike the previous methods,
hp-FEM is capable of delivering exponential convergence rates, which should
in theory make it the best choice for most finite element computations.

However, more than 20 years have passed and even though hp-FEM has been
extensively studied in the mathematical literature, it is seldom ever used out-
side academia. The main reason is the lack of a reliable and widely accepted
a posteriori error estimator that would provide the information whether to
split an element or increase its polynomial degree. There has been a lot of
research in this area (see [20] [35] and the references therein), but in practice
one usually has to resort to guiding the hp-adaptivity by the costly reference
solution, obtained by uniform h- and p- refinements of the mesh. Another
reason why hp-FEM has not yet been adopted by the engineering community
is the common belief that it is very hard to implement.



There are currently not many publicly available hp-FEM implementations.
Among the most well known are the Fortran codes 2Dhp90 and 3th9dﬂ by
L. Demkowicz and his students, the C++ library ConceptsE] by P. Frauenfelder
and C. Lage and the package deal.Iy W. Bangerth and coworkers. Finally,
let us mention the projects Hermes2D*|and Hermes3D by the group of P. Solin,
portions of which are the result of this work.

1.2 Objectives of This Work

The following is a list of tasks this thesis focuses on. Each task is covered in
one of the following chapters.

1. Review the fundamentals of the theory of both standard FEM and
higher-order FEM, nodal and hierarchic, with implementation details.

2. Review existing algorithms for the treatment of meshes with hanging
nodes and extend them to the case of meshes with arbitrary-level hanging
nodes. Provide practical information and data structures.

3. Summarize existing hp-adaptivity algorithms for stationary problems
and design a simpler and faster alternative. Assess the performance of
the new algorithm.

4. Develop a new assembling method enabling the use of different meshes
for different components of the solution in a system of PDEs. This is
important for efficient solution of coupled problems and will allow the
solution of time-dependent problems on dynamic meshes.

5. Develop a new automatic hp-adaptive algorithm for time-dependent prob-
lems on dynamically changing meshes.

6. Demonstrate the validity and performance of the presented algorithms
and methods on several numerical examples.

Original results of the author are presented in Chapters and [6] The
main concepts were developed during the author’s stay at the University of
Texas at El Paso and at the Institute of Thermomechanics at the Academy of
Sciences of the Czech Republic.

'http://users.ices.utexas.edu/~leszek/projects.html
2http://www.concepts.math.ethz.ch/
3http://www.dealii.org/

“http://hpfem.org/hermes2d/
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Chapter 2

Higher-Order FEM

This chapter presents a brief overview of the theoretical fundamentals of the
finite element method, starting with classical piecewise-linear elements and
later introducing both the nodal and hierarchic approaches to higher-order
elements. The chapter concludes with several implementation remarks. For
those seriously interested in the study of higher-order FEM we recommend
two monographs [45] and [43], upon which this chapter is based.

2.1 Weak Formulation of a Model Problem

Let us start with a model equation representing a range of standard stationary
problems. Let £ be an open connected set in R%. Consider the equation

— V(a1Vu) + apu = f in Q. (2.1)
For the existence and uniqueness of solution we add the assumptions
a1(x) > Chpin >0 and ap(x) >0 in Q.
Let be endowed with homogeneous Dirichlet boundary conditions

u(x) =0  on 0. (2.2)

Classical solution to the problem (2.1, (2.2) is a function v € C?(Q) N C(Q)
satisfying the equation (2.1]) everywhere in €2 and fulfilling the boundary con-
dition (2.2) at every & € 0f. Naturally, one has to assume that f € C(1).

However, neither this nor even stronger requirement f € C(2) guarantees the
solvability of the problem, for which still stronger smoothness of f is required.

In order to reduce the above-mentioned regularity restrictions, we introduce

the weak formulation of the problem (2.1]), (2.2). The derivation of the weak
formulation of (2.1)) consists of the following four steps:

4



1. Multiply (2.1 with a test function v € C5°(2),
—V(a1Vu)v + apuv = fo.
2. Integrate over (2,

—/ V(a1Vu)vda:+/ aouvda::/ fvde.
Q Q Q

3. Use the Green’s formula to reduce the maximum order of the partial
derivatives present in the equation. The fact that v vanishes on the
boundary 0f2 removes the boundary term, and we have

/a1Vu-Vvd:c+/a0uvd:c:/fvdaz. (2.3)
Q Q Q

4. Find the largest possible function spaces for u, v and other functions
in so that all integrals are still defined. The identity was
derived under very strong regularity assumptions u € C?(Q)NC(Q) and
v € C§°(2). Notice that all integrals in still make sense if these
assumptions are weakened to

u,vEH&(Q), f€L2(Q),

where H}(2) is the Sobolev space VVO1 2(Q). Similarly the regularity
assumptions for the coefficients a; and ag can be reduced to

ai,ag € L>(Q).

The weak form of the problem ((2.1)), (2.2) is stated as follows: Given f €
L%(Q), find a function u € Hg () such that

/ a1Vu - Vv + apuv dz = / fodx for all v € H}(Q). (2.4)
Q Q

Obviously the classical solution to the problem (2.1]), (2.2)) also solves the
weak formulation (2.4). Conversely, if the weak solution of ([2.4) is sufficiently
regular, which in this case means u € C%(Q)UC(Q), it also satisfies the classical

formulation ([2.1)), (2.2).

Let V = H}(Q). In the language of linear forms, we define a bilinear form
a(,-):VxV >R,

a(u,v) = / (a1Vu - Vv + aguv) de, (2.5)
Q
and a linear form [ € V,
l(v) = / foda.
Q

Then the weak formulation of the problem (2.1)), (2.2]) reads: Find a function
u € V such that
a(u,v) =1l(v) forallveV. (2.6)



Definition 2.1 Let V be a real Hilbert space and a : V xV — R a bilinear
form. We say that

1. a is bounded if there exists a constant Coq > 0 such that |a(u,v)| <
Callulll[o]l for all u,v €V,

2. a is V-elliptic (coercive) if there exists a constant Co > 0 such that
a(v,v) > Cyllv||? for allv € V.

The following important result asserts the existence and uniqueness of the
solution to the weak formulation of our problem.

Theorem 2.1 (Lax-Milgram lemma) Let V' be a Hilbert space, a : V X
V — R a bounded V -elliptic bilinear form and l € V'. Then there exists a
unique solution to the problem

a(u,v) =1l(v)  forallveV.

Proof See [43].

2.2 The Galerkin Method

The problem is stated in an infinitely-dimensional space, and therefore in
most cases it is not possible to find its exact solution. The Galerkin method
constructs a sequence of finite-dimensional subspaces {V,,}>2, Cc V, V,, C
Vi1, that fill the space V' in the limit. In each finite-dimensional space V,,
the problem is solved exactly. It can be shown that under suitable
assumptions the sequence of the approzimate solutions {un}oe,, u, € Vy,
converges to the exact solution of the problem .

The Galerkin approximate problem is usually called discrete problem and it
reads: find a solution u, € V,, satisfying

a(up,v) =1(v) forallveV,. (2.7)

The solution w, € V, to the discrete problem can be found explicitly
thanks to the fact that the space V;, has a finite basis {vn}ﬁ[gl. The solution u,,
can be written as a linear combination of these basis functions with unknown
coefficients,

Nn
Up = Zijj. (2.8)
j=1



Substituting (2.8]) into (2.7)), one obtains

a (Z ijj,v> =l(v) forallvelV,.
j=1

The linearity of a(-,-) in its first component yields

Np,
Z a(vj,v)y; =1(v) forallveV,. (2.9)
j=1
Substituting the basis functions vy, vs,. .., vy, for v in (2.9), we obtain
Nn,
Za(vj,vi)yj =l(v;) i=1,2,...,Ny. (2.10)
j=1

Let us define the stiffness matrix
Sn={sitiry, sy =alvj,v), (2.11)

the load vector
Fo= {3z, fi=1w), (2.12)

and the unknown coefficient vector
Ny
Yn = {yi}izl'

Then the system of linear algebraic equations (2.10|) can be written in matrix
form:
S.Y, =F,.

2.3 Standard Linear Elements

Consider the model problem , . The domain 2 is first approximated
by a polygonal domain €2;,. This is one of the so-called wvariational crimes
— departures from the “mathematically clean” variational framework — since
Qpn ¢ Q and the solution or other functions from the weak formulation (2.6
are not defined where they are to be approximated or evaluated. In practice
these crimes are often hard to avoid. The next step consists of defining the
finite element mesh:

Definition 2.2 (Finite element mesh) Finite element mesh 7, = {Kj,
Ko, ..., Ky} over a domain Qy € R® with a piecewise-polynomaial boundary
is a geometrical division of €, into a finite number of nonoverlapping open
polygonal cells K; such that

M
Q= U K;
=1



A standard requirement, which greatly facilitates the discretization procedure
of non-adaptive FEM, is mesh regularity. In this chapter we only work with
regular meshes.

Definition 2.3 (Regular mesh) The mesh is called regular if for any two
elements K; and Kj, i # j only one of the following alternatives holds:

=

iN Fj 15 empty
o K; ﬂfj s a single common vertex
o K;NK; is a single (whole) common edge
According to the geometrical approximation 2 ~ 2, the space V() is ap-
proximated by a piecewise-linear polynomial space V},(£23),
Vi ={v € C(Q); vlpa = 0; v|k, € span{l,z,y} }

The basis functions of Vj have the form of “pyramids”, as shown in Figure

21

Figure 2.1: Basis function of the space Vj,.

These functions are defined as follows: assume a vertex patch S(i) consisting
of all mesh triangles sharing the vertex x;,

S = U K

kEN (i)
where the index set N (i) is defined as
N(i) = {k; Ky € T, x; is a vertex of Kj}.

The basis function v; is defined to be zero in €y, \ S(7), and in S(7) it has the
form

vi(@)|K, = (9" oz, ) (@)
Here for every element K}, € S(i), ¢ is thel unique vertex shape function on
he referen main K, h th (e (x5)) = 1 Figure [2.2)). Th
Eefer:nzeedf)ini(i)n E;(t ant(’i Srléger;n(if (Sioonfailrfkr(na;))) Tr, \E:i?le begélef(jl in ch

following section.
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2.4 Affine Concept of the FEM

The basic idea of the affine concept is to transform the weak formulation
from each mesh element K; to a triangular reference domain Ky, where all
the computation takes place. This approach is also efficient from the point of
view of computer memory, since the numerical quadrature data is stored on
the reference domain only. The shape functions and their partial derivatives
can be stored via their values at integration points in the reference domain.

The standard reference domain K; is shown in Figure [2.3

U3

A §2

€3

&1

K
€2

€1

U1

-1

V2

\/

Figure 2.3: Reference triangle K.

Consider now an arbitrary triangular domain K C R? with the vertices @1,
@9, x3. The isoparametric reference map i : Ky — K is defined as

3
zic(€) =D wig"(8),
i=1

where ¢V are the vertex shape functions shown in Figure and defined as

&1+ &

" (&) 5



SOUQ (g) = Ta
=€) = ! J;&

All integrals in (2.11)), (2.12)) are first transformed to the reference domain K;

and then evaluated using Gaussian quadrature (see Section [2.9). Transforma-
tion of function values is straightforward. Let w(x) € C(K),1 < m < M,
then its transformed values are

w(§) = (woxk)(§) = w(wk1(§), vk 2(£)).

One has to be more careful when transforming derivatives. Using the chain
rule of differentiation we obtain

@ 855[(’1 8:1:1(’2 aiw T aiw
06 | _ 061 061 or1 | _ (P 0x,
ow ) | 9rra Orke || 0w |\ Dg Ow |
06 0&s 0& 0xa 0z

where Dx /D€ stands for the Jacobi matrix of the map @ . Since nonsingular
matrices satisfy (A7) ™! = (A™HT = A~T the gradient Vw(x) at an arbitrary
point € K is transformed to the point £ = x'(x) € K; by

D:DK

Vu(z) = (D£> Ve,

By applying the substitution theorem, the integral in (2.11)) for the model
problem is then transformed as

/K (a1 (@) Vv () - Voi(@) + ao(@)v; (2)vi(@)) de

o o) ] [(32) v

+ [ [Jkao(§)v;(§):(€)] dE,

K

where

(&) = (vicxk)(§), (&) = (vj ozK)(§),
ao(§) = (ap o zk)(§), a1(§) = (a1 0 zk)(§),

D:IZK
JK—det( DE )

10



2.5 Higher-Order Finite Element Space

In Section [2.3] we constructed the Galerkin sequence V; C V; ... in the Sobolev
space V by refining the mesh of linear elements (h-refinement). Sometimes,
much faster convergence can be achieved by increasing the polynomial degree
of the elements instead (p-refinement). Such approach is usually more efficient
for elements where the solution is smooth.

Let the domain €2, be covered with a mesh 7, = {K1, K»,..., Ky} where
the elements K, carry arbitrary polynomial degrees 1 < p,,, m =1,2,..., M.
The space V(2) is now approximated by a picewise-polynomial space V4, ,(2p,),

Vip ={v e C(); v|k,, € PP™(Ky,) for all 1 <m < M}
where PP is defined as

PP = span{1,z,y, 2%y, zy?, ..., 2™y", ..., 2PyP} forall 0 < m,n <p

In addition to vertex basis functions (Figure , the piece-wise polynomial
space V},, will be generated on the mesh edges by edge basis functions and on
element interiors by bubble basis functions. There are two major approaches
to the construction of these basis functions: nodal and hierarchic.

2.6 Nodal Shape Functions

The nodal basis is a generalization of the classical linear basis (see Section,
where the expansion coefficients of the basis or shape functions are obtained
by taking the value of the function to be approximated at the vertices of an
element. A more general definition is via linear forms:

Definition 2.4 (Nodal finite element) Nodal finite element is a triad K =
(K, P,Y), where

e K is a bounded domain in R* with a Lipschitz-continuous boundary,
e P is a space of polynomials on K of the dimension dim(P) = Np,
o X ={Ly,Lo,...,Ln,} is a set of linear forms

Li:P—R, i=1,2,...,Np.

The elements of ¥ are called degrees of freedom (DOF).

Any polynomial g € PP(K) must be uniquely identified by a set of Np given
numbers. This property is called unisolvency:
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Figure 2.4: Nodal basis of the P? element (only 4 of total 10 shape functions

Definition 2.5 (Unisolvency) A nodal finite element (K, P, X)) is said to be
unisolvent if for every polynomial g € P it holds
Li(g) = L2(9) = - = Ly (9)

=0 = g¢g=0.
numbers {g1, go,

Lemma 2.1 Let (K, P,Y) be a unisolvent nodal element. Given any set of
.y gNp ) € RN? | where Np = dim/(P), there exists a unique
polynomial g € P such that
Ll(g) =91, Lz(g) =92;--- 7LNp(g) = YNp-

Definition 2.6 (Nodal basis) Let (K, P,X), dim(P) = Np, be a nodal fi-
nodal basis of P if it satisfies

nite element. We say that a set of functions B = {01,62,...,0n,.} C P is a
Li(0;) = 64

forall1 <1i,7 < Np.
The functions 6; are called nodal shape functions.

Theorem 2.2 (Characterization of unisolvency) Consider a nodal finite
element (K, P,Y), dim(P) = Np. The finite element is unisolvent if and only
if there exists a unique nodal basis B = {61, 602,...,0N,} C P.

The proof of Theorem [2.2] (see [43]) provides an algorithm for the construction

of the nodal shape functions. Figure is an example of the nodal basis for

12



a cubic element. Note that the functions p¥2, U3, ©%, ¢, 52, ©5* are not

shown and can be obtained from ¢!, {' and ¢5' by rotation.

Nodal shape functions are advantageous in the sense that the correspond-
ing unknown coeflicients obtained from the solution of the discrete problem
directly represent the value of the approximate solution wuy, at the nodal
points. On the other hand they are not hierarchic and thus one has to replace
the whole set of shape functions when increasing the polynomial order of ele-
ments. This means that it is difficult to combine nodal elements with various
polynomial orders in the mesh and therefore they are not suitable for p- and
hp-adaptivity. Furthermore, with simple choices of nodal points these shape
functions yield ill-conditioned stiffness matrices.

2.7 Hierarchic Shape Functions

Hierarchic shape functions are constructed in such a way that the basis B! of
the polynomial space PPT!(K) is obtained from the basis B of the polynomial
space PP(K) by adding new shape functions only. This is essential for p- and
hp-adaptive finite element codes since one does not have to change his shape
functions completely when increasing the order of polynomial approximation.
In this section we will describe the popular Lobatto-based hierarchic shape
functions.

Similarly to Section [2.6] we will define three types of shape functions:

e vertex functions @', ..., " associated with the vertices vy, ..., v3. Each
vertex function ¢¥ will be equal to one at v; and will vanish at the re-
maining two vertices.

e cdge functions gpji, 1=1,...,3,5 =2,...,p% associated with the edges
e1,...,e3. Bach edge function go? will concide with the Lobatto shape
functions lo, I3, ... (see below) on the edge e; and will vanish on all re-
maining edges.

e bubble functions cp? that vanish entirely on the element boundary.

Definition 2.7 (Affine coordinates) Affine coordinates on the triangular
reference domain K (Figure are defined as

+1 + +1
A1(61,62) = 522 ; A2(61,82) = = 5 52, A3(61,62) = o 5
Vertex functions ¢, ..., p" are chosen simply as these affine coordinates (we
have already seen these shape functions in Figure .
P (€1,&2) = A&, &) (2.13)
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©(&1,&2) = A3(&1,&2)
e (&1,62) = (61, 62)

Definition 2.8 (Legendre polynomials) We define the Legendre polyno-
mials of degree k as
1 d* 5,

The set of Legendre polynomials forms an orthonormal basis of the space
L2(—1,1).

Definition 2.9 (Lobatto functions and kernel functions) Let us define
the functions

lo(z) = 1_Tx (2.14)
1 x
h(z) = HLk_1||2/1Lk_1(§)d§, k> 2

Since all functions li(x), k > 2 vanish at £1, we can define the kernel func-
tions ¢;, j =0,1,2,..., by decomposing lj, into

l(x) = lo(x)l1(2)pr—2(x), k>2

The edge functions gpji can now be written in the form

PF = Xadadja(As—Ao), 2<j <p” (2.15)
052 = Ashgja(hi—Ag), 2<j<p®
P = AMdadjo(d2— M), 2<j<p®

Figure is an example of a quadratic, cubic and a fourth-order edge function
on the edge e;.
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Figure 2.5: Edge shape functions 5!, 5!, 3.

The numbers p°, ..., p in (2.15)) are edge polynomial degrees, as determined
by the minimum rule:
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Definition 2.10 (Minimum rule) Let K;, K;, 1 < i,j < M be two ele-
ments sharing a common edge e and let p;, p; be their associated polynomial
degrees. The polynomial degree p* of the edge ey, is p® = min{ p;, p; }.

The minimum rule guarantees that the resulting piece-wise polynomial space
Vi p will be independent of a concrete choice of the shape functions.

The hierarchic basis will be completed by defining the bubble functions. A
standard approach is to combine affine coordinates with varying powers,

Gy = A (A2)™ (A3)™, 1< np,mo; na+ng < pp—1 (2.16)

However, conditioning properties of these functions are relatively bad. This
motivates us to define a different set of bubble functions by incorporating the
kernel functions:

Ohmy = MA2A300, -1 (A3 — A2)dny—1 (A2 — A1), (2.17)

where n; and ne satisfy the same conditions as in (2.16)). Figures and
are examples of such shape functions.
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Figure 2.7: Fifth-order bubble functions <pl{3, 9013’,71 and cpg,z.

Proposition 2.1 The shape functions , and constitute a

hierarchic basis of the space PP™(Ky)

Proof The complete proof can be found in [45]. Briefly, the following must
be verified:
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1. Are all the shape functions linearly independent?
2. Do they all belong to the space PP™(K;)?
3. Matches their number the dimension of the space PP (K;)?

As has been mentioned, the choice of the shape functions has a strong influ-
ence on the conditioning of the stiffness matrix associated with the discrete
problem. The described bubble functions can still be improved, e.g., by their
orthogonalization. Even though the orthogonality is not preserved after the
shape functions are transformed from the reference domain to the actual ele-
ment, experiments show that the condition number of the stiffness matrix is
significantly lower nevertheless (see [55]). In our software we have been using
these orthonormal bubble functions.

Let us conclude this section with Table showing the numbers of shape
functions depending on the polynomial degree p™ of the element.

Shape type Existence Number of shape functions

Vertex always 3
Edge P> 2 S —1)
Bubble pm >3 (P" —1)(p™ —2)/2

Table 2.1: Numbers of shape functions.

2.8 Nodes and Connectivity Arrays

In standard linear FEM, mesh vertices are simply numbered, ie. assigned
vertex basis function indices. Due to the existence of edge and bubble basis
functions in higher-order FEM, a more elaborate bookkeeping is required.
Data structures that link the shape functions 1, @2, ¢3,... on an element to
the basis functions v;,v;, vy, ... C V3, are called connectivity arrays. These
arrays ensure that:

e vertex shape functions are joined properly to form vertex basis functions,
ie. that the appropriate vertex shape functions on elements sharing a
common vertex are assigned the same vertex basis function index;

e edge shape functions are joined properly to form edge basis functions, ie.
that the appropriate edge shape functions on elements sharing a common
edge are assigned the same edge basis function index.

This is usually achieved by data structures called nodes. Three types of nodes
are defined: vertexr nodes, associated with vertices, edge nodes, associated with
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edges and bubble nodes, associated with element interiors. Each node holds
one or more basis function indices. FEach element is linked with seven nodes
corresponding to its vertices, edges and interior during initialization.

2.9 Higher-Order Numerical Quadrature

Most commonly, the integrals in (2.11]), (2.12)) are evaluated numerically by the
Gaussian quadrature. The k-point Gaussian quadrature rule on the domain
K; has the form

k
[ a0 = Y wnig(n) (2.18)
K i=1
where g is a bounded continuous function, §.; € K7 = 1,2,...,k are the

integration points and wy; € R are the integration weights. The sum of the
integration weights must be equal to the area of Ky, so that the rule is
exact for constants. If the points and weights are chosen carefully, the formula
can be exact for polynomials up to a certain degree g > 0.

In 1D the integration points are roots of the Legendre polynomials. Also in
2D it is quite easy to find the integration points and weights for low-order
polynomials ocurring in traditional linear FEM. For higher-order polynomi-
als, however, the task of finding optimal Gaussian quadrature rules presents
a complex non-linear optimization problem with many open questions left.
Optimal integration points and weights are known on K; for polynomials up
to degree 10. Suboptimal (with more points than necessary) rules have been
found for polynomials up to degree 20. Complete integration tables along with
more information on this subject can be found in [45].

2.10 Assembling Procedure

Recall from Section that after converting the PDE ([2.1)) to the weak form
(2.6), we can use the Galerkin method to obtain the discrete problem

SY =F,

where Y is the vector of uknowns, and the stiffness matrix S and the load
vector F are defined as

S ={ a(vj,v;) }%’:17
F={l(v) },.

Here v1,v9, ..., vy are the basis function of the finite-dimensional space V' (2),
dim(V(2)) = N and a(u,v), [(v) are the bilinear and linear forms, respectively.
The construction of S and F' is called assembling.
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A naive implementation of the assembling procedure might read as follows:

S =0nxN
fori=1...N do
for j=1...N do
for k=1...M do
Sij :Sij—i-a(vj,vi)\Kk

The innermost statement is summing contributions of a(v;,v;) restricted to
each element K}, M is the total number of elements. The first flaw of this
algorithm is that it ignores the sparsity of S, since S only contains O(N)
nonzero elements. This is due to the fact that the supports of v;, 1 <i < N,

supp(v;) = {z € % vi(x) # 0} C Q

are small and mostly disjoint. The element S;; = a(v;,v;) is nonzero if and
only if
measgp (supp(v;) N supp(v;)) > 0.

This is easy to see, since the bilinear form a(u,v) is zero whenever u or v
is zero. The zero elements of S should not be stored at all to avoid O(N?)
memory complexity and only the nonzero elements should be evaluated:

fori=1...N do
for j=1...N do
fork=1...M do
if measop(supp(vi) N Ki) > 0 and measyp(supp(v;) N Kj) >0
Sij = Sij + a(vj, vz)\Kk

However, this algorithm still has about O(M N?) time complexity. This is eas-
ily remedied by rearranging the cycles and utilizing the element connectivity
arrays (Section , which gives us the final Algorithm called the element-
by-element assembling procedure. The size of the list L is O(p?), where p is
the polynomial degree of the elements (see Table , therefore the total time
required to assemble S is O(Mp?).

Algorithm 2.1: Element-by-element assembling procedure.
for k=1...M do
L = list of basis function indices whose supp(v;) N Ky # 0 ;
foreach ¢ € L do

foreach j € L do
Sij = Sz‘j + a(vj, Uz)‘Kk
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Chapter 3

Constrained Approximation

In Chapter [2] we have assumed that an optimal finite element mesh is given
a priori and moreover that it is regular. In practice, however, an optimal
mesh has to be obtained by an adaptive process, in which elements whose
approximation error is too high are replaced with smaller elements. This
concept is know as h-adaptivity and is central to most adaptive schemes (more
details on h-, p-, and other schemes will be given in Chapter [4)).

This chapter motivates the use of irregular meshes for hp-FEM, gives a sur-
vey of existing constrained approximation techniques and presents a detailed
description of our new algorithm and data structures allowing the use of
arbitrary-level hanging nodes in a finite element computation.

3.1 Hanging Nodes and Mesh Regularity

In the design of most h-adaptive schemes one is faced with the problem of
maintaining mesh regularity in the course of the adaptive process. A class of
algorithms known as bisection methods [37, 27] is based on dividing triangles
across the longest edge followed by recursive restoration of the regularity by
additional bisections. The recursion can be shown to always finish provided
the initial mesh satisfies certain properties. Due to their inherent limitation to
simplicial meshes and their requirements on the initial mesh, these methods
will not be discussed here.

Another widely used approach is the red-green refinement strategy [9, [10],
illustrated in Figure After being selected for refinement, some of the
elements have been subdivided into four smaller elements (“red” refinement),
which gives rise to vertices coinciding with an edge, often called hanging nodes.
Most finite element codes, especially those based on standard piecewise-linear
elements, tend to eliminate hanging nodes by forcing additional (“green”)
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element refinements. In this way the modified mesh is regular again and
ready for the finite element solver.

Figure 3.1: Red-green refinement strategy.

Figure lists all hanging-node cases that need to be taken into account when
implementing this refinement strategy. These patterns are sometimes called
transition elements, since they provide transition layers between different levels
of refinement of the mesh. It should be noted that all transition elements must
only exist temporarily and that they need to be removed from the mesh in
the subsequent adaptive iteration, otherwise a deterioration of mesh quality
will occur. Only after the true mesh elements have been refined again the
transition layers are reintroduced to allow recalculation of the finite element
solution.

Figure 3.2: Transition elements.

The use of the transition elements is not limited to one hanging node per edge
only, as they can be applied repeatedly (recursively) to themselves. However,
this quickly leads to elements with sharp angles, unsuitable for finite element
analysis. The solution is to make sure first that the mesh is l-irregular, i.e.,
that it only contains at most one hanging node per edge. This is achieved
by additional “red” refinements, as shown in Figure [3:3] Once the mesh is
1-irregular, the transition elements can safely be applied.

While the red-green strategy is simple enough to implement and gives satisfac-
tory results for linear finite elements, the following problems arise in higher-
order FEM as soon as the polynomial order of the approximation is at least
two:
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Figure 3.3: 1-irregularity enforcement.

e It is unclear what polynomial orders should be assigned to transition ele-
ments replacing standard higher-order elements. Together with the fact
that quadrilaterals often have to be replaced by transition triangles, it is
difficult to maintain approximation properties of the original elements.

e Where linear transition elements only add degrees of freedom to the
hanging nodes, higher-order transition elements also contain internal
degrees of freedom which may be redundant. Experience shows (see
[22], p. 83) that enforcing 1-irregularity and then complete regularity
by transition elements makes the discrete problem substantially larger
in hp-FEM.

For these reasons, most hp-adaptive codes (but also some standard, h-adaptive
codes) drop the regularity requirement and allow meshes with hanging nodes,
even though typically only 1-irregular meshes are supported for simplicity [16,
18]. However, global continuity of the solution must be preserved, which means
that algebraic constraints have to be imposed on the irregular approximation.
The rest of this chapter deals with the various techniques of enforcing such
constraints, which can roughly be divided into two groups:

e Explicit constraints, in which the constraining relations are explicitly
constructed and enforced during the solution of the linear system. These
methods are suitable for nodal higher-order elements.

e Implicit constraints, on the other hand, are enforced in the process of the
construction of the higher-order finite element space, so that already the
basis functions satisfy the constraints. This way the solution satisfies
the constraints automatically and implicitly. This class of methods is
more suited for hierarchic higher-order elements.

3.2 Explicit Constraints

Since the emphasis of this work is on hierarchic elements, let us discuss the
explicit constraints only briefly. Consider the simplest situation with one
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1/2

0

Figure 3.4: Linear nodal elements with one constrained node.

hanging node in a mesh of linear nodal elements, as depicted in Figure The
nodes we are interested in are marked by their position along the constraining
edge 01. It is clear that in order to keep the solution continuous, the value y; /2
corresponding to node 1/2 in the solution vector y must in this case satisfy
the constraint

Y12 = (Yo +y1)/2.

In general we introduce a constraining matrix C' and require that y = Cy.
The constraining matrix acts as identity on regular, unconstrained nodes and
ensures that correct values are assigned to constrained nodes. In our simple
example C would have the form

The higher-order case will be illustrated on the same mesh with quadratic
nodal elements, as shown in Figure Here, the nodes 0, 1/2 and 1 are
unconstrained, as they form a quadratic solution along the edge 01 belonging
to the large element. Nodes 1/4 and 3/4 are constrained and their values need
to be expressed in terms of the values yo, y1/2 and y1.

1/4
0

R
3/4%
1/2%

Figure 3.5: Quadratic nodal elements with two constrained nodes.
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This is easily accomplished by noticing that the coefficients (a,b,c) of the
unknown quadratic function along 01 can be obtained from the linear system

(y07 y1/27 Z/l)T =V. (CL, ba C)Ta
where ‘
V= {(z;)*7}ij, 0<i,j<2,

is the Vandermonde matrix for (zo, =1, z2) = (0, 1/2, 1). Knowing the coef-
ficients of the quadratic polynomial we can express its value at any point z
along the edge:

ye = (@, 2, 1) - V7 (o, y1j2, )"

This way the following constraints are obtained:

_ 3 .3 1
Y14 = 81/0 4y1/2 82/17

R A
Y3/a = 8y0 43/1/2 8y1-

The constraining matrix C' then has the form

1
3/8 0 3/4 0 —1/8
C = 1
~1/8 0 3/4 0 3/8

1

An analogous procedure can be carried out for nodal elements of any polyno-
mial degree and conceivably even for hanging nodes of higher levels, if indirect
constraints, i.e., constrained nodes depending on other constrained nodes, are
eliminated from C' by raising it to a sufficiently large power.

Given the constraining matrix C, the question now is how to solve the discrete
problem Ay = f so that at the same time y = Cy is satisfied.

3.2.1 Solver-enforced Constraints

The simplest method [50] requires that the discrete problem can be solved by
minimizing the energy functional

L 7 T
¢ly) =5y Ay —y f,
which is the case for symmetric elliptic problems. Moreover, the method
assumes that an iterative solver such as CG is used for the solution of Ay = f,
that the solver only accesses the matrix A via a matrix-vector product Ax
and finally that you have a chance of modifying the iterative solver.
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The constrained minimization problem

1 .
d(y) = §yTAy — y”f = min,
y=Cy

is simply rewritten as
1 .
P(y) = i’yT(CTAC)y — y(CTf) = min.

However, the product CTAC is never formed explicitly. Instead, the iterative
solver is modified to calculate CT(A(Cx)) (i.e., a series of matrix-vector prod-
ucts) in place of the standard product Az, where « is the solution iterate. The
operation C'x forces all iterates and eventually also the solution to conform
to the constraints. A more rigorous justification is given in Section

This method was used in the software DEAL [15]. Its disadvantages coincide
with its assumptions, the cheif disadvantage being the need to use a modified
iterative solver.

3.2.2 Lagrange Multipliers

A more standard technique that does not require a special solver is the method
of Lagrange multipliers. We will use a particular version of this general method
to solve the system Ay = f subject to the set of constraints Dy = 0. In our
case the matrix D is obtained by deleting zero rows from (C — I). Let us
again assume that A is symmetric and positive definite (SPD).

The method proceeds by minimizing the Lagrangian, a specially constructed
functional of the form

1
Ay, A) = inAy —y'f + XDy.

Here, A is a vector of M Lagrange multipliers, A = (A1, A2, ..., Ays) 7, where M
is the number of rows of D, i.e., the number of constraints. In order to find
the minimum of the Lagrangian, we require that

VA(y,A) = 0. (3.1)

In particular, by writing all derivatives by y1, y2, ..., ynx and all derivatives
by A1, Ag, ..., Ay separately, the gradient in (3.1) reads

VyA(y,\) = Ay — f + DT\

ViA(y,A) = Dy.
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We obtain an augmented system which solves the original problem:

ERaINE

The main disadvantage of this method is the fact that the augmented matrix
is larger and no longer SPD due to the zero block, which means that many
common iterative solvers cannot be applied. The method may be useful for
enforcing more complex constraints than those induced by hanging nodes, for
example in the context of mortar or mesh tying methods.

3.2.3 Matrix Condensation Method

Section hints at the possibility of directly solving Ay = f, where

A = C"AC,

f=cC'y.
This is indeed possibleﬂ provided that one is willing to calculate the product
CTAC. This may not be trivial for sparse matrices, because the calculation
should be done in O(N) operations. Let us assume this is feasible. We will

show what is the meaning of A and f, to justify both this method and that
of Section B.2.71

Recall from Chapter [2| that the elements of A and f are

A’Lj = a(@jv@i))

where a(u,v) is the bilinear form, I(v) is the linear form and 1, p2, ..., N
are the basis functions. An element of f is then

Similarly for one element of A:

Aij = DY ConiAmnCnj =Y Y Ciia(¢n, o) Cnj =
=a <Z angpna Zcmi§0m> = a((ﬁj’(ﬁi)'

We see that A and f are the stiffness matrix and load vector corresponding
to a new basis @1, @9, ..., PN, Where

m

1Zero rows and columns of A need to be disregarded, or all zero ;1“ replaced by ones.
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In other words, each @; is a linear combination corresponding to the i-th col-
umn of C. All of the new ¢; are continuous functions, since the constraining
matrix C was constructed in such a way that C'y results in a continuous ap-
proximation for any y. This means we can takey = e; = (0,...,0,1,0,...,0)7
and obtain a continuous function which is exactly the new basis function ;.
Any linear combination of the new basis functions will be a continuous func-
tion and we conclude that AQ = J~" and y = Cy solves the original constrained
problem.

Referring back to the situation in Figure [3.5 on page 22} let us illustrate how
a continuous basis function ¢y corresponding to node 0 is formed. The first
column of the matrix C says that on the right-hand side of the edge 01 three
standard nodal functions ¢, ¢1/4 and ¢34 should be combined to match the
unconstrained vertex function on the left side of 01, as shown in Figure

1 -~

LiN /; T
0 \\\\\-’/// 1M

Figure 3.6: Combining ¢o, ¢1/4 and ¢34 to form @p.

This method is used in the deal.Il finite element library [7] and has several
advantages over the older method based on iterative solvers: an arbitrary,
unmodified solver can be used, the method preserves positive definiteness of
the stiffness matrix in elliptic problems, but works also for problems that are
not elliptic. The only disadvantage of the method is the need to manipulate
the stiffness matrix to form the product CTAC. Care must especially be
taken to avoid quadratic complexity of the condensation algorithm. In [6] the
authors claim that a code running in O(N) is complicated, but possible. We
believe that this problem could be avoided completely by applying portions
of C and CT to the local element matrices, before they are inserted into the
global matrix, thus eliminating the need for complex sparse matrix operations.
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3.3 Implicit Constraints

Let us now turn our attention to hierachic higher-order elements, which are
more suitable for hp discretizations. Unlike in the case of nodal elements,
there is no direct relation between the values of the solution vector y and the
values of the approximate solution and thus the constraining matrix C' cannot
be obtained easily. However, inspired by the previous section, we may be able
to directly construct continuous hierarchic basis functions so that the solution
satisfies the continuity constraints implicitly.

3.3.1 One-Level Hanging Nodes

Most codes are limited to 1-irregular meshes in their implementation of hang-
ing nodes [16], 18], since especially in 3 dimensions this simplifies the code
substantially. In this section we will also resort to this simplification in order
to start with the simplest possible example of hanging nodes for hierarchic
elements.

Consider a triangular mesh of 5 quadratic elements with one hanging node, as
shown in Figure The elements are numbered ABC, AED, EGD, DGB
and EFG. Assuming no Dirichlet boundary conditions, 21 basis functions can
be constructed on this quadratic mesh:

e 6 vertex functions associated with the vertices A, B, C, E, F, G, num-
bered (d*,d?,d®,d¥ d¥,d%) = (1,2,3,4,5,6),

e 10 quadratic edge functions associated with the edges AB, BC, CA,
AE, ED, EG, DG, GB, EF, FG, numbered (d48,dB¢,... d'¢) =
(7,8,...,16),

e 5 quadratic bubble functions associated with the elements Ky, Ko, K3,
K4, K5 numbered (df1,d%2, ... d%5) = (17,18,...,21).

B

A

Figure 3.7: 1-irregular triangular mesh.

27



The vertex node D and the edge nodes corresponding to edges AD and DB
are constrained and carry no degrees of freedom, i.e., no basis functions are
associated with them. In fact, these nodes belong to basis functions coinciding
with the edge AB containing the hanging node. These basis functions are
special and in this case there are three of them:

1. Vertex function ¢4 with value 1 in node A, linear along AB and zero in
all other nodes except in node D where it has to attain the value 1/2.

2. Similarly, vertex function ¢p with value 1 in node B, 1/2 in node D and
zero in all other vertex nodes.

3. Quadratic edge function ¢ 4p with value yp in node D and zero in all
other vertex nodes.

The simplest continuous functions that meet these requirements are shown
in Figure (pa was omitted, since it is a mirror image of ¢p). These
basis functions, along with the other 18 standard basis functions, generate
the proper (P2) polynomial spaces on all the elements and at the same time
ensure a continuous FE solution on top of the irregular mesh in Figure [3.7

Figure 3.8: Basis functions pp (left) and @ ap (right).

The vertex basis functions ¢4 and pp are constructed from standard vertex
shape functions ¢, ¥2, @ (see Figure , with the exception that shape
functions corresponding to the hanging node D need to be multiplied by the
value 1/2. Figure shows the construction of the edge function ¢ 4p. Here,
the vertex functions corresponding to the node D need to be multiplied by yp,
the mid-edge value of the constraining quadratic edge function ¢5'. Moreover,
two quadratic functions ¢! and ¢ must be added on K5 and K4 to make the
basis function continuous. These functions, called constrained edge functions,
are added to the standard set of hierarchic shape functions and are defined as
linear combinations of regular edge functions,

L p
o =Y okl k=12
=2
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Figure 3.10: Shape functions constituting the edge basis function ¢ 4p.

The coefficients 04’;,2' are precalculated for both halves of the edge (k = 1,2)
so that except for the linear part the constrained edge functions exactly fit
portions of the regular edge functions. In the quadratic case, the constrained

edge functions are just the regular edge functions multiplied by a constant.

Before we show how the assembling procedure needs to be modified, recall first
from Chapter 2 how the usual element-by-element assembling procedure works
in the unconstrained case, for example on the element K;. The following two
vectors are obtained from the connectivity arrays:

P = (¥, o¥2, %, o5, W52, V¥, ¢° ),

dKl — ( dA, dB, dC’ dAB, dBC, dCA7 dK1 )

The vector ¢ lists all shape functions for the element in question and the
vector d connects the local degrees of freedom to the global ones. A local
stiffness matrix L is calculated,
Km Km  Km
L™ = a(‘Pj o),
and the result is then distributed to the global stiffness matrix A,

— Km
A s, giom = Agpem giom + L™
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Only a few modifications are necessary to add support for hanging nodes.
First, the vector o™ can contain multiple instances of the vertex shape func-
tions ", since these can now be shared by multiple basis functions, as is the
case for ¢4, ¢p and p4p. Second, each shape function can be multiplied by a
constant. For this reason we introduce a third vector, ¢%m = (c{<m cgm, R
storing a coefficient for each of the shapes (me_ The coefficients only affect

the handling of the local stiffness matrix L, since

Km _ Km , Km Km Km Km
Lij = a(cj Y 802 ") = C; (QOJ P ™)
For the lack of a better term, we call the vectors @fm d®m and ¢fm the
“assembly lists”. To conclude the one-level quadratic example, we include the
complete assembly lists for the elements Ko, K3 and Kjy:

G2 = (U, g2, ot G, oGS o S b ),
dK2 — ( dA. dE. dA. dB. dAB. JAE JED JAB K2 )
2 =1, 1 % 3 wyp, 1, 1, 1, 1),
P = (U1, V2, V3, U, U3, f1, o2 % b )
dKS — ( E7 dG dA dB dAB dEG dGD dDE7 dKs )7
CK3 - ( 1) 17 %7 %) yD) 1) 17 ]" 1 )7
2
PR = (%, @1, U1, ¥, ¥, oSl W2, o, @b ),
dK4 — ( A, dB dAB dG dB dDG dGB dAB, K4 )7
=35 % yp, 1, 1, 1, 1, 1, 1 ).

3.3.2 Arbitrary-Level Hanging Nodes

While one-level hanging nodes may be quite useful, they still introduce un-
needed refinements since the mesh has to be kept 1-irregular. Depending on
the problem being solved, this can increase the number of degrees of freedom
unnecessarily. However, especially in 2D, the ideas of the previous section can
be easily extended to arbitrarily irregular meshes. No further modifications
to the assembling procedure are necessary, as it is sufficient to properly set up
the assembly lists.

In the following we shall consider a simple 2-irregular mesfﬂ shown in Figure
The construction of vertex basis functions (such as pp) and edge basis
functions (e.g., pap) will be described.

Vertex Functions

Every vertex basis function on an irregular mesh must attain the value of 1 in
a certain vertex, drop linearly to zero along the immediate edges and also must

2Please note that vertex G is now constrained.
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be continuous in all constrained vertices. Before presenting the algorithm to
construct such functions, let us introduce partial assembly lists associated with
vertex nodes to store information on basis functions. A partial assembly list
is a pair of vectors {d", "'}, where d" lists the numbers of all basis functions
that are nonzero in vertex V and ¢ contains their values in V. The partial
assembly lists are then collected on each element from the vertex nodes (and
also supplemented by information from the edge and bubble nodes) to form
the final assembly lists we have seen in Section

The following algorithm assigns all partial vertex assembly lists, which when
collected form continuous vertex basis functions on an irregular mesh:

1. Assign partial assembly lists to all unconstrained vertices in the mesh.
The assembly lists have the simple form

{d",e"} = {(@d"), ()}

2. Repeat until finished:

(a)

(b)

Select an unprocessed constrained vertex node C' whose both parent
nodes (constrained or unconstrained) already have partial assembly
lists; denote the lists {d*, ¢4} and {d?, cP}.

Merge the parent assembly lists to form {d“,cC}. The vector d°
contains all elements from d* and d? ,

dZ-C ed’ & dic e d? or dic ed? for some i,
and moreover the elements are sortedﬁ and unique,

d§ < d§ <... < dS.

The coefficient vector ¢©

coefficients in ¢ and ¢P:

contains either halves or averages of the

ckC = (Cfl + CJB)/Q, if both dC = d? and dc — ij7
€ =cA/2, ifonly df = dA,
& =cBJ2, ifonly df =dP.

For a good example of merging two partial assembly lists, see
{d*, "} below, which is created from {d?, e} and {d®, c&}.

The algorithm constructs all vertex basis functions on the mesh at once. Indi-
rect constraints (constrained nodes depending on other constrained nodes) are

3This makes the implementation simpler and also more efficient, since then two partial
assembly lists can be merged in linear time.
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Figure 3.11: 2-irregular triangular mesh.

accounted for in step (a) above, since a parent assembly list can easily belong
to a previously assigned constrained node, which is the case for nodes L and
K in our example. The following are partial assembly lists, as obtained by the
algorithm, for the constrained nodes D, G (assigned first) and H, L, K:

dP = (d4, db), d¥ = (dB,d"), d = (d#A, db ),

P =(4 b) =4 b) =1 1)
dl = (a4, dB, df ), d¥ = (dB,d", d¥),
=(h b 1) @ =(h } 1)

Assuming that the elements are linear, the following is then a complete as-
sembly list for the element JK L, for instance:

TEL = (U1, o2, %2, U2, ¥, @¥3, ¥ ),
dJKL :( de dB, dE, dF7 dA, dB, dF ),
JKL __ 1 1 1 1 1

=01 4 3 1 D 2 )-

PN,

Figure [3.12] shows one of the basis functions, ¢p.

1

Figure 3.12: Basis function ¢p on the 2-irregular mesh.
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Edge Functions

As we have seen in the one-level example, edge basis functions consist of (1) a
regular edge shape function on the unconstrained side of the edge in question,
(2) a part formed by vertex functions on the other side (dropping linearly to
zero as quickly as possible) and finally, (3) constrained edge functions on ele-
ments sharing an edge with the large, constraining element. This is illustrated

in Figure

C3

P2

A A

Figure 3.13: Construction of the edge function ¢ 4p on the 2-irregular mesh.

The vertex part is easily generated by a minor addition to the vertex algorithm
on page When processing nodes D and H, the DOF numbers and values
of the constraining edge function are appended to their partial assembly lists:

Indirectly constrained nodes, such as L, receive the correct values (e.g., y©/2)
automatically in the successive steps of the algorithm.

k
The basis function is completed by adding the constrained edge shapes cp;j.
In the case of arbitrarily-level hanging nodes, there may be a large number
of them and for an easier bookkeeping of their generating coefficients a';,i
find it useful to introduce a numbering scheme for the edge position intervals

we

A : ' B level 1
3 4 5 6
A 1 1 1 i B level 2
A1718191101111121131141B level 3
etc.
Ar+++++ + +++++++++4 B level 4

Figure 3.14: Edge interval numbering.
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k, illustrated in Figure |3.14] This arrangement has the property that if kg
is an interval number then the numbers of its immediate sub-intervals are
k1 = 2ko+ 1 and ko = 2ko + 2. Each interval number k£ uniquely identifies the
relative endpoints a, b of the interval within the edge AB, —1 <a <b < 1.

k

The constrained edge function coefficients a;;;

following system of p — 1 linear equations,

are obtained by solving the

P
S ak 0P yr) = d(yh) — g(h).  2<m <p,
=2

where v is the constraining edge function whose section we want to match, g
is a linear function such that g(a) = ¥ (a) and g(b) = 1(b), and yP, are p — 1
interior Chebyshev points of degree p.

Let us conclude this section with a remark on the minimum rule regarding
edges with hanging nodes. In theory, the constraining edge should carry the
minimum polynomial degree of all elements touching the edge. This means
that a tiny constrained element with a low degree can influence many other
elements with higher polynomial degrees, including the constraining element
itself. According to our experience, this has a negative effect on the quality of
the approximation, especially in the arbitrarily irregular case. We therefore
opt to violate the minimum rule on constrained edges, always assigning the
degree of the constraining element to the the constraining edge.

3.3.3 Mesh Data Structures

An indivisible part of the implementation of an adaptive FEM solver with
hanging nodes is the design of the supporting mesh data structure. In tradi-
tional codes mesh management is trivial: it is sufficient to store a fixed array
of vertices and a fixed array of elements (i.e., triples or quadruples of vertex
indices). In an adaptive and/or higher-order code the following problems must
be considered:

1. Element hierarchy must be stored, since refinement and possibly also
coarsening of the mesh is necessary.

2. Vertex and edge nodes (and their hierarchy) need to be stored and
tracked in higher-order FEM.

3. Standard techniques such as element neighbor lists may no longer work,
since we are dealing with irregular meshes.

4. Element and node arrays must be dynamically sized.

In the following we present an original design of data structures for adap-
tive irregular meshes which meets the above requirements yet retains extreme
simplicity.
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Node and Element Structures

It should be noted first that we have departed from traditional mesh data
structures storing complete information about the finite element problem.
Our meshes contain geometrical information only — the remaining data, in-
cluding basis function indices, boundary conditions, polynomial degrees, etc.,
are stored in separate classes describing concrete finite element spaces (H!,
H(curl), ...) and are accessible via the id numbers of nodes and elements.
This was done to allow multiple spaces and multiple element types to co-
exist on the same mesh, which is vital for solving multiphysics and coupled
problems.

The entire mesh is defined by two arrays of the following C structures. The
first structure stores all nodes:

struct Node

{
// int id; (implied)
unsigned ref :30;
unsigned used:1;
unsigned type:1;

union {
struct { // vertex node data
double x, y;
};
struct { // edge node data
int marker;
Element* elem[2];
};
};

int pl_id, p2_id; // parent node ids
Node* next_hash;

};

The Node structure defines both vertex and edge nodes by utilizing the union
construct. The standard vertex positions x, y, while typically stored sepa-
rately, were placed in the vertex variant of the Node structure for simplic-
ity. The edge variant contains an edge marker (used for identifying different
boundaries of the computational domain) and pointers to the two elements
sharing the edge node (useful, e.g., when enforcing the minimum rule for edge
polynomial degree).

The id number, pointing to extra node data in one or more FE space tables,
is implied from the position of the structure in the array. Note that the size
of the structure is 32 bytes, thus the division involved in the calculation of id
can be performed by a bit shift.

The members type and used determine the variant of the structure and
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whether the particular item of the node array is used, respectively. The re-
maining members will be described later.

Elements are defined by the second structure:

struct Element

{
int id;
unsigned marker : 29;
unsigned active : 1;
unsigned used : 1

unsigned type : 1;

Nodex vnl[4]l; // wertex nodes
union {
Node* enl[4]; // edge nodes
Element* sons[4]; // son elements
};
};

An element can be either active or inactive, hence the one-bit variable active.
Active elements store pointers to the appropriate vertex and edge nodes. In-
active elements are those which have been refined and are excluded from the
computation. Their purpose is to hold pointers to the descendant elements.
The constraint update algorithm requires the inactive elements to preserve the
vertex node pointers, which is why the array vn is outside the union.

Triangular and quadrilateral elements share the same structure and are dis-
tinguished by the member type. The fourth vertex node pointer is unused
for triangles, but this is worth the simpler code that results from the shared
structure. The rest of the variables are analogous to the Node structure.

Eliminating Neighbor Search by Hashing

To properly initialize edge node pointers after reading a mesh file, one has
to construct neighbor lists for all elements and use them in such a way that
only one node is created for each edge. Further problems arise when certain
elements are refined after mesh adaptation. Unless hanging nodes are removed
by extra refinements, no longer is each edge shared by at most two elements.
Standard neighbor lists fail to fully capture such situations and thus more
complex data structures, e.g., trees [17], have to be introduced.

We have avoided all of these problems by introducing a function which, given
the id numbers of two nodes, returns a pointer to the node halfway between
them. If no such node exists, it is created first. The task of translating two
numbers to a node pointer is accomplished using a hash table.

We are maintaining two independent layers of nodes: the first layer contains
all vertex nodes, the second all edge nodes. The following two functions can
be called:
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Node* get_vertex_node(int idl, int id2);
Node* get_edge_node (int idl, int id2);

All nodes, apart from being accessible by their id number, can be reached using
these functions by passing the ids of their “parent” nodes. Top-level vertex
nodes (those loaded from the mesh file) are stored at the beginning of the node
array and can be accessed directly without hashing. Mesh initialization then
becomes trivial:

nodes = // read all top—level vertex nodes from a file
for (all e in elements) {
vv[3] = // read element vertex id numbers
for (i = 0; i < 3; i++) {
e->vn[i] = &nodes[vv[il];
e->en[i] = get_edge_node(vv[i], vv[(i+1)%3]);

}
}

Element refinement is also very straightforward. No care must be taken of the
neighboring elements, regardless of their refinement level or even existence:

Element* create_triangle(Node* vO, Node* vl, Nodex* v2)

{
Element* e = new Element;
e->active = 1; e->type = 0; // etc.
e->vn[0] = v0; e->vn[1] = v1; e->vn[2] = v2;

e->en[0] = get_edge_node(v0->id, v1->id);
e->en[1] = get_edge_node(vli->id, v2->id);
e->en[2] = get_edge_node(v2->id, v0->id);
// reference all mnodes of the mnew element
return e;

}

void refine_element (Element* e)

{
Node* x0 = get_vertex_node(e->vn[0]->id, e->vn[1]->id);
Node* x1 = get_vertex_node(e->vn[1]->id, e->vn[2]->id);
Node* x2 = get_vertex_node(e->vn[2]->id, e->vn[0]->id);
e->sons [0] = create_triangle(e->vn[0], x0, x2);
e->sons [1] = create_triangle(x0, e->vn[1], x1);
e->sons [2] = create_triangle(x2, x1, e->vn[2]);

e->sons [3] create_triangle (x0, x1, x2);

e->active = 0;
// un—reference all nodes of e (to be ezxplained)

}

Each hash table is implemented as an array of linked lists of hash synonyms
(open hash). This hash table organization has the advantage of simple node
removal, which is required if a node is no longer needed by any element.
Synonym nodes are linked by the pointer next_hash and are distinguished by
the parent node numbers p1_id and p2_id. To ensure that get_* node(id1,
id2) gives the same result as get_* node(id2, id1), the smaller parent id
is always stored in p1_id and each query is modified accordingly as well.
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There are two important parameters in the design of any hash table: the size
of the table and the choice of the hash function. To prevent the table from
becoming overfilled we set its size to about one half of the expected number of
nodes when loading the mesh. The size is not required to be a prime number
for this type of hash table. We always choose it to be a power of two to avoid
the modulo operation in the hash function. A satisfactory spreading of the
table items is achieved by the following hash function:

int hash(int id1l, int id2)
{ return (A*idl1 + B*id2) & (table_size-1); 1}

where A and B are large integer constants. The number of synonyms in each
non-empty list is then two on average and very scarcely greater than four,
which outperforms most tree representations (tested on a mesh with around
one million nodes).

sons[]

(11 3
Elements ’02‘3‘4‘5‘ L 1‘

vn[], en[]

<

Nodes ]0\1\2\3\4\‘5\6\7‘ |

Vertex Hash ’ ‘ 5 ‘ |
— |

Edge Hash ’ ‘ 7 ‘ |
7

Figure 3.15: Data structures for mesh storage.

Figure [3.15] provides a graphical summary of the data structures. Initially
there are just two elements in the mesh, each of them containing pointers to
its vertex and edge nodes. When element number 1 is refined, it is deactivated
and pointers to newly created elements 2, 3, 4 and 5 are stored in the array
sons of element 1. We also see, thanks to the hash tables, that the edge 0-2
has vertex node 5 in its middle as well as edge node number 7.

Determining Node Type
Figure shows a simple mesh with all its nodes displayed. Five types of

nodes can be identified: standard vertex nodes (A), standard edge nodes (B),
constrained vertex nodes (C), constrained edge nodes (D) and finally standard
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edge nodes and constrained vertex nodes at the same place (E). The last case
is the reason for having two layers of nodes in two separate hash tables.

A

Figure 3.16: Types of nodes in an irregular mesh.

As the elements in the mesh get refined (or un-refined), some nodes are created,
others are removed and some change their types. One has to be able to
quickly recognize whether a node is constrained or unconstrained without
searching in the element hierarchy. This is achieved through the member ref
of the structure Node. At all times this variable holds the number of elements
pointing to the node. This is the reason why all nodes of an element must be
referenced (ref increased) when creating the element and un-referenced (ref
decreased) when the element is being refined or destroyed, as shown in Section
0.9.9)

The cases A and C can be distinguished just by looking at ref. If ref =
3, the vertex node is constrained, if ref > 3 it is not constrained. Top-level
vertex nodes have ref artificially increased to a large number, which ensures
that they are always treated as unconstrained. Similarly, if ref = 1 for an
edge node, it is constrained D; if ref = 2 it is unconstrained D.

The case E can be detected by calling the function peek_* node, which works
the same way as get_*_node, with the exception that the node is not created
if it does not exist. The case E is important, since it is a starting point for
the constraint update algorithm.

A node is destroyed as soon as its ref reaches zero.
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Chapter 4

Automatic hp-Adaptivity for
Stationary Problems

Having described a higher-order solver capable of handling irregular meshes
that arise during the adaptive process, we can now focus on the algorithm
responsible for the generation of the sequence of optimal hp meshes.

This chapter briefly introduces the types of adaptive strategies and presents
a survey of existing hp-adaptive algorithms. An existing algorithm based on
the so-called reference solution is described in more detail, since it is a basis
for our two improved algorithms, presented in the remainder of the chapter.

4.1 Introduction

While it is possible in some cases to design an optimal finite element mesh
for a given problem a priori, in practice this is usually not the case. Most
of the time the exact behavior of the solution to a PDE is not known ahead,
and a mesh giving a good approximation must be arrived to by successive
improvements (refinements) of the mesh. This process is known as adaptive
mesh refinement and has been studied extensively since the 1970s. Several
basic approaches to mesh adaptation exist, the most common being the fol-
lowing:

e h-adaptivity (h-FEM): Elements with large error estimate are subdi-
vided, thus reducing the mesh diameter, usually denoted as h, in prob-
lematic parts of the domain. This is by far the most popular adaptive
strategy and is suitable for problems exhibiting singularities and oscilla-
tions and for problems with multiple spatial scales. The approximation
error is typically reduced with a negative power of the number of degrees
of freedom.
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e p-adaptivity (p-FEM): Instead of splitting elements, their polynomial
degrees (denoted p) are increased. This approach is advantageous if the
solution to the PDEs is smooth, in which case exponential convergence of
the approximation error may be achieved [51]. However, for non-smooth
solutions the method yields unsatisfactory results and performs worse
than h-adaptivity.

e r-adaptivity: Vertices of the mesh are merely relocated, for the mesh to
better fit the solution. The goal is to make the mesh denser in problem-
atic areas or to align it with the anisotropy of the solution. This method
will not be discussed here.

An indivisible part of all adaptive methods is an error estimator that can be
used to judge the quality of the approximation. A vast amount of literature
exists on a posteriori error estimation, see for example [I, 53]. Some esti-
mators (such as the Zienkiewicz-Zhu estimator) post-process the solution to
obtain a smoother approximation which is then subtracted from the solution
to give a rough estimate of the error function. Other estimators are based on
the computation of local residual problems, each of which produces an esti-
mated measure of error on each element (error indicator). Most estimators
are designed for a specific class of PDEs — typically for the most well-behaved
class of elliptic PDEs. In any case these analytic estimates produce an error
indicator in the form of one number per element, which is then used to select
elements to be refined by one of the methods above.

In the mid-1980s Szabé and Babuska [28] 29, [51] introduced the hp version of
the finite element method, which combines the best from both h-FEM and p-
FEM, and proved (in 1D) that hp-FEM is capable of exponential convergence
rates. This is achieved by performing h-refinements where the solution is not
regular and where p-FEM would fail, but retaining the possibility of using
higher-order polynomials where the solution is sufficiently smooth.

The difficulty is that standard error estimates (if at all available for the given
problem) only provide the information which elements to refine, but fail to
determine whether one should perform an h- or a p-refinement. An algorithm
which attempts to do that is called an hp-adaptive strategy.

4.2 Existing hp-Adaptive Strategies

An excellent survey of 15 different hp-adaptive strategies is conveniently avail-
able in [35]. Here we briefly describe some of them and will later compare
the performance of methods developed in this chapter with several of these
existing algorithms.
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A priori knowledge A simple hp-adaptive strategy that uses a priori knowl-
edge about the behavior of elliptic PDEs was presented in [2]. It is known
that singularities in linear elliptic PDEs with piecewise-smooth coefficients
and boundary data only have singularities in reentrant corners of the domain
and in points where the coefficients and boundary conditions change. The user
a priori marks potentially problematic vertices and the adaptive strategy then
always selects h-refinements for elements containing these vertices, otherwise
it performs p-refinements.

Type parameter A strategy presented by Babuska and Gui [30] uses the
comparison of two local Neumann error estimates 7; , and n; ,,—1, evaluated
with different precisions, to assess the perceived smoothness Rg, = 77:7;7”11 of
the solution on element K;. The so-called type parameter ~ speciﬁedybly the
user, 0 < v < oo, then determines the type of refinement. If Rg, < v, an

h-refinement is performed, otherwise a p-refinement is selected.

Legendre coefficient decay Several hp-adaptive strategies are based on
examining the decay of coefficients in an expansion of the solution u in Leg-
endre polynomials. In 1D, the approximate solution u; on element K; with
degree p; can be written as wu;(x) = Z?:o y;jL;(x), where L; is a Legendre
polynomial of degree j scaled to the interval of element K;. Mavriplis [33] es-
timates the decay rate of the coefficients by a least squares fit of the last four
coefficients y; to Ce~%J. Elements are p-refined where ¢ > 1 and h-refined
where 0 < 1. Several variations on this approach were described and the
technique was later extended into 2D.

Nonlinear programming FEach step of hp-adaptivity can also be posed as
a nonlinear optimization problem [36]. The current mesh with elements { K}
is viewed as parametrized by element degrees {p;} and h-refinement levels {/;}.
The objective is to determine new mesh parameters {p;} and {I;} so that the
total estimated error 3" 7?2 is less than some prescribed error, the number of
degrees of freedom is minimal and at the same time a number of constraints
on mesh compatibility are satisfied. Since the [; and p; are integers, the op-
timization problem is NP-hard. To make the problem tractable, the integer
requirement is dropped before applying standard optimization software, and
then reintroduced.

Smoothness prediction A strategy proposed by Melenk and Wohlmuth
[34] uses the theory of linear elliptic PDEs to predict what the error should
be following a refinement, assuming the solution is smooth. When performing
an h-refinement, the expected error of the four children should in theory be
27Pie;yy, where e; and p; are the error and polynomial degree of the parent
element, respectively, and -y, is an additional user specified correction. If a p-
refinement is performed, exponential convergence is expected, so the predicted
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error estimate is 7y,e;, where 7, € (0,1) is another user specified parameter.
When the actual analytic error estimate 7; of a child becomes available, it
is compared to the predicted error estimate. If the estimate is less than or
equal to the predicted error estimate, then p-refinement is indicated for the
child. Otherwise, h-refinement is indicated since presumably the assumption
of smoothness was wrong.

Reference solution strategies Demkowicz et al. [I8] [16] developed an
hp-adaptive strategy based on projection-based interpolation of the reference
solution, a greatly enriched version of the current (coarse) solution. The dif-
ference between the coarse and the reference solution replaces the standard
error estimator. As this strategy is the basis for our method, it is described
in more detail in the following section.

4.3 Projection-Based-Interpolation Algorithm

Since most analytic error estimators are limited to elliptic problems and they
do not provide enough information for hp-adaptivity anyway, Demkowicz [1§]
resorts to estimating the approximation error by subtracting the coarse so-
lution up, from the reference solution wuy ;1. The reference solution is
obtained by solving the problem on a mesh uniformly refined in both A and
p. Obviously, such approach is very costly because the reference problem is
much larger. However, there are several aspects that justify this method:

e The reference solution works for virtually any PDE, not only for the
simplest ones, as we will see in Chapter [6]

e Unlike standard error estimators, it provides the actual shape of the
error, which can be used to decide between many refinement options,
not just p or h. This results in fewer iterations of the whole process.

e The reference solution is not discarded after the computation — in fact
it can be used as the final, very accurate result, which means that the
coarse solution can aim at somewhat less strict error levels than those
actually required.

e Each reference solution u} Jo,p+1 At step n can (and should) be reused to

. n+1
calculate the reference solution Up, 12 p41

using multigrid or similar techniques.

at the next adaptive step n+1,

The general outline of an Ap-adaptive algorithm based on the reference solution
is the following:

1. Solve the problem on the current mesh to obtain uy, .

2. Create a temporary copy of the current mesh and refine it uniformly in
h and then in p.
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3. Solve the problem on the refined mesh to obtain the reference solution
up/2,p11 and the error estimate epp = upp — Upj2pi1-

4. If [lenp|| < tol then stop, up o 41 is the result.

5. Use the reference solution to determine optimal refinement of the current
mesh.

6. Repeat from step 1.

The heart of the algorithm is step 5. Demkowicz’s main idea is to refine the
current mesh in such a way that the coarse solution interpolates the reference
solution as well as possible while using as few degrees of freedom as possible.
Let us first describe the 1D version of the algorithm, since the 2D version is
built on top of it.

4.3.1 1D Algorithm

The algorithm relies on projection-based interpolation. To obtain the best
interpolant g, , = Ilw of a function w(x) in some finite element space V}, one
typically employs the classical orthogonal projection, which is equivalent to
solving a system of linear equations of the form

Zévzl Yy (vj, vi)v, = (w,v1)y,, foralli=1,2,... N.
The best interpolant is then
HOG w = Zj\le ijj.

However, this method is computationally expensive. A slightly less accurate
but much faster algorithm is the projection-based interpolation, which com-
bines nodal interpolation of vertex values with local orthogonal projections on
element interiors. The projection-based interpolant

PB b
9h,p = " w= gllz,p + Ghp

is now sought as a sum of two parts. The vertex part is defined as a piecewise-
linear function which satisfies gj ,(v;) = w(x;) where z; are the coordinates of
mesh vertices. The bubble (interior) interpolant gzyp is calculated by projecting
the residual w — gj , to the spaces formed by element bubble functions. This
can be done locally in each element thanks to the fact that the residual vanishes
at all mesh points x;. The solution of a series of local problems is cheaper in
terms of CPU time than one large classical II%¢ projection problem.

The 1D hp-adaptive algorithm has three steps, shortly described below. For
more details we refer to the book [16], page 95.
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Step 1: determine element error decrease rates. For each element K,
several refinement options (candidates) are tested. One possible refinement is
to increase the polynomial degree p of the element to p + 1. Other choices
are the so-called competitive h-refinements. If the element is subdivided, two
new elements with degrees p; and py are created (remember we are in 1D),
and we need to choose these degrees. In order for the A-refinements to be
comparable with the p-refinement (which has p + 1 degrees of freedom), only
such combinations of p; and py which satisfy p; + po = p + 1 are considered.

For each refinement candidate, the element error decrease rate is calculated,

uns2pr1 — Ty wpopi |30 = Nunjoper — Wammg tn2,pi |3
Ncand - th 7

rateg =

where Hl,;]? up/2,p+1 is the projection-based interpolant of the reference solution

restricted to element K, similarly Hfﬁld Up/2,p+1 is the projection onto the

candidate element(s) and finally N, and Ncgnq are the dimensions (degrees
of freedom) of the respective finite element spaces.

In this way we obtain a list of refinement candidates (one p-refinement and p
different competitive h-refinements) along with a measure of their “profitabil-
ity”. However, this list could potentially contain more h-refinement candi-
dates, for all combinations of p; and p2 (if we could afford the CPU costs), be-
cause some of them may have better rates than the competitive h-refinements.
As a compromise, Demkowicz adds several more candidates that are based on
the best competitive h-refinement. The interpolation errors on its two son
elements are examined and the son element which contributes more than 70%
of the total error is assigned one higher polynomial degree. Thus a new h-
refinement candidate is added and the process is repeated, with the newly
added candidate serving as a new starting point. This process is referred to
as following the biggest subelement error path.

Step 2: determine which elements to refine. Among the best element
error decrease rates found in Step 1 the maximum rate is found, denoted
ratemqz. All elements that have a rate of at least 1/3 - rate,,q, are marked for
refinement. The factor 1/3 is somewhat arbitrary but a justification related
to an integer version of the method of steepest descent is given in [16].

Step 3: refine elements optimally. All selected elements are now refined.
If for some element the p-refinement won, the element is simply p-refined.
However, if the best refinement is an h-refinement, we want to maximize its pq
and py degrees. We follow again the biggest subelement error refinement path,
but this time only as long as the error decrease rate is above 1/3 - ratenqq, to
remain consistent with Step 2.
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4.3.2 2D Algorithm

The 2D algorithm is based on the 1D version we have just described. In
essence, the 1D algorithm is first used for all edges of the mesh and the re-
sulting edge refinements then determine element h-refinements. After that,
optimal refinements of element interiors are determined. We again refer to the
book [16], page 227, for some of the more technical details.

Step 1: determine edge error decrease rates. This step is identical to
the first step of the 1D algorithm, with the only exception that a different
norm is used in the projection problems and the corresponding evaluation
of the projection errors. Ideally, the H2 seminorm should be used, however
in practice a weighted H' seminorm is used instead, because it is easier to
work with and because it scales in the same way with edge length as the H 3
seminorm. The output of this step are optimal edge refinements with the
associated error decrease rates.

Step 2: determine which edges to refine. As in the 1D algorithm, all
edges whose error decrease rate is at least 1/3 of the maximum of all edge
rates are selected for refinement.

Step 3: determine h-refinement of elements The edge refinements have
direct influence on element h-refinements. If any of an element’s edges is to
be split, the whole element is also marked for h-refinement. There are two
additional issues that need to be taken care of: anisotropic refinements and
maintaining 1-irregularity.

To be able to handle boundary layers and other phenomena where the solution
behaves anisotropically, the algorithm allows quadrilateral elements to be only
h-refined along one of the reference domain axes, producing just two new
quadrilaterals. If the edge refinements suggest such a split, the derivatives
of the error function are examined to check whether the solution is really
anisotropic inside the element. A conservative threshold is used in order to
allow anisotropic refinements only if the solution exhibits strong 1D behavior,
otherwise the element is flagged for standard four-way h-refinement.

l-irregularity is enforced through additional checks. Whenever an edge that
is only shared by one element needs to be h-refined, the neighboring larger
element is forcibly marked for A-refinement as well, in order to keep the mesh
l-irregular. After all the element refinement flags have been determined, all
refinements are actually performed and thus the new mesh topology is finally
established.

Step 4: determine optimal degrees for refined edges. The same strat-

egy as in 1D is followed when assigning final edge degrees: the selected edges
are either p-refined or the biggest subelement error path is used to assign the
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degrees on h-refined edges. Again the only difference is in the choice of the
weighted H! seminorm.

Step 5: determine element error decrease rates. At this point of the
algorithm the situation is as follows: the topology of the mesh is final, all
degrees of the original edges are assigned and the degrees of interior edges in
h-refined elements are implied by the minimum rule from the (yet unknown)
polynomial degrees of the h-refined elements. What remains is to calculate
the error decrease rates for the 2D p-refinement and h-refinement candidates.
Similarly as in Step 1 of the 1D algorithm, we follow the maximum subelement
error path, but since we are now dealing with 2D elements, there are more
options when following the path. Both triangles and quadrilaterals can have
up to four sons, moreover all quadrilaterals can be assigned two different poly-
nomial degrees if the solution is anisotropic. The directional structure of the
error function is examined again and if 1D behavior is detected, the degree of
approximation is raised in one direction only. See [16] for many more details.

Step 6: determine optimal degrees for element interiors. Finally,
the internal polynomial degrees are assigned analogously to Step 3 of the 1D
algorithm, except that the subelement error path is cut off at 1/3 - rateaz
where the maximum rate is now chosen as

ratemq, = max { element rate,,,,, edge rate,,,, }-

4.4 Owur hp-Adaptivity Algorithm

Demkowicz’s algorithm is exceedingly difficult to implement — to our best
knowledge, no one has reimplemented it in their own code so far. We also felt
that similar results should be possible to achieve with a simpler algorithm,
such as the one presented in this section.

We are building on the same idea of using the reference solution to estimate the
error and our algorithm has an identical outer loop as the algorithm described
in Section However, the determination of optimal refinements, given the
coarse and reference solutions (step 5), is substantially simpler, both to im-
plement and to describe.

The main concept of selecting good refinements is again that the coarse so-
lution should interpolate the reference solution as well as possible. Unlike
the 2D version of Demkowicz’s algorithm, however, our algorithm is based on
element refinements, not edge refinements. For each element we simply try
out several refinement options (candidates), assess the interpolation proper-
ties of each candidate and select the best performing candidate. Some of the
refinement candidates are shown in Figure

In detail, the simplified algorithm consists of the following three steps:
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Step 1: determine which elements to refine. The coarse solution is
subtracted from the reference solution on each element K; and the local error
estimate e; is calculated:

ei = [|uns2,p+1 — Unpllmi ()

The elements are sorted by e; in descending order (this will be utilized in
Step 3). The maximum element error e,,,, = max{e;} is determined and all
elements for which

ei > k- emaz

are marked for refinement. The coefficient k controls the size of the batch of
elements that is refined in each iteration. It is specified by the user, typical
values are between 0.2 and 0.7. Higher values lead to better convergence curves
at the cost of many iterations, lower values speed up the algorithm but the
convergence may be somewhat worse.

p=4
2 2 3 2 2
5
2 2 2 2 2
3 2
6 2 2
4 3
p-refinements (2) h-refinements (81) anisotropic h-ref. (2x9)

Figure 4.1: hp-refinement candidates.

Step 2: assess refinement candidates. For each of the selected elements
a list containing the following refinement candidates is created:

e Two p-refinement candidates, p+ 1 and p + 2.

e 81 h-refinement candidates consisting of four i /2 elements with all com-
binations of degrees varying between [p/2] and [p/2] + 2.

o [f dealing with quadrilaterals, 2 x 9 anisotropic h-refinement candidates
are added with similar combinations of degrees as for the isotropic h-
refinements.
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e For the purpose of evaluation of other candidates, an artificial “no re-
finement” candidate with degree p is added to the list.

All candidates whose polynomial degrees exceed the maximum degree (cur-
rently 10 in our code) are discarded. We also do not allow the degrees in
h-refinements to reach p + 1, which is the degree of the reference solution.

For each candidate in the list a temporary mesh is created along with a tempo-
rary finite element space which corresponds to the polynomial degrees of the
candidate’s elements. No boundary conditions are prescribed on the bound-
aries of the temporary domain — all nodes are left unconstrained. The corre-
sponding region of the reference solution uj /3,41 is then projected onto the
candidate space and the projection error

€cand = |[Un/2,p+1 — Mo 2 p1 11 ()

is evaluated. Standard H' orthogonal projection is used, because it is easier
to implement than projection-based interpolation and because all projection
problems are small (local to the element K; being refined).

Since the number of candidates is relatively high, we keep the projection prob-
lems assembled and LU-decomposed and use them repeatedly for different el-
ements K; by just replacing the right-hand sides. We assume that the shape
of the coarse mesh elements K; does not influence the projections too much.
All temporary meshes for the candidates are therefore created in the region
[~1,1]2 and they do not coincide with the actual elements. The storage and
reuse of all projection problems that are encountered has a very positive effect
on the speed of the algorithm, but unfortunately it is still not enough. We
will address this problem in Section

Another assumption that we make is that the neighboring elements of K;
have little or no influence on the refinement of K;. We can thus consider each
element separately when making the projections and when selecting the best
candidates. Conversely, any refinement of K; does not immediately influence
its neighbors thanks to our use of arbitrarily irregular meshes.

Step 3: select best refinements. For each element selected for refinement,
we now take its candidate list and the corresponding projection errors and
select an above-average candidate with the steepest error decrease.

The error decrease for a candidate with projection error e.q,q and degrees of
freedom N_4,q is taken relative to the artificial no-refinement candidate with
error eg and degrees of freedom Ny,

Iney — Inecund

ratecond =
o Ncand - NO

In order to discard candidates that may have a high rate.,,q but are too
close to the no-refinement candidate in terms of degrees of freedom (i.e, the
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candidate represents a very small change), we only consider such candidates
for which
Ineqgng < €+ o,

where € and ¢ are the mean and standard deviation of the logarithms of all

candidate errors: )
e= ﬁ Z In €cand;

cand

1 _
o = E Z (hl 6cand)2 —é.

cand

We also immediately reject all candidates whose error is higher than ey. Figure
illustrates these concepts on an example of a degree 2 element. Many
refinement candidates were discarded because either their error was worse
than eg (for elements of higher degrees this is less common) or because their
error was not significantly better than eg. From the viable candidates an h-
refinement with degrees (2,1,1,1) and a p-refinement with p = 3 are the best
ones. The h-refinement is the eventual winner because it has the steepest error

decrease.
T T T T T T T T
] [}
[¢] o
o] o]
rejected candidates
[0} . .

o deviation

e B
g
g

L mean
&0
2

N L]
(2,1,1,1) . .
‘.
3 e o .
1 1 1 1 1 1 1 1
8 10 12 14 16 18 20 22 24 26

degrees of freedom
Figure 4.2: Selection of the best refinement candidate.

It should be noted that the mechanism of rejecting candidates with error
above € + o is somewhat arbitrary and was implemented only to eliminate
pathological cases and to speed up the adaptive process.

On the other hand, the use of logarithms of candidate errors in all of the final
calculations is not arbitrary. One explanation for this is that we are aiming
for the steepest convergence curve in the final graph, which has a logarithmic

20



scale for the error. This means we should also work in a logarithmic setting
when assessing the candidates, just as in Figure Another justification is
that the convergence of hp-FEM should be exponential, so for good refinement
candidates it should also hold that

ep ~ e—OéNO’

~ »—aN,
Ccand = € cand'

Dividing these two equations and taking the logarithm we obtain
Ineg — In €cand = _a(NO - Ncomd)7

Iney — Inecgng
Ncand - NO

which is our formula for rate..,q that we are trying to maximize.

Unlike in the Demkowicz’s algorithm, we do not worry about investing too
many degrees of freedom in one step, since we are striving for a long uninter-
rupted convergence, and not for a particular error level. In other words, if we
invest too much in some element in one step, the element will just not be se-
lected for refinement in the next step. We have not encountered any problems
with this approach.

Once the best refinement candidate is found for element K, the refinement is
actually performed and the algorithm moves on to the next element selected
for refinement in Step 1. The elements are processed in decreasing order of
approximation error, i.e., the worst elements are processed first. The total
number of DOFs added to the coarse mesh is monitored during this process
and in addition to the parameter k in Step 1 there is another constant D
specified by the user, which controls the maximum number of DOF's that can
be added on one adaptive iteration. If the number of new DOFs exceeds D
the rest of the elements that should have been refined are skipped.

This concludes Step 3 of our hp-adaptive algorithm. Its performance will be
assessed in Section [4.6

4.5 Fast Algorithm with Orthonormal Bases

The main problem of our hp-adaptive algorithm described in the previous
section is that it checks too many refinement candidates. Despite the caching
and reuse of the local projection problems, the algorithm is still quite slow
in 2D and completely infeasible in 3D. In his algorithm, Demkowicz avoids
having too many candidates by only testing several basic ones plus a small
number of candidates that lie on the largest sub-element error path. However,
this approach is just a heuristic which is not guaranteed not to miss good
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candidates. We have therefore implemented a different approach that retains
the large number of tested candidates but which instead makes the projections
extremely cheap.

The idea is to always try to project to an orthonormal basis when evaluating
the refinement candidates. If the basis functions of the candidate space are or-
thonormalized (in a preprocessing step), subsequent projections do not require
the solution of a linear system, since the matrix of the problem is an identity.
All that is needed to obtain the expansion coefficients of the projected function
is to evaluate the right-hand side, i.e.,

Yi = (Uref, i) foralli=1,2,..., N,

where we have denoted uy 9,11 = Ures for convenience. For p-refinement
candidates, the functions ¢; are obtained by applying the standard Gramm-
Schmidt orthogonalization process to the set of hierarchic shape functions ;
of an element of the corresponding degree,

%

@i =i — > (i, 7)Pj,
=1

S

i
|l@sll

Although any set of linearly independent functions could be used as the input
of the orthogonalization, we use the shape functions ¢; for their hierarchic
properties. When starting the G-S process with linear functions and proceed-
ing in the order of increasing polynomial degree of the shape functions, the
hierarchy is preserved also in @;. In other words, if PP(K,) and PPT1(K,) are
the polynomial spaces for p-refinement candidates with degrees p and p + 1,
respectively, on the reference domain K, (or K; in case of triangular elements),
and d; = dim(PP) and dy = dim(PP*!) are their numbers of degrees of free-
dom, then the degree p candidate will have the basis B? = {@1, @o, . . . , Pdy }
and the degree p + 1 candidate will have the basis B! = {¢1, Pa, ..., a, }-
That is, B? ¢ B+,

Pi

This allows us to speed up the evaluation of p-candidates even further. The
candidates are evaluated from the lowest degree to the highest. If for degree p
candidate the projected function is

di

HZ())G Uref = Z(urefa @l) 957:7
=1

then to obtain the projection for the p + 1 candidate we just augment the
previous result to
da
H}?—&(-;l uref = H]?G Uref —+ Z ('U,,,-ef, @1) @1
i=di+1
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We follow a similar approach for h-candidates. However, in order to create a
hierarchic set of orthonormal basis functions we must commit a “crime”. It is
not possible to directly apply the previous ideas to the bases of h-candidate
spaces, such as the space of piecewise-quadratic continuous functions depicted
in Figure (a). There is no ordering of the basis functions that would pre-
serve their hierarchic properties after orthonormalization. The only possibility
is to “break” the space into four independent parts, as shown in Figure |4.3
(b), producing a space of functions discontinuous along the internal edges (c).

°
L 4
[ ]
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L 4
[ ]
L 4
°
\ g
[ ]
°

X ]

[}
o
&

L

L
[ X ]
[ X ]

(a) (b) (c)

Figure 4.3: (a) Nodes for a standard space of piecewise-quadratic continuous
functions, (b) nodes for a “broken” space of piecewise-quadratic functions, (c)
example of a discontinuous piecewise-quadratic function.

By enlarging the function spaces in this way we can expect the projection
errors to be somewhat smaller for h-candidates than if continuous spaces were
used. However, we will see in the following sections that this does not have a
substantial effect on the quality of the selection of refinement candidates.

The procedure for evaluating the errors of h-candidates is then as follows.
First, an array h; j of “partial” projection errors is calculated, 1 < i < [p/2]+2
and 1 < j <4,

hip = Huref - Hz‘OG uref||Kq17 K4 = (-1,0) x (=1,0),
hig = l[tres — HZQG “ref”qua Kq, = (0,1) x (-1,0),
hiz = lurer — TP uresllic,,,  Kgy = (0,1) x (0,1),
hia = lltrer = TP uresl,,,  Kq = (=1,0) x (0,1).

Again, as for the p-candidates, all projections are calculated in an efficient way
by reusing previous (lower-degree) projections. All computations are done
on (parts of) the reference domain K, = (—1,1)?, which means there are
some technical issues with derivatives of u,.; that are in effect used without
transformation to the physical domain of the current element.

The second step is to evaluate the h-candidates, which is very easy. The
projected functions do not even have to be explicitly constructed anymore.
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If (p1,p2,ps,pa) are the polynomial degrees of the four elements of some h-
candidate, its error is simply

€(p1,p2,p3,p4) = hm,l + hp2,2 + hp373 + hp474'

In this way we can evaluate a practically unlimited number of h-refinement
candidates, which is especially important in 3D, where thousands of combi-
nations may exist. In 2D, this algorithm is about 40 times faster than the
algorithm described in Section [£.4]

Anisotropic h-refinements are handled as additional h-refinement candidates.
This is both simpler and more robust than checking the shape of the error up
front as in the algorithm by Demkowicz. In our implementation anisotropic
refinements compete naturally with all other isotropic refinements. This is
affordable thanks to the fast evaluation of projection errors, all that is needed
is to extend the array of the partial projection errors:

his = |[|ures — HzQG uref||Kq57 Kg = (-1,1) x (-1,0),
hig = H“ref - HzoG “refHKqﬁ, K4 = (—1,1) x (0, 1),
hiz = ltrer =T uresllie,,,  Kgr = (=1,0) x (=1, 1),
hig = lurey =P ureplli,, Koo = (0,1) x (=1,1).

4.6 Benchmarks

In this section we compare our slow projection algorithm with the fast orthog-
onal version described in the previous section, to verify the validity of the fast
approach. We also compare both of them with Dekmowicz’s algorithm, as well
as with several most successful algorithms from [35] that are not based on the
reference solution. The benchmarks used are two synthetic elliptic problems
that are often used for this purpose.

4.6.1 L-shaped Domain Problem

The first benchmark is a prototypical elliptic problem invented by Babuska,
whose solution exhibits a singularity at the reentrant corner of an L-shaped
domain (see Figure [4.4). The exact solution in polar coordinates is

u(r,0) = r2/3sin(20/3).

The same function is used to prescribe Dirichlet boundary conditions on 0f2.
The equation to be solved is the Laplace equation Au = 0. The domain is
defined as Q = (—1,1)2\ ((0,1) x (—1,0)).

We performed two calculations with different initial meshes. The first initial
mesh consisted of six triangular elements of degree p = 2, the second initial
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Figure 4.4: Exact solution of the L-shaped domain problem (left) and the
magnitude of its gradient (right, singularity truncated).
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Figure 4.5: Triangular meshes with 971 (left) and 8359 (right) DOF's.
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Figure 4.6: Quadrilateral meshes with 1026 (left) and 6778 (right) DOFs.
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Figure 4.7: Convergence of our methods for the L-shaped domain problem.
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Figure 4.8: Various algorithms on the L-shaped domain problem.
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mesh contained three quadrilaterals also of degree p = 2. Figure shows
the automatically obtained triangular meshes at two selected steps of the hp-
adaptation process. Figure [4.6] shows results from the second computation
with quadrilateral elements, at two iterations with roughly the same number
of DOF's as in the first computation. In both cases the hp-adaptive strategy
correctly selects large high-order elements for smooth parts of the solution,
whereas towards the singularity smaller and lower-order elements are used.

In addition, each of the two computations was performed with our standard
hp-adaptive algorithm (described in Section and with its fast version with
orthonormal bases. The convergence curves for the four computations are
shown in Figure [£.7] All hp calculations achieved very good, almost exponen-
tial convergence rates — in later stages of the convergence, we can see that
to reduce the error by one order of magnitude, Ap-FEM only needs to add a
similar number of degrees of freedom that were needed to cross the previous
order of magnitude of the error. The reason why the curves are not completely
straight (as they ought to be if the convergence was really exponential) is that
we are limited in the maximum polynomial degree of the elements to p = 9
(p = 10 is reserved for the reference solution).

In case of quadrilaterals the fast algorithm (marked Ortho) produced almost
exactly the same convergence curve as the standard algorithm (marked Proj).
In the computation on triangles the fast version was even better.

For comparison, we have included a fifth computation, marked h-adapt in
Figure [4.7] which is a traditional h-adaptation on quadratic elements. The
difference between h-FEM and hp-FEM is obvious: the former has no chance
of reaching the error levels of the hp-FEM computations using a reasonable
number of DOFs.

Figure compares the case Tri Ortho from the previous graph with the
Demkowicz algorithm and the Smoothness prediction and Apriori knowledge
approaches described in Section[£.2] At all error levels our algorithm produced
meshes with fewer degrees of freedom than the other strategies.

In all cases the approximation error was measured against the exact solution
in H! seminorm and integrated with the highest available integration rule
(degree 20). The H' seminorm also happens to be the energy norm for the
problem and was used to guide the adaptive strategy.

4.6.2 Inner Layer Problem

The second benchmark problem, taken from [35], is the Poisson equation
—Au = f on the unit square Q = (0,1)? with the right-hand side f and
Dirichlet boundary conditions chosen in such a way that the exact solution is

u(z, z) = tan~! (a <\/(x —z)?+ (y—ye)? — 7“0)) .

o7



1.56

1.25

0.939

0.6e26

0.314

0.000788

-0.312

-0.625

-0.937

-1.25

-1.56

Figure 4.9: Exact solution of the inner layer problem.

The solution has a sharp circular wave front of radius ry centered at (z,y.),
as shown in Figure The constant o determines the slope of the wave front.
A similar problem appeared already in [18] with a smoother wave front but
here we use the more difficult setting from [35]:

a =200, (¢, ye) = (—0.05,—0.05), o = 0.7.

Again we performed several versions of the computation. The first compu-
tation starts on a mesh consisting of eight triangular elements with degree
p = 2. The second starts with a single quadrilateral (again p = 2) however
only isotropic h-refinements were allowed. The third computation starts with
the same quadrilateral mesh but with anisotropic refinements turned on. Snap-
shots of two selected iterations from each of three computations are shown in

Figures

The six convergence curves are compared in Figure Again the curves are
nearly exponential in later (asymptotic) stages of the convergence and by a
large margin better than simple h-adaptivity. Calculations on quadrilaterals
were better than on triangles, especially when anisotropic h-refinements were
allowed, which confirms the correctness of our approach with anisotropic re-
finement candidates. Interestingly, the fast algorithm (Ortho) seems to have
better properties even though it should in theory be worse than the slow but
“correct” algorithm (Proj). Our hypothesis is that the fast version tends to
prefer h-refinements, which may be beneficial for this particular problem (but
not necessarily for other problems).

Figure [£.14] compares our computation Tri Ortho with the Demkowicz algo-
rithm and other rival algorithms. This time our result is merely comparable
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Figure 4.10: Triangular meshes with 1148 (left) and 9075 (right) DOFs.
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Figure 4.12: Anisotropic quad meshes with 980 (left) and 9389 (right) DOFs.
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Figure 4.13: Convergence of our methods for the inner layer problem.
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Figure 4.14: Various algorithms on the inner layer problem.
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Error [H1 seminorm]

with Demkowicz’s convergence. It is remarkable however, that one of the
algorithms not based on reference solution, the Smoothness prediction, was
performing extremely well on this problem. We have no explanation for this,
as the reference solution-based algorithms should be much better since they
have more information available. The graph is based on data from [35], kindly
provided by Dr. William F. Mitchell of NIST. In all cases the error is measured
in the energy norm of the problem, which coincides with the H' seminorm.

4.7 Conclusion and Future Work

We have shown that our hp-adaptive strategy is very competitive, which we
consider a success given the relative simplicity of the approach, especially of
the “fast” version of the algorithm. The biggest weakness of the method is
currently the time needed to assemble and solve the reference solution, because
at every iteration this has to be done again from scratch. Figure shows
the total CPU time needed to reach an error level in the L-shaped domain
problem. The (fast) adaptation itself takes very little time but the reference
solution takes about 90% of the total time. Out of that, matrix assembly
and UMFPACK solution take about the same time, however the solution part
tends to take much more time in bigger problems or when an iterative solver
is used.

0.1 | | | T T T

T T
coarse assembly -------
| 1 : + coarse solve (UMFPACK) ------- )l
ool £ S L P + reference assembly -~ -
1 1 1 + reference solve (UMFPACK) -
+ adapt (= total)

0.001 ;
0.0001
le-05 :
1e-06

1e-07 E

1e-08
0 5 10 15 20 25 30 35 40 45 50

Total CPU time [s]

Figure 4.15: CPU time breakdown for the L-shaped domain problem.
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An obvious way to speed up the solution of the reference problem uﬁef is

to try to reuse the previous reference solution ufgfl (we stress that previous
reference solution has to be used, not the current coarse solution, which does
not contain enough information). This is conceivable with iterative solvers,
where the previous solution vector (after some modifications to account for new
DOFs) could be used as the initial approximation. Moreover, only partially
converged reference solutions may be usable to guide the adaptation [16].

Direct solvers are more important from our point of view, because of their
larger applicability (non-SPD problems in, e.g., fluid flow). Our group has
been studying the possibility of extending the basis functions in the hp-mesh
hierarchically during both h- and p-refinements [44]. In such case any re-
finements would only result in new rows and columns in the stiffness matrix,
and a specialized direct solver based on LU decomposition could be written
to reuse (update) the previous LU decompositions. However such approach
presents considerable implementation challenges and we have not yet been
able to realize it.

Although the assembling performance is not as big an issue as solution perfor-
mance, there is definitely room for improvement as well. High-order elements
tend to be expensive to assemble and any technique to optimize the integra-
tion of the weak forms is important. Precalculating some terms of the forms
before the reference transformation is applied has very good results, however
this method does not combine well with forms where non-constant coefficients
occur. We also currently do not reuse local matrices from previous adaptive
iterations, partly because of multi-mesh assembling (see following chapter). In
short, optimizations are possible, but at the cost of making the implementation
much more complex.

Finally, one thing that we did not discuss which the fast adaptation algorithm
still needs to be extended for is a support for anisotropic p-refinements on
quadrilaterals. Every higher-order quadrilateral can be equipped with a dif-
ferent polynomial degree in the & and & directions of the reference domain.
In the slow version this is easily handled by just including more p-refinement
candidates, but in the orthonormalized shape function set this would break
the degree hierarchy. The solution is to replace the list of NV orthonormal func-
tions ordered by the isotropic degree by a matrix of N x N functions where
each row would represent a new set for a fixed anisotropic degree in £; and the
rest of the row would be ordered by the & degree. This is an implementation
complication that we have not had the time to handle so far.
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Chapter 5

Systems of PDEs and
Multi-Mesh Assembling

So far we have only been concerned with the solution of a single PDE. This
chapter describes the solution of systems of linear elliptic PDEs and introduces
our multi-mesh method, which goes one step further by allowing individual
components in the system to be equipped with different meshes.

5.1 Introduction

As we will see in the following section, it is relatively easy to extend a single-
equation finite element solver to support systems of PDEs. In the traditional
approach, all equations in the system must share the same mesh. However,
when performing h-adaptivity, some components (equations) of the system
may require certain elements to be refined while other components may require
different or no refinements at all. Typically, an element of the mesh is refined
when at least one component’s error indicator demands the refinement. This
may however lead to an unnecessary increase in the number of DOF's because
in other components the refinement is forced.

For example, consider a problem with an electric field and an x and y velocity
equations. The optimal meshes for these components might be the meshes
(a), (b), (c), respectively, in Figure In practice, one is usually forced to
use mesh (d) for all components, as it contains the union of all refinements.

It is therefore quite natural to require that each equation in the system can
be refined independently of all others. Multi-mesh approaches similar to ours
were developed by Schmidt and Ruo Li already in [42] 38|, 39, [40] in the con-
text of phase-field models of solidification, where the temperature component
is much smoother than the second component containing the material phase
interface. Very recently, Voigt [54] presented a study which unlike the previous
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Figure 5.1: Three different example meshes and their union.

publications contains also a detailed derivation of the method and implemen-
tation details, although only in a simpler context of constant degree (non-hp)
higher-order FEM with simplicial elements. Our approach that we published
first in [24] and which is described in this chapter produces similar stiffness
matrices but is more general, since it allows anisotropic refinements and the
coupling of components with arbitrary polynomial degrees.

It should be noted that the multi-mesh method is not identical to operator
splitting, which is often the method of choice in multi-physics scenarios where
it is necessary to couple different finite element codes. Usually, this requires
the transfer of data from one mesh to another by interpolation, which may
cause degradation of the quality of the computation. In contrast, our method
is able to discretize systems of independent meshes that can even support
finite elements of different types (H', H(curl), L?). As a result, the coupling
is fully monolithic, with no need for operator splitting. The only limitation of
our approach is that all meshes must be derived from one common predecessor,
called the master mesh. This requirement is usually easily met in practice.

In this chapter we first derive the weak formulation of a system of linear elliptic
PDEs and show how the element-by-element assembling procedure needs to
be modified to handle such systems. We then introduce further modifications
that allow us to assemble multi-mesh systems.

5.2 Discretization of Systems of PDEs
Consider a system of r linear PDEs. The unknown weak solution u has r
components that belong to different function spaces Vi, Vo, ..., V,,
w=(uy,ug,...,u)l €EW=VixVax...xV.
The weak formulation for this problem has the form
A(u,v) = L(v)
where

Alu,v) = (AW AP AT (u,v),
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Lv) = (LW, L@ . LT ().
The test functions are also vector-valued,
v = (v(l),v(2), . ,U(T))T ew.

A sufficiently general expression for the multilinear forms A : Wx W — R
and L™ : W — R, 1 <m < r, can be written as

AM (g, v) = SN ammR (M) Ry (5.1)
n=1 k=1
LM (v) = 3" 1m0k, (5.2)
k=1

However, in practice the test functions can always be chosen to have only one
nonzero component:

Vew, 0<i<Ny,

v; = (’Ugl) O, ,...,O)T, ’UZ(
@ vy, 0<i< N,

0,0
onsi = (0,0v2,0,..., 07, o

VNN i = (0,0,0, .., 0™ W eV, 0<i< N,

where N, = dim(V;,). Then we can denote a(™) = g(mnm) (M) = j(mm)
and the equations (5.1)) and (5.2]) simplify to
A (w, (0,...,0,0",0,...,007) = > o™ (™ M) (5.3)

n=1

Lr™((0,...,0,0/™ . 0,...,007) = 10 (M),

From (j5.3)) it is apparent that the stiffness matrix S and the load vector F'
now have the block form

gy g2 . g FO
gy g@) ... g £
S = , F= :
i) gr2) .. glm) P
where
S = oW oMY, 0 <i < N,
Fm = mm), 0<j< N,

Recall the single-PDE assembling procedure, Algorithm on page For
a system of PDEs, we need to modify the procedure by adding two cycles over
the r x r equation blocks. This is shown in Algorithm which represents
the standard element-by-element assembling procedure for systems of PDEs.
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Algorithm 5.1: Element-by-element assembling procedure for a system
of r PDEs.
fork=1...M do
form=1...r do
L, = list of basis fn. indices in space m whose supp(v;) N K} # ()
form=1...r do
forn=1...r do
foreach i € L,, do
foreach j € L, do
Sij = Sij + amn(vj,v;) | Ky,

5.3 Assembling on Multiple Meshes

Algorithm assumes that all equations in the system share the same mesh
containing elements K7 ... Kjs. This is however just a convenience, as the
Galerkin method requires no such thing. In fact, the Galerkin method is only
concerned with basis functions and does not require any mesh at all (as is
the case in meshless methods). We can thus relax the assumption and only
require that all meshes in the system are derived from a single, very coarse
predecessor, which we call the master mesh. In our example in Figure [5.1
the master mesh would consist of a single quadrilateral element, which can
however be refined independently in each of the three components (a) — (c).

To assemble the stiffness matrix of such a multi-mesh system, we no longer
loop over the physical elements but instead we traverse the union mesh shown
in Figure (d) and its (virtual) elements @1 ...Qpy. In doing so we still
cover the whole domain 2 so all integrals are evaluated correctly, only the
integration may be done in more steps and also in some components we need
to restrict the integration and evaluation of shape functions to sub-domains
of the standard reference domain (—1,1)2. For example, when evaluating the
weak forms on element @, in component (a) in Figurewe need to integrate
in (0,1) x (—1,0), in component (b) in (—1,1) x (0, ) and in component (c) in
(—3.,0) x (—1,1), see also Figure These are areas of the reference domain

(a) (b) (c)

Figure 5.2: Restriction to the union mesh element Q).
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Algorithm 5.2: Multi-mesh assembling procedure for a system of PDEs.

foreach union mesh element Q) do

form=1...r do

L,, = list of basis fn. indices in space m whose supp(v;) NQy # 0
form=1...r do

forn=1...r do

foreach i € L, do
foreach j € L, do
Sij = Sij + amn(vj,0:)|Qx

which correspond to @) within the physical elements of meshes (a, b, c), or
sub-elements. The multi-mesh assembling procedure is shown in Algorithm
.2l Formally, there are not many modifications compared to Algorithm

Of course, the union mesh does not have to be explicitly constructed at all.
A simple recursive algorithm for the traversal of a virtual union mesh is de-
scribed in Section[5.3.2} Also, it should be noted that assembling over different
meshes is not more efficient than standard assembling over the real union mesh
in all components. The time savings are expected in the solution of the result-
ing linear system, which should be smaller and possibly better conditioned.

5.3.1 Integration Over Sub-elements

In order to integrate the bilinear forms over the virtual element @y, we need
to extend the affine concept from Section (page @ In Figure we see
that the shaded areas in each mesh correspond to those depicted in Figure|5.3
in the reference domains.

Since we are only able to integrate over the whole reference domain (where
the integration points are defined), we need to introduce the mapping r :
K, — K, in addition to the standard reference mapping xx : K, — K. The
situation is illustrated in Figure [5.4]

11 11 & 11

&1 é1 &1

-1 -1 -1

Figure 5.3: Areas of the ref. domain corresponding to @ in each component.
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-1 -1

Figure 5.4: The mappings r and xx.

The mapping r is a simple affine transformation of the form
r(§) = R +t. (5.4)

For example, in Figure the mapping is

r(§) = ( 065 0(.]5 >5+ <—8:§ )

Taking now a model weak form and applying the procedure of Section we
have

a(vj,v;) = Qvaj(as) V() + vj(z)vi(x) de =
A5 () veaal [(5e) () e
+ [ T de

where
(&) = (vi ok, o 1) (&),

(&) = (vj ok, o7;)(§),

Dxg. Dri> (Da:K> (Drj>
J =det ) det = det L) det | —= ).
¢ < Dg ) ‘ (De “\"peg )\ 'pe
The extended reference mapping itself should not hinder the performance of
the code, as the Jacobian and the inverse Jacobi matrices can be precalcu-

lated as usual. The only concern might be the need to precalculate the shape
functions at the transformed integration points, as discussed in Section [5.3.3]
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5.3.2 Union Mesh Traversal

As mentioned above, the union mesh is never constructed explicitly. We only
need to enumerate all its elements Qp, together with the appropriate sub-
element transformations r for each mesh. Our algorithm relies on the fact
that all component meshes are obtained by refining a single common master
mesh. This allows us to describe all possible transformations r as a compo-
sition of four predefined basic transformations on triangles and eight basic
transformations on quadrilaterals, as shown in Figure [5.5] Suppose 71 and 79
are transformations of the form . Their composition is simply

(raor1)(§) = Ray(Ri§ +t1) + t2 = (RoR1)§ + (Raty +to)

In the implementation we often need to identify a concrete transformation
by a simple integer code, for example to be able to store (cache) precalcu-
lated shape function values in some transformed integration points. The basic
sub-element transformations are numbered as in Figure If ro is a basic
transformation then the composition r9or; is assigned a code in the following
way:

code(rg o r1) = 8 % code(ry) + code(ra) + 1.

For example, the transformation from the reference quadrilateral (—1,—1)2

to the area (0, %)2 formed by composing r; and 7y, where code(ry) = 2 and
code(rg) = 0, has code 17.

3

Figure 5.5: Numbering of predefined sub-element transformations.

Before describing the union mesh traversal algorithm, let us demonstrate the
process on a simple example. In Figure [5.6] we have two meshes that were
refined independently from a common predecessor, a single triangular element.
The refinement trees (see Section and element id numbers are also
shown. The union mesh (only visible as dotted lines in Figure has ten
elements, Q1 ...Q19. The traversal begins with element 0 in both meshes, but
this element is refined in both of them so the procedure goes down one level
to element 1. This element is active in both meshes so it can be assembled
as usual, without any transformation of integration points. Next is element 2,
which is refined in mesh (a) but active in mesh (b). The algorithm needs to go
deeper in mesh (a) but this is not possible in mesh (b) and as a compensation
we descend to a sub-element using a transformation. In Table we can
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see that while the algorithm is visiting elements 5-8 in mesh (a), the current
element is still 2 in mesh (b) with transformations varying from 1 to 4. A
similar, but reversed situation occurs with element 3 in mesh (a) and elements
5-8 in mesh (b). Finally, element 4 is active in both meshes and can be
assembled normally.

a) 0 b) 0
AN 7 AN
1 2 3 4 3 3 1 2 3 4
%\ 5 6 %\
5 6 7 8 5 6 7 8
4 7 4
1 8 1 2
5 6

Figure 5.6: Two triangular meshes and their refinement trees.

’ Qr \ K;  code(ry) \ Ky  code(rs) ‘
1 1 0 1 0
2 5 0 2 1
3 6 0 2 2
4 7 0 2 3
5 8 0 2 4
6 3 1 5 0
7 3 2 6 0
8 3 3 7 0
9 3 4 8 0
10 | 4 0 4 0

Table 5.1: Example of union mesh traversal.

The traversal algorithm begins with a main loop visiting each element of the
master mesh. For these elements it invokes one of the two recursive procedures
which traverse the refinement trees in all component meshes. For simplicity,
let us assume we only have two different component meshes. For triangles,
the recursive procedure is called traverse_tri and its pseudocode is shown
on page As it is apparent from the above example, the main idea is
as follows: if it is not possible to go deeper in the element hierarchy in a
certain component, its current transformation (which is initially an identity)
is replaced with a composition of itself and one of the predefined sub-element
transformations.

A similar recursive function is invoked in case the current master mesh element
is a quadrilateral. Its principle is identical to traverse_tri, but the imple-
mentation is more complex due to anisotropic splits. The encoding of trans-
formations and their compositions is not unique for quadrilaterals, because
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Procedure traverse_tri(Ki, r1, Ko, 73)

if active(K1) && active(K32) then
assemble( K7, Ko, 71, 72)
else
for s =0...3 do // loop over the four son elements
fori=1...2do

if active(K;) then // i.e., K; has no sons
K = Kj;

ne

rP" = r; o predef[s];
else
K" = K,;->sons|s];
new __ ., ..
e =1y

traverse_tri( K7€V, r1¢v, KJW ricv);

Procedure traverse_quad (K, rect;, Ks, rects, cur)

if active(K1) && active(K2) then
r1 = get_transform(cur, recty);
ro = get_transform(cur, rects);
assemble( K7, Ko, 11, 72)
else
if cur is split both ways by K7 or Ko then
for s =0...3 do // loop over the four son elements
cur™ = move_to_son(s, cur);
fori=1...2do
if active(K;) then // i.e., K; has no sons
Kznew = K;;
rect!® = move_to_son(s, rect;)
else
K% = K,->sons|s];
recty’ = rect;

traverse_quad (K1Y, rect?®", K3, recty”, cur™");

I

else // cur is split anisotropically by Ky or Ko
for s=0...1do // loop just over the two son elements

// analogous to the above;

o
traverse_quad (K1Y, rect?®", K3, recty”, cur™");
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successive anisotropic splits may give the same transformation as an isotropic
split, but in our encoding scheme these transformations will have different
numbers (codes). This is why the current state of traversal in traverse_quad
is based on rectangles within the reference domain (—1,1)2. The recursion
is controlled by the way the current rectangle is being split by one or more
of the meshes. When a union element is reached, the transformations are
inferred from the relation of the current rectangle cur and the element rectan-
gles rect; using the function get_transform(). The other auxiliary function,
move_to_son(), adjusts the position of the specified rectangle according to the
son number.

In the actual implementations we have replaced the recursion by a state stack,
so that the assembling algorithm can still be written in the form given in the
previous sections. In the outer loop, instead of iterating over physical elements,
the assembling procedure calls the main traversal function which returns the
next traversal state. The traversal state represents one of the elements of the
virtual union mesh and consists of the id numbers of physical elements in the
actual meshes along with the codes of their sub-element transforms.

5.3.3 Evaluation of Coupling Forms

Let us briefly describe the implementation of the core of the multi-mesh as-
sembling procedure, which roughly corresponds to the two inner-most cycles
in Algorithm The interesting case is when m # n, that is, when weak
forms coupling two different equations m and n need to be assembled, each
defined on its own mesh, 7,, and 7,. Recall from Section that the block
S(m) of the stiffness matrix has the form

S = o™ (v;, v;),  0< i< N, 0< j < Ny,

where the bilinear form a(™"(.,.) is the part of the weak formulation that
contains the coupling terms and v; € V;,, and v; € V;, are basis functions. The
block S is assembled from local element matrices L™ corresponding to
the elements @} of the union of meshes 7, and 7,,. For each virtual element
Q. the traversal procedure determines the sub-element transformations (&),
s(€), with codes 7, s (see Section [5.3.2). The local stiffness matrix for Q is
then calculated as
LI =am (@3, a0),  0<i <|Lpl, 0<j <|Lal,

where for simplicity we have denoted @™ (-,.) to be the bilinear form de-
fined on the reference domain that includes all the necessary Jacobians and
transformations of derivatives (see Section , such that

al™™ (5;:(€), 5 (€)) = a™ (v (@), v ().
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Here and in the previous, v;, ¥; are shape functions defined on the reference
domain and v;, 0] are their sub-element parts stretched again to the whole
reference domain by the mappings r(£€) and s(§):

v; (§) = vi(r(§)),
05 (&) = 0;(s(£))-

In traditional FEM, the values of all shape functions v; are precalculated in
integration points and stored in tables for fast use by the assembling procedure.
In multi-mesh FEM this is also desirable but more complicated for the various
r, s, and an efficient storage of the precalculated tables is crucial for the
success of the multi-mesh method. Because there are many possible sub-
element transformations 7 (&) the amount of RAM required becomes a concern.
A full-blown cache needs to be implemented in which the tables are calculated
on-demand and in which least-recently used items are discarded when running
out of the alotted space. However letting the table cache grow too large may
lead to slow fetching of the tables because the data set is so large that the
CPU L2 cache becomes inefficient, which is what we observed in Hermes2D on
problems featuring meshes with extreme differences in refinements. In hind-
sight, it might have been better to limit the number of precalculated tables to
a fixed number of sub-element levels so that all tables fit in the L2 cache, and
keep recalculating all finer levels during the assembling.

Voigt and Witkowski [54] present an alternative implementation which we have
also been considering. Instead of caching values of shape function cut-outs for
all 7, s, they utilize the linearity of (™" (+,-) and construct and store matrices
which transform the local matrix L calculated for standard (untransformed)
shape functions @; into the desired matrix L™, This is possible thanks to the
fact that the shape functions ¥; form a basis of the appropriate polynomial
space on the reference element and this means that the cut-outs o] (£) and
0?(&) can be expressed as a linear combination of the functions v;:

(&) =D a0k (€),
k

7€) =Y aqu(f).
I

By linearity of a(™™(-,-) we have

Denoting AB;] = ajy, AE.‘;] = jl we can write in matrix form

Llrsl — Al Al

The transformation matrices Al! can be calculated on the fly during assem-
bling but in practice they also need to be cached, as the authors admit in [54],
which leads to similar problems that we observed.
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5.3.4 Small Elements vs. High Order Elements

Apart from the L2 cache thrashing issue, which can be solved by careful imple-
mentation, we have encountered a more fundamental problem with multi-mesh
assembling on hp meshes, related to the integration of weak forms. Consider
a system of two equations, each solved on its own mesh, with integrals in the
weak formulation similar to
vl-l 1)]2- dx,
k

1 is a basis function on the first mesh and v? is a basis function on

the other mesh (the weak form could also contain derivatives of v}, v2, this is
not important here). Assume that the first mesh was refined many times and
contains tiny elements of a low polynomial degree p. The second mesh consists
of just one large element with a high polynomial degree ¢ (for instance, let
p =1, ¢ = 8). To integrate the product U,L»lv]?, we need to use a quadrature
rule of degree at least p + ¢q. Because the multi-mesh assembling procedure
operates on the (virtual) union mesh, there are many virtual elements Qj
where this high-degree quadrature rule needs to be used, which makes the
assembling process more CPU expensive. In other words, due to the nature
of the assembling algorithm, having one large high-order element in one mesh
and many small elements in the other mesh is similar to having many high-
order elements in the first mesh, a situation that should normally be avoided
because high-order elements take a long time to assemble.

where v

The problem can be partially side-stepped in the implementation by grouping
the weak forms by the combinations of meshes which they require and by
performing the assembling in several passes, thus minimizing the number of
fragments )y, each element needs to be broken to. For example, if the coupling
terms where the above-mentioned problem arises only occur on the right-hand
side of the weak formulation, the left-hand side terms can be assembled on a
per-equation basis, without the multi-mesh approach. The same applies to
diagonal left-hand side terms, which can always be assembled by iterating
over the single corresponding mesh. The multi-mesh traversal can be applied
just to the coupling terms where this is really necessary and such terms will
be given their own assembling pass. This optimization is now an integral part
of the assembling procedure of Hermes2D.

If there really are left-hand side terms coupling very different meshes, the
problem can still be avoided by reformulating the equations and approximating
one of the operands as a constant (e.q., as a solution from the previous time
step), thus moving the term to the right-hand side. If this is not possible or
desirable, the only way to avoid prolonged assembling time is to try to reduce
the number ¢ in the total quadrature degree p 4+ ¢, because typically only
a small portion of the high-order polynomial is being integrated, a portion
that could be regarded as a lower-degree polynomial. We have performed
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an experiment which confirmed that sufficiently small sub-elements can be
integrated with slightly reduced degree rules without losing too much precision,
we were however not able to establish a general scheme which would guarantee
error bounds on such approximation. This approach is thus not currently used
in our numerical code.

5.4 Model Problem: Thermoelasticity

We demonstrate our multi-mesh implementation on a model problem of ther-
moelasticity, where three independent meshes are used for the three solution
components: x and y displacement and temperature.

Governing Equations The plane-strain model of linear thermoelasticity
inherits basic simplifying assumptions from the plane-strain elasticity model,

€33 = €13 = €23 = 0. (5.5)

Moreover, it assumes temperature-dependent strains in the form

gzz = &i,E T €ii,T =€¢¢7E+Q(T—TQ), 1<1<3 (5.6)
(repeated indices do not imply Einstein summation). Here ¢;; g, €7, and
g4 stand for the elastic, thermal, and total strains in the x;-direction, respec-
tively. By wu; we denote the displacement component in the x;-direction, «
is the thermal expansion coefficient, T' the temperature, and Ty a constant
temperature corresponding to a stress-free initial configuration. The material
is assumed to be isotropic. Recall that the stress component o33 is nonzero in
general.

Substituting assumptions (5.5)), (5.6)) into the basic stress-strain relation

EvY i cmp
(1-2v)(1+v) 7

Eip =

1+v

Figure 5.7: Transversal cross-section of the massive winding.
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we obtain a system of equations for the stress components,

E
o11 =21 +v) (1 =v)en,e +v(ene +33.8)]
E (12, Q] _ Ba(l—Ty)
(1-2v)1+v) | 011 09 | 1—-2v 7
E
0922 A=2)0+7) (1 —v)eror+ (e +e338))
E [ 6UQ 6u1' EO[(T - To)
A=) Y am Vo) T im0 [ O
E
033 =291+ ) (1 —v)ess,p + v(ene +e1,p)],
o Ev 8u1 8’11,2 E(X(T — To)
T 1—-2)(1+v) (63[;1 8x2> o 1-w
E FE 8U1 8“2
12T o) T o 40 (axg + 8xl> '

Here, F and v stand for the Young modulus and Poisson number, respectively.
Substituting the stresses o1, o2, and o712 from ([5.8)) into the equilibrium equa-
tions

doy11 Do
- = — 0
61’1 (9.1‘2 + fl ’
80' 12 30 22
— 4+ = = 0, 5.9
01 Oy + f2 (5.9)
0033
Z733 - 0
s I3 ;
one obtains a system of second-order PDEs for the fields uj, ug and T'. In (5.9)),
the only nonzero component of the volume force is fo = —pg. The symbols g,

g represent the material density and the gravitational constant, respectively.
If all quantities are constant in the x3-direction (as in our case), then the last
equation in (5.9)) is satisfied automatically.

In addition to the equilibrium equations ([5.9)), we consider the stationary heat
transfer equation

~ V- (aVT) =0, (5.10)

where the thermal conductivity a is a nonzero constant. These equations are
assumed in a bounded polygonal domain Q C R2.

Boundary Conditions Let the boundary 92 have nonempty open subsets
[y, I'1, Ty and T's, such that Iy, ', 'y are disjunct. Equations (5.9)), (5.10|) are
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equipped with boundary conditions of the form

Y2 oy, = gf only, i=1,2,
up = uj] only,
ug = wus onl'g, (5.11)
T = T* onls,
oT .
% = TN on 0f) \ Pg.

Here gf,u}, T*,Tx € L?(0Q) are prescribed boundary force components, dis-
placement components, temperature, and temperature flux, respectively (other
standard types of boundary conditions may be used as well). The symbol v
stands for the unit outer normal vector to 0f2.

Problem Domain We consider the cross-section of the winding of a mas-
sive coil with two cooling channels, as shown in Fig. The material is
heated by a current flowing through the winding and cooled by fluid running
through the channels, whose temperature has stabilized at the value T. This
causes a nonuniform temperature distribution in the winding and consequently
thermoelastic deformations.

The transversal outer dimensions of the winding are 13L x 5L and the cavities
measure 5L x 3L. We prescribe zero displacement on I'4 and zero external
forces on the remaining part of the boundary I'p UT'¢:

(up,uz) = 0 only

2

Zaijnj = 0 onT'gpUTy, 1<1<2.
j=1

Here, n = (n1,n2) stands for the unit outer normal vector to the boundary
0f). For the thermal part, we prescribe a fixed temperature T on the face

Figure 5.8: Initial (master) mesh for the computation.
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I'c, and a negative heat flux ¢ on the winding-air interface I'g:

T = T¢ onlg,
oT
on

In the computation we used the values L = 0.1, T = 50, ¢p = —50, o = 8000,
g=9.81,a=13-10"°, E =200 GPa, v = 0.3.

= ¢p<0 onlp,

Results The problem was first solved using standard, single-mesh adaptive
hp-FEM that starts from the initial mesh shown in Figure[5.8] The solution is
shown in Figure [5.9] where the displacements were used to calculate the Von
Mises stress, and in Figure [5.10] which shows the temperature. Figure [5.11
shows the hp-mesh, shared by all three equations, after 12 adaptive steps, with
approximately 2400 DOF's in each component (exact numbers vary slightly due
to the different boundary conditions). The energy norm of the problem was
used to guide the adaptive algorithm.

For the multi-mesh computation, mesh in Figure [5.8| served both as an initial
mesh for adaptivity and a master-mesh for multi-mesh assembling. Figures
[5.12] [5.13]and [5.14] show the meshes for u1, us and T, respectively, after several
adaptive steps, at an error level roughly comparable to the single-mesh result
in Figure The numbers of DOFs are 2452 for uy, 1932 for us and 1005
for T'. We can see that in case of T there is significantly fewer DOFs than in
the single-mesh computation.

Graph in Figure shows the convergence curves for the two computations.
For all error levels, the multi-mesh computation used about 20% fewer DOF's
than the single-mesh computation. In total CPU time however, the differ-
ence was smaller or not present at all, due to the higher cost of multi-mesh

assembling (Figure [5.16]).

5.5 Conclusion

We have shown that the multi-mesh algorithm works. It however requires
careful implementation, in order for the time savings in the linear solver which
result from the reduced number of DOF's not to be outweighed by the increased
CPU cost of assembling. Our implementation could still be improved, but we
believe that for problems where the individual equations exhibit very different
behavior the method can be very successful. A good candidate for such a
problem may be e.g. the dendritic growth example in [54].

However, as we will see in the following chapter, multi-mesh assembling can be
used not only to save degrees of freedom, but also to enable dynamic meshes
in time-dependent problems.
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Chapter 6

Time-Dependent Problems
and hp-Adaptivity

In this final chapter we turn our attention to automatic h- and hp-adaptivity
for time-dependent problems. We combine our multi-mesh assembling algo-
rithm and the Rothe method to obtain computations with meshes that dy-
namically adapt in time to changing features of the solution. Our algorithms
are demonstrated on two non-linear model problems.

6.1 Introduction

Time-dependent problems often exhibit localized transient phenomena such as
sharp moving fronts or other problematic effects which require a finely resolved
mesh for their accurate representation. This presents a fundamental difficulty
for traditional approaches which only use a single mesh for all time steps. If
the phenomenon we need to capture is changing its location in time, a mesh
finely resolved across a wide area of the computational domain has to be used.
This may greatly increase the total computational time as typically a large
number of time steps must be calculated on the fine mesh.

In theory it would be possible to formulate and solve the problem in a full
space-time setting, performing an adaptation in d+ 1 dimensions. On average,
the number of degrees of freedom per time step should be smaller than in the
single-mesh case, however the extreme storage demands necessary to hold the
whole space-time cylinder makes this approach impractical, not to mention the
effort required to develop, in the general case, a 4D solver. A more realistic
approach (e.g., [31,[19]) is to retain the discrete time steps ¢ ... tx and operate
on space-time slabs between successive time steps ¢; and ¢;1. We will however
not follow this path in our thesis.
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A less fancy way to obtain meshes that adapt both in space and in time
is to occasionally re-mesh the problem and restart the chosen time-stepping
method (such as the method of lines described in the next section). This
approach has been routinely used in codes for fluid dynamics where moving
domains are appearing frequently and where complete re-meshing is necessary
anyway when the moving mesh deteriorates. Apart from its inherent cost, re-
meshing entails the transfer of values from the old mesh to the new one, which
is a source of error as typically some form of interpolation is used instead of a
full (and expensive) projection.

Yet another approach, that we are going to pursue in this work, is to replace the
usual method of lines (MOL) by its natural counterpart, the Rothe method,
in which one is free to use a different mesh from one time step to another.
To avoid the transfer of solutions between meshes, we conveniently utilize
our multi-mesh assembling algorithm. In this chapter we first propose an
algorithm which produces dynamic meshes with constant polynomial degrees
and with A-refinements only. Later we extend the algorithm to perform full
dynamic hp-adaptivity, something which, according to our knowledge, has not
been attempted yet.

6.2 Method of Lines vs. the Rothe Method

Assume the general second-order parabolic equation,

ou

where L is a second-order elliptic operator. The basic idea of the method of
lines is to discretize the spatial part Lu = f analogously to time-independent
problems (see Chapter 2) while keeping the temporal variable continuous. This
technique is called semidiscretization in space [43].

Similarly to Section we derive the weak formulation of (6.1) to obtain

d

N /Q(U(t))(iﬁ) v(x)de + a(u(t),v) = l(v) forallveV,

u(0) = wup,

where u(t) € V= H} () is the sought solution u(z,t) at a time instant t. We
construct the piecewise-polynomial space V}, , C V' and a suitable basis

{1)1, V2, ... ,’UN} C Vh,p.

The sought function uy, is expressed as a linear combination of these basis
functions with time-dependent coefficients y;(t),

N
unp = Y y;(t)vj(x) (6.2)
=1
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(compare with equation (2.8) on page[6)). By substituting (6.2)) into the weak

formulation we obtain

N N
j;lyj(t)/ﬂvj(w)vi(w)dm +]Z::1yj(t)a(vj,pi) = I(vy),

S»L]

1=1,2,...,N. In matrix form this equation reads
MY (t) + SY (t) = F(t).

We have obtained a system of ordinary differential equations for the unknown
time-dependent coefficients Y (t) = {y;(t) ;-V:l. This is a standard system that
can be readily solved by one of the many ODE solver packages available, thus
arriving to the approximate solution wuy, ,(x,1).

We see that in the method of lines the finite element mesh is inherently fixed
for all time instants ¢ € (0,7) because the spatial FE discretization is done
before the temporal discretization within the ODE solver, where the mesh
cannot be modified anymore. The natural counterpart of the method of lines
is the Rothe method, in which the temporal variable is discretized first, and
the spatial variable is formally left continuous. Each time step is then a
separate elliptic boundary problem that can be solved (and spatially adapted)
independently of other time steps. For example, we can employ the first-order
backward difference formula
oft) _ f(t) — f(t—At)

= N +O(AY) (6.3)

to approximate (6.1)) as

+ Ly = f. (6.4)

Here u" and u™*! are the solutions to two independent boundary value prob-
lems corresponding to two successive time steps t” and t"*!. When solving
for «™*!, the function u” from the previous time step poses as a constant
and u"*! can be resolved on a completely different mesh. This approach is
sometimes called adaptive Rothe method and appeared e.g. in [§].

6.3 Basic Idea and Algorithm

In this chapter we use the adaptive Rothe method to produce computations
on meshes whose spatial refinements are changing in time. The basic idea is to
take the mesh adaptation algorithms we developed in Chapter [ for stationary
problems and apply them repeatedly to the isolated problems that arise in the
Rothe method for each time step.
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For simplicity let us assume that a one-step method such as is used to
discretize the time derivative. Denote by ‘solve’ the algorithm which finds
w1 in equation , given the previous solution " and time step At. The
solutions u", u"t! are defined on meshes 77, 7"+, respectively. Note that
the two meshes need not be identical, we only require them to have a common
ancestor (master mesh, see Section , so that we can utilize the multi-mesh
assembling. Formally, we have

u"t = solve(At, u™, 7", 7).

The algorithm to solve the time-dependent problem (6.1)) can then be written
as Algorithm Again, for error estimation we use the reference solution
approach with all its advantages and disadvantages, as discussed in Section
4.9l

Algorithm 6.1: Adaptive Rothe method for dynamic meshes.
n=20;
TO = Tmaster ;
u® = wug // initial condition ;
t=20;
repeat // outer iterations over time steps t"
1=0;
78”—’_1 = Tmaster ;
repeat // inner iterations to obtain u"*!, time t frozen
ultt = solve(At, ", T, T, )
Tref = refine(77"*1) ;
Upep = sOlve(AL, u™, T, Tref) ;
mJlrl = adapt(ﬁn+la u?+1, uref) ;

[
err = ——
[uresl]

1=1+1;
until err > tol;
untt = Uref ;
TnJrl = 7;ef )
t =t+ At // possibly adapt At using ODE techniques ;
n=n+1;
until ¢ > T

_urefH .
)

The algorithm performs a full hp adaptation for each time step, starting with
the coarsest mesh every time. Note that when calculating both the coarse and
the reference solution, as the previous solution u™ we use the previous reference
solution in each case. This is important because it prevents the coarse and the
reference solutions from diverging with time, which would lead the algorithm
to a halt due to the increasing error between the solutions.
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6.4 Simple Dynamic h-Adaptivity

An obvious weakness of Algorithm is that for each time step t" a full
adaptation is run from scratch. The results of previous time steps are always
discarded, even though there is usually a great deal of similarity between suc-
cessive time steps in terms of mesh refinement. We therefore view Algorithm
just as a basis on which we will try to improve.

In this section, for simplicity, we limit the adaptation to h-refinements only.
However, we will attempt to reduce the number of iterations of the inner
loop of the algorithm by reusing the coarse mesh from the previous time step.
Instead of initializing the mesh for the inner loop as

+1 __
7E)n — Tmastera
we will write
Tott = unrefine(Tpres),

where Tpre, is the last coarse mesh from the previous time iteration, stored
when the inner loop finishes, and ‘unrefine’ is a function which removes the
finest level of refinements everywhere in the mesh. We test this modified
algorithm on a model CFD problem.

6.4.1 Model Problem: 2D Incompressible Viscous Flow

Consider a simple problem of external fluid flow past an infinite obstacle with
a square cross-section, as shown in Figure The flow is governed by the
incompressible Navier-Stokes equations, which can be written in dimensionless
form as

0 1
fu—I—fAu—I—(u-V)u—Vp =0 (6.5)

ot Re
Vou = 0. (6.6)

Here, u = (uq1,us) is the velocity, p is the kinematic pressure and Re denotes
the Reynolds number, a dimensionless parameter which characterizes the flow
behavior. We equip the equations with the following boundary conditions:

e u = (1,0) on the inlet I'y,
e u = (0,0) on the obstacle I'yy,

e the do-nothing condition on the outlet I'p.

The initial condition is w(x,0) = 0. The size of the obstacle is 1. After dis-
cretizing the time derivative and linearizing the convective term (u-V)u using
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Figure 6.1: Setting for the flow problem.

the solution on the previous time level as (u" - V)u"!, the weak formulation

of the system (6.5)—(6.6) to be solved on each time level reads:

ut o, 1 1 1 1 0vy utvy
Y +*/V“’f+ Vot [yt - [rg < [E0
n+1 n
Uy V2 1 1, 1 0v2 Uz v2
At /vu§+ W2+/u V)upt 7/pn+ — ) A

(’3u1 /8u2 _ 0

where v1,v9 are test functions for the velocity (applied to equation )
and ¢ is a test function for the pressure (applied to equation ) For the
spatial discretization we used quadratic continuous elements for the velocity
and linear continuous elements for the pressure.

We employed Algorithm with the mentioned modification of mesh initial-
ization to perform three calculations with Re = 4-103, Re = 20-102 and Re =
100-103. The time step was 0.05, 0.04 and 0.02, respectively. Snapshots of the
coarse mesh at three time instants (from the calculation with Re = 20 - 10%)
are shown in Figure All meshes were obtained fully automatically from
a master mesh that contains only 54 quadrilateral elements. The mesh adapts
nicely in time to the changing features of the ﬁowﬂ The adaptation in the
inner loop was performed until the L? norm of the error fell below 0.8%, 0.6%,
0.5%, respectively, for the different Re. The reference mesh was h-refined only,
no increase in the polynomial degrees was necessary in this case. For simplic-
ity, we used the same mesh for all three solution components, i.e., multi-mesh
assembling was utilized only to handle the different refinements of v" and
u™*1, although independent dynamic meshes for all components are in theory
also possible with Hermes2D.

It is interesting to note that thanks to the accurately resolved meshes for
all time levels the calculations were quite stable even for the relatively high
Reynolds numbers, which produce complex flow patterns (see Figure[6.3). Nor-

!See video at http://www.youtube.com/watch?v=BAL8i1bvXkU
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Figure 6.2: Evolving mesh for Re = 20 - 10® at times t = 13 (top), t = 14
(middle) and ¢ = 15 (bottom). Detail of the upper part of the obstacle is
shown. Colors represent the magnitude of velocity.
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Figure 6.3: Computation with Re = 100 - 103. Overview of the whole domain
at t = 16 (top). Detail of the boundary layer and complex flow features near
the obstacle at t = 7 (bottom, reference solution shown).

mally either extremely well-designed meshes or advanced stabilization tech-

niques are necessary in similar finite-element solvers.

Figure shows the number of degrees of freedom of the coarse problem at
the end of the inner loop, for all time levels. The following table lists the
average numbers of inner (adaptive) loop iterations and the total CPU time

on an Intel Q9550 CPUP for the three computations:

Z2.65
2.38
z2.12
1.85
1.59

1.32

- 1.06

0.795

0.53

| Reynolds number

| 4-10% [ 20-10% | 100 - 10° |

Average # inner iterations 6.5 9 9
Total outer iterations 400 500 1000
Total CPU time [hours] 2.2 8.8 22

20ur program is serial, i.e., single-core only.
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Figure 6.4: Number of DOF's of the coarse mesh as a function of time.

We see that the simple approach with 1-level coarsening works, but obviously
its performance could be improved. Removing one level of refinements in
each step still causes a lot of work to be lost every time, which is apparent
from the numbers of inner loop iterations. Ideally, we would like this number
to be about 2 on average, that would however require a more sophisticated
unrefinement algorithm. Our inner loop is simply taken from the stationary
algorithm in Chapter [d and tends to over-refine the solution instead of aiming
at an exact error level (hence the fuzziness of the graphs in Figure . The
global stopping criterion should be replaced by local error tests of individual
elements. This would in turn allow more careful element coarsening. We have
however not succeeded realizing this approach for the flow problem.

A lot more work would also be required to obtain a proper flow solver. Oseen
or Newton iterations would have to be used, stabilization would preferably be
included to reduce the number of DOFs and the reference solution could be
replaced by a specialized error estimator. However this is beyond the scope
of this thesis and would lead to a loss of generality of the simple approach.
We view this model problem merely as a prototype that leads us to dynamic
hp-adaptivity, which we explore in the following section.
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6.5 Full Dynamic hp-Adaptivity

In this section we improve the refinement and coarsening steps of the dynamic
mesh algorithm and test full hp refinements on a model problem of combustion.

6.5.1 Improved Refinement Criterion

Recall from Section [4.4 on page [47] that in each mesh adaptation step we refine
all elements e; whose error is larger than some fraction of the error of the worst
element (k is a user-specified constant),

e > k- emaz-

This simple criterion works well for stationary problems, where we aim to
reduce the global error as much as possible. If however we need to arrive at
some specific error level, as in time-dependent problems, this method tends
to over-shoot the required error and refine too many elements. We therefore
introduce an additional test, which may stop the refinements early, i.e., before
the standard criterion is met.

The idea is to keep track of the total error of elements that were already
refined. We (very roughly) assume that after an element is refined, its error is
reduced by some constant factor ¢, 0 < ¢ < 1. Remember that our elements
e; are sorted by decreasing error with increasing i. We thus keep refining
the worst elements and estimate the decrease of the global error. Once the
estimated error falls below the target error level, i.e, when

M
(1-0¢) Z € > (erTeyrrent — errtarget)
=0

for some M, we stop the adaptation. This new criterion, even though not
perfect, leads to less aggressive refinements as the solution error approaches
the target level.

6.5.2 Coarsening Based on Super-Coarse Solutions

Ideally, we would like the inner (adaptation) loop in Algorithm to seldom
repeat more than once or twice. For most time steps, as long as the error esti-
mate is within the prescribed tolerance, the mesh should change only slightly
or not at all since it can be assumed that there is sufficient time coherence
between successive solutions u” and u"*!. In such an ideal case the cost of
managing the dynamic mesh should be rather small and the whole process
should resemble a standard time-stepping computation (not counting the ref-
erence solution-based error estimation). To achieve this, a better coarsening
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algorithm needs to be designed. Removing one layer of finest elements (where
possible) after every time step is a waste of resources because the number of
DOFs decreases by as much as one half and most of the coarsened elements
get refined again in the next time step.

To determine which elements will not get refined immediately after being
coarsened, we introduce an additional reference solution, this time however
coarser than the regular coarse solution, hence the name, “super-coarse” so-
lution. By comparing the super-coarse solution with the standard reference
solution we can determine which elements can be coarsened without increasing
the error too much. Since our goal is dynamic hp-adaptivity, we in fact need
to introduce two super-coarse solutions, one for h-unrefinements and one for
p-unrefinements. We can easily afford that, though, because the super-coarse
solutions are extremely cheap, even in comparison with the regular coarse
solution.

After a time step is finished, we take the current coarse mesh and calculate the
two super-coarse solutions, to determine which elements are no longer needed.
First we (temporarily) lower the polynomial degrees on all elements by one
and calculate the first super-coarse solution. By comparing the result with
the standard reference solution we obtain new error measures on all elements.
We permanently lower the degree of elements whose error is less than ¢ - €4z,
where ¢ > k is another user-specified parameter, representing the opposite
threshold to the refinement parameter k. Elements above the ¢ - €4, thres-
hold are unlikely to be refined again in the next time step.

The second super-coarse solution is obtained by unrefining all elements which
have exactly four active sons in a temporary copy of the coarse mesh, i.e., the
same process of removing one layer of refinements as in Section Since this
time we are dealing hp meshes, the question is what polynomial degree to select
for the h-unrefined elements. We choose to set the parent element’s degree
to the maximum of the degrees of the four descendant elements. After the
super-coarse solution is calculated and subtracted from the reference solution,
similarly to p-unrefinements, we again unrefine those elements whose error did
not increase dramatically.

After the two coarsening steps the mesh is prepared for the next time step.
Obviously the key to success is the right choice of the value of the parameter
q, which is the most sensitive out of the three constants k, ¢, ¢. Setting it
too high leads to unnecessary unrefinements and conversely a low value causes
fine elements to be left in the domain.

6.5.3 Model Problem: Propagation of Laminar Flame

We demonstrate the improved dynamic hp-adaptivity algorithm on a non-
linear parabolic problem which appeared in [41]. The problem is a simplified
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model of combustion inside a closed chamber, assuming the low Mach num-
ber hypothesis. This assumption permits us to neglect the motion of the
combustible fluid and focus on just two of the quantities of the combustion
process, the temperature 6 and fuel concentration Y.

Problem definition Assuming constant diffusion coefficients, the dimen-
sionless equations describing the combustion process are
00

o A0 = w(6,Y), (6.7)

‘?t/ - i” — _u(0,Y), (6.8)
where Le is the ratio of diffusivity of heat and diffusivity of mass (Lewis
number), and w is the reaction rate governed by the Arrhenius law,

0,Y) = i Y % 6.9

w( ) ) - 27Le € ) ( : )
where a and (§ are two parameters. We model a freely propagating laminar
flame described by f inside a chamber containing two cooling rods
with rectangular cross-section (see Figure . The computational domain has
height H = 16 and length L = 60. The cooling rods take half of the height and
have length L/4. The cooling is modeled by Robin boundary conditions on
I'r with heat loss parameter k. On the left boundary of the domain, Dirichlet
boundary conditions corresponding to the burned state are prescribed, while
the remaining boundary conditions are of the homogeneous Neumann type.
In summary, the boundary conditions are

=1, Y =0 on I'p,
00 oYy
% —0, % =0 on FN,
00 oy
% - —k@, % =0 on FR

The initial condition, chosen as

1 for x < xg,

eTo™T  for x > xg,

0(x,0) = {

0 for x < xo,

Y(x,0) = { 1 — ele@—2)  for 2> gz,

represents a right-traveling flame located left of the cooling rods. For this
computation, the values of the various parameters are set to

Le=1, a=0.8, =10, k=0.1, 29 = 9.
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Figure 6.5: Domain for the flame propagation problem.

Results In the combustion process, as the fuel is consumed, the concentra-
tion of the reactive species Y decreases in the domain from 1 to 0, producing
an increase in the temperature 6 of the burned mass from 0 to 1. The points
where this reaction takes place (i.e., where the flame is located) are those with
high w(0,Y). Instead of showing the actual solution €, Y to the system [6.7]
we display the reaction rate w(#,Y), as seen in Figure which shows
the laminar ﬂameE| at times t = 1.37,19,47.4, 59.

Since Y is almost a constant zero left of the flame and almost a constant one
right of the flame (and vice versa for 6), the only place in the domain which
needs fine discretization is where the reaction rate is high. We therefore use
w(0,Y) as the error measure for the purpose of mesh adaptation:

||w(0,Y) — W(GTefa Yr‘ef)HHl .
||w(9refayv'ef)”H1

err =

Meshes corresponding to Figure obtained using the improved algorithm
are shown in Figure Error tolerance for each time step was set to 0.5%
(i.e., 100-err < 0.5). The refinement parameters were chosen k = 0.3, ¢ = 0.4.
Graph of the history of the number of DOFs for all time steps is shown in

Figure (solid line).

Besides the full hp-FEM computation, for comparison we also performed an
h-adaptive computation on quadratic elements, with the same precision. One
of the low-order meshes is shown in Figure [6.8 and the DOF history is shown
in Figure as a dotted line. We see that low-order FEM needed 4-5 times
more degrees of freedom than hp-FEM, with a similar increase in CPU time.

The following table represents a histogram of the number of inner loop itera-
tions. Thanks to the improved coarsening, the mesh needed adaptation only in
every fourth time step and in the remaining steps the inner loop was executed
only once:

# of inner iterations 1 2 3 4+
Percent of time steps | 75% | 22.5% | 2% | 0.3%

3See also a video at http://www.youtube.com/watch?v=hlaVopx6RYA
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Figure 6.6: Reaction rate w(f,Y") at times ¢t = 1.37,19,47.4, 59.

Although this is largely due to the relatively small time step Atg = 0.01,
the number of steps with no adaptation is better than we expected and it had
a positive effect on the total CPU time, which was 2.5 hours on an Intel Q9550
CPU. It is worth mentioning that performing the computation at the same
accuracy on a fixed mesh (finely resolved across the whole domain) would take
many times longer, even with no reference solutions.

Time-step control To further speed up the computation, we implemented
a simple and fast time step adaptation proposed in [52], based on a PID
controller. Even though this technique does not control the time discretization
error, it works well for adapting the time step At so that a suitable indicator,
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such as
(67, Y — w(en, Y|

” wE Ly
is kept within prescribed bounds. If €, is too large (e, > tol), the solution
gnt1 yntl is discarded and recomputed using

Aty = t—OIAtn.

€n

Otherwise the time step is adjusted smoothly using the PID formula

Atn_H _ (ﬁn_1>kp (tOl)kl (6721_1> kp At
€n €n €n€n—2
where the recommended values of the exponents are kp = 0.075, k; = 0.175,
kp = 0.01. The time step sizes obtained using this method are shown in
Figure [6.10] The cost of this algorithm is very small since the solutions are
only rarely discarded and no extra solutions (e.g., at At/2) are required for
each time step as in other approaches. The PID controller in fact improved the

total CPU time by about 40%, due to the increased time step sizes when the
solution only changes slowly (about 10 < ¢t < 45 in the combustion problem).

6.6 Conclusions and Future Work

We have demonstrated a working approach to the solution of time-dependent
problems using hp-FEM with dynamically changing meshes, utilizing our multi-
mesh assembling algorithm. The method is superior to both dynamic h-FEM
and traditional methods for problems exhibiting moving features in the solu-
tion and requiring accurate resolution.

Our algorithm only supports isotropic refinements. We have attempted (but
not succeeded so far) to extend it for anisotropic refinements, which could fur-
ther improve its efficiency. While certainly possible, this extension has proved
difficult to implement. All anisotropic refinements need to be checked in every
time step, even for inactive elements (those higher in the refinement hierar-
chy), otherwise the anisotropic refinements may become invalid. Our current
unrefinement algorithm will not detect and remove these cases and they con-
tinue to exist in the mesh. Similarly, several neighboring isotropic refinement
may become eligible for replacement by a single anisotropic refinement. This
problem cannot be solved by a direct extension of the current algorithm and
remains open.
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Chapter 7

Conclusion

In this thesis we endeavored to develop several new methods and algorithms
for automatically adaptive hp-FEM for both stationary and time-dependent
problems. Here we summarize the objectives of the thesis and try to assess
how they were met.

After briefly reviewing the theory of higher-order FEM in Chapter [2] we de-
voted Chapter [3| to constrained approximation, which enables finite element
computations on irregular meshes, important for the development of adaptive
higher-order solvers. We collected information on approaches used in existing
nodal-element software and proposed our own solution for solvers using hier-
archic bases. In addition, our method handles arbitrarily irregular meshes,
which is a unique feature of our solver. We included detailed description of
the implementation, with examples. Also included is an original and simple
design of the underlying data structures.

In Chapter [4 we gave an overview of hp-adaptive strategies for stationary prob-
lems currently available in the literature. In detail we described the existing
projection-based-interpolation algorithm. We then introduced our design of
a simpler and faster alternative, and demonstrated on two benchmark prob-
lems that our algorithm is comparable or superior to the existing algorithms.
The results were already independently verified in [35].

In Chapter [5 we described how systems of PDEs are handled in FEM solvers
and motivated the use of different meshes for different equations in the system.
We developed an algorithm for the assembly of the stiffness matrix of such
multi-mesh systems and we provided implementation details. We tested the
implementation on a model problem of thermoelasticity. Even though the
results in terms of solution speed-up are not conclusive for the model problem,
multi-mesh assembling has a wider applicability.

We showed the usefulness of multi-mesh assembling in the final Chapter [6]
where we experimented with time-dependent problems and the adaptive Rothe
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method to design an algorithm which produces automatically adapted hp-
meshes that moreover change in time and can accurately resolve transient
phenomena. A simpler version with h-refinements only was first tested on
a model problem of incompressible fluid flow. The full algorithm with im-
proved coarsening was then demonstrated on a model problem of low-Mach
number combustion. To our knowledge, a method to produce automatically
adapted dynamic meshes in the context of hp-FEM has not yet been described
in the literature.

Last but not least, an indivisible part of the thesis is the numerical software
HermesQIﬂ which the author worked on during the three years of his stay at
the research group of Dr. Solin at El Paso, Texas. The project is a collabora-
tive effort, however the author of this thesis made several fundamental contri-
butions, including: 1. a complete modular re-design of the code, 2. the ability
to handle (arbitrarily) irregular meshes, 3. two hp-adaptation algorithms, in-
cluding the fast orthonormal version, 4. support for systems of equations and
the implementation of multi-mesh assembling, 5. built-in OpenGL visualiza-
tion. The code, distributed under the GNU GPL license, continues to be used
by a new generation of students and a new version is underway. Thanks to its
flexible design, the code has already been applied to a number of challenging
problems, such as interface tracking, compressible fluid flow or complex sys-
tems coupling the equations of fluid flow, electromagnetism and heat transfer
[23]. A user-friendly graphical front-end AgrosQDﬂ that aims to compete with
commercial engineering applications was written by Pavel Karban.

7.1 Future Work

Some ideas for possible future enhancements were already mentioned in Sec-
tions and Those that could be immediately worked on, given more
time, are the support for anisotropic p-refinements on quadrilaterals in the fast
orthonormal hp-adaptive algorithm and a support for anisotropic h-refinements
in the dynamic mesh algorithm.

The biggest problem of our methods remains the CPU time needed to obtain
the reference solution. The problem is even more pronounced in 3D, where the
reference solution is another order of magnitude larger than in 2D. Possible
directions to fight this problem were described in Section [£.7] For selected
(elliptic) problems it can make sense to use one of the alternative hp-adaptive
strategies listed in Section

It should not be forgotten that the ultimate goal is to extend all methods
in this work to 3D. For the fast adaptive strategy this is possible, as was
already discussed. The arbitrarily-irregular constrained approximation is by

"http://hpfem.org/hermes2d/
’http://hpfem.org/agros2d/
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several orders more complex in 3D than it is in 2D, but the implementation
was already managed in [32]. Dynamic meshes were not yet tested in 3D.

7.2 Publications and Citations

Original results of the author are presented in Chapters 3, 4, 5, 6 and were
published in journal articles [47] (impact factor 0.930), [48] (i.f. 1.048), [I1],
in part in journal articles [25] (i.f. 0.688), [20] (i.f. 0.959), [44] (i.f. 1.048) and
in conference proceedings [46], [12], [21].

Journal article [47] is cited in:

e A. Gerstenberger, W. A. Wall: Enhancement of fixed-grid methods to-
wards complex fluid-structure interaction applications. International
Journal for Numerical Methods in Fluids, vol. 57, no. 9, pp. 1227-
1248, 2008.

e [6] W. Bangerth, O. Kayser-Herold: Data Structures and Requirements
for hp Finite Element Software. ACM Transactions on Mathematical
Software, Vol. 36, No. 4, March 2009.

e [35] W. F. Mitchell, M. A. McClain: A Survey of hp-Adaptive Strategies
for Elliptic Partial Differential Equations. Recent Advances in Com-
putational and Applied Mathematics (T. E. Simos, ed.), Springer, pp.
227-258, 2011.

Journal article [48] is cited in:

e C. Vokas, M. Kasper: Adaptation in coupled problems. COMPEL — The
International Journal for Computation and Mathematics in Electrical
and Electronic Engineering, 29 (6), pp. 1626-1641, 2010.

e R. W. Johnson, G. Hansen, C. Newman: The role of data transfer on the
selection of a single vs. multiple mesh architecture for tightly coupled
multiphysics applications. Applied Mathematics and Computation, vol.
217, no. 22, pp. 8943-8962, 2011.

Research report [24] is cited in:

o [54] A. Voigt, T. Witkowski: A multi-mesh finite element method for
lagrange elements of arbitrary degree. Submitted, 2010.
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