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Abstrakt:

V této práci se zabýváme aplikacemi Lovászova lokálního lemmatu a s ním sou-
visejících metod. Popíšeme postupný vývoj těchto metod a ukážeme konkrétní
příklady jejich užití na příkladech z oblasti výzkumu nezávislých transverzál a
hypergrafů.

Klíčová slova: Lovászovo lokální lemma, komprese entropie, hypergraf, nezávislá
transverzála

Abstract:

In this thesis we investigate applications of the Lovász local lemma and its related
methods. We are going to describe the gradual development of these methods
and show the specific examples of its use in the field of research on independent
transversals and hypergraphs.

Keywords: Lovász local lemma, entropy compression, hypergraph, independet
transversal
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Introduction

The Lovász local lemma is effective proof technique frequently used to prove
the existence of some object without showing its properties. Throughout the
years many modifications of the original formulation were presented.

The goal of this thesis is to provide brief introduction to use of the Lovász
local lemma and its related methods and demonstrate their functioning on certain
examples.

Chapter 2 is dedicated to independent transversals. We examine results so
far obtained in this field, focusing mainly on the sufficient conditions of the ex-
istence of an independent transversal in a graph. Also we present the algorithm
for finding such independent transversal in a graph and applying the entropy
compression we show that this algorithm terminates after a polynomial number
of steps.

Chapter 3 is focused on generalization of graphs - hypergraphs. We define
basic terms required to understand the basis of the hypergraph theory and show
that although the Lovász local lemma and its related methods are very effective
and powerful tools, sometimes we can get better results without its usage.
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Chapter 1

Lovász local lemma and related
methods

The Lovász local lemma was introduced by Erdős and Lovász who used it in
their article about hypergraph coloring [12]. Since then the Lovász local lemma
has become one of the most powerful tools in the probabilistic methods and is
used to prove results in graph or hypergraph coloring, satisfiability problems, etc.
The Lovász local lemma is a non-constructive method of proving the existence of
a specific object without showing how it looks like. In 2009 Moser and Tardos
[28] came with a breakthrough and using the entropy compression proved an
algorithmic version of the Lovász local lemma which gave us a surprisingly simple
randomized algorithm.

Recently Rosenfeld [31] came up with a new proof technique that can be ap-
plied to the same problems as the Lovász local lemma or the entropy compression.
The Rosenfeld method gives more simple proof bounds similar as the entropy com-
pression, but we lose the constructive feature of the entropy compression by its
application.

The goal of the first chapter is to provide an overview of the Lovász local
lemma and related methods and to show some applications on specific examples
for an easier understanding of how effective and simple these proof techniques
are.

1.1 Preliminaries

Firstly, we will state some basic definitions from the probability theory which
will be required for the formulations of the Lovász local lemma in following sec-
tions.

A probability space is a triple (Ω,Σ, P ), where Ω is a sample space (the set of
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all possible outcomes), Σ is a σ-algebra on Ω (a nonempty collection of subsets
of Ω closed under complement and countable unions) and P is a probability on
Σ. An element of Σ, i.e. a subset of a sample space to which the probability is
assigned, is called event. A random variable is a mapping of possible outcomes
from Ω to a measurable space.

Two events are independent if the occurrence of one event does not affect the
probability of the other event. A set of events is mutually independent if the
probability of each event stays the same no matter which of the other events
occur. We say that an event A ∈ A is mutually independent from all the other
events except for at most k of them, i.e. except for events {B1, . . . , Bk} ∈ A,
when all events in the set A\{B1, . . . , Bk} are mutually independent.

Let P be a finite set of random variables in a probability space Ω and let A be
a finite set of events in a probability space Ω that are determined by the values
of some subset S ⊆ P of random variables, i.e. if we know the values of S we can
tell whether the events occur or not. Assign an evaluation vP to every random
variable P ∈ P . If for any evaluation vP of random variables from the subset
S ⊆ P the corresponding event A ∈ A occurs, we say that event A is violated.

1.2 Lovász local lemma

In this section, we briefly summarize the gradual development of the symmet-
ric Lovász local lemma, show its general form and how the symmetric one easily
follows from it, and in the final subsection we will show some applications of sym-
metric version of the Lovász local lemma to known problems from satifiability and
hypergraph coloring.

The Lovász local lemma states that if we have a set of events in which each
of them occurs with probability p ∈ (0,1) and is mutually independent of the
others with the exception of a few, then there is a nonzero probability that none
of the events will occur. The Lovász local lemma is used to prove an existence
of a certain object by showing that none of the "bad events" (events that would
prevent its existence) will occur.

1.2.1 Symmetric Lovász local lemma

There exist a few different formulations of so called symmetric Lovász local
lemma which is the simplest but most used version of LLL and is applied to
symmetric events - the events that are invariant under some permutation of the
underlying probability space. The symmetric Lovász local lemma was first in-
troduced by Erdős and Lovász [12], the motivation for their formulation was the
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proof of 2-colorability for hypergraphs (we will focus on this application of the
symmetric Lovász local lemma in subsection 1.2.3).

Theorem 1.1 [12]. Let A be a finite set of events such that each event occurs
with probability at most p and is mutually independent from all the other events
except for at most d of them. If

4pd ≤ 1,

then

P

(︄⋀︂
A∈A

A

)︄
> 0.

Under the term "Symmetric Lovász local lemma" is nowadays known the fol-
lowing version which was published by Spencer [33] to derive lower bounds for
Ramsey functions.

Theorem 1.2 (Symmetric Lovász local lemma) [33]. Let A be a finite set
of events such that each event occurs with probability at most p and is mutually
independent from all the other events except for at most d of them. If

ep(d+ 1) ≤ 1,

where e = 2,718 . . . is Euler’s number, then

P

(︄⋀︂
A∈A

A

)︄
> 0.

More general conditions under which the Symmetric Lovász local lemma holds
were given by Shearer [32]. His approach shows how large the probability p of each
event A can be, so that the final conclusion P(

⋀︁
A∈A A) > 0 is still guaranteed.

But despite the generality of Shearer’s result, the Symmetric Lovász local lemma
provides simpler and more practical conditions.

Theorem 1.3 (Shearer’s Lemma)[32]. Let A be a finite set of events such that
each event occurs with probability at most p and is mutually independent from all
the other events except for at most d of them. If⎧⎨⎩p < 1

2
for d = 1,

p < (d−1)d−1

dd
for d ≥ 2,
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then

P

(︄⋀︂
A∈A

A

)︄
> 0.

1.2.2 Asymmetric Lovász local lemma

To formulate the stronger general version of Lovász local lemma (the "asym-
metric" version) we will first need to define a structure which describes a depen-
dency of events in a probability space. Let A = {A1, A2, . . . , An} be a finite set
of events in a probability space. A dependency graph GA for A is a graph with its
vertex set formed by all events from A and in which the event A ∈ A is mutually
independent from all but its neighbors. The neighborhood of an event A ∈ A,
i.e. other events which may depend on A, is denoted by ΓA(A).

Theorem 1.4 (Asymmetric Lovász local lemma) [12]. Let A = {A1, . . . , An}
be a set of events with dependency graph D = (V,E). If there exists an assignment
of reals x : A → (0, 1) such that

∀A ∈ A : P(A) ≤ xA

∏︂
B∈ΓA(A)

(1− xB),

then

P

(︄⋀︂
A∈A

A

)︄
≥
∏︂
A∈A

(1− xA) > 0.

Let us show that the symmetric version (Theorem 1.2) follows immediately
from Asymmetric Lovász local lemma (Theorem 1.4).

For every A ∈ A set xA = 1
d+1

. If we substitute this value in the condition of
Theorem 1.4, we get that

xA

∏︂
B∈ΓA(A)

(1− xB) =
1

d+ 1

(︃
1− 1

d+ 1

)︃dD(A)

≥ 1

d+ 1

(︃
1− 1

d+ 1

)︃d

≥ 1

(d+ 1)e
≥ p.

Therefore, it follows that

P

(︄⋀︂
A∈A

A

)︄
> 0.
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1.2.3 Applications of LLL

Let us examine two particular examples of using the Symmetric Lovász local
lemma. From the beginning both k-SAT and 2-colorability of hypergraphs were
an important part of the development of the Lovász local lemma.

The k-SAT problem

A literal is a boolean variable (a variable which has only two possible values -
TRUE or FALSE) or its negation. A clause is a finite set of literals and boolean
operators (conjuction ∧, disjunction ∨, implication ⇒ , equivalence ⇔).

A boolean formula φ is a finite sequence of symbols such that

(1) a boolean variable xi is formula,

(2) if x1, x2 are formulas, then also ¬x1, x1 ∧ x2, x1 ∨ x2, x1 ⇒ x2, x1 ⇔ x2 are
formulas.

A formula φ is in the conjunctive normal form (CNF) if every clause is a disjunc-
tion of literals and the formula φ is a conjuction of these clauses. If every clause
contains exactly k literals we say that the formula φ is in k-CNF. For example

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ x3)

is in 3-CNF.
An evaluation of φ is the replacement of each variable by a value TRUE

or FALSE. If there exists an assignment of variables such that the formula φ

evaluates to TRUE then φ is called satisfiable.
We say that two clauses overlap if they contain the same variable xi, regardless

of whether it is xi or its negation ¬xi.

The k-SAT problem, or the "k-satisfiability problem", is to decide if the given
k-CNF formula is satisfiable.

We already stated an example of 3-CNF formula. Every SAT problem, i.e.
the satisfiability problem for arbitrary formulas, can be easily reduced to the 3-
SAT. Since SAT was the first problem proven to be NP-complete [8], the 3-SAT
is NP-complete as well.

Lemma 1.1 [21]. Let φ be a k-CNF formula. If each of its clauses overlaps with
at most 2k−2 clauses, then φ is satisfiable.

Proof. Randomly replace each variable xi with TRUE or FALSE. Number each
clause and let I = {1, 2, . . . , l} be the set of indexes of these clauses. For the i-th
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clause of φ define the "bad" event Ai which means that the i-th clause is not
satisfied (in the case of CNF this can only happen when all literals inside the i-th
clause are replaced by FALSE).

The probability that the event Ai will occur is

P(Ai) = p =
1

2k
.

An event Ai is mutually independent from all events which do not share same
variables as Ai. By assumption of the Lemma that means that every event Ai is
mutually independent from all the other events except for at most 2k−2 of them.

If we substitute these values into Theorem 1.1 we get that

4pd ≤ 4
1

2k
2k−2 = 1.

Therefore the assumption is satisfied, thus, with the nonzero probability none of
bad events will occur, so we can find an evaluation of φ for which φ evaluates as
TRUE, i.e. the k-CNF formula is satisfiable.

2-colorability of hypergraphs

The second example which we will focus on is the coloring of hypergraphs,
which are objects that we will study in more detail in Chapter 3.

A hypergraph H = (V,E) is a generalization of a graph in which every edge,
called hyperedge, connects an arbitrarily large number of vertices. A hypergraph
H is said to be k-uniform if each of its hyperedges contains exactly k vertices.
A hyperedge intersects some other hyperedge if they have at least one common
vertex.

A coloring of a hypergraph H is a mapping f : V (H)→ N. A proper coloring
of H is an assignment of colors to each vertex of H such that no hyperedge is
monochromatic, i.e. contains all vertices of the same color. A hypergraph H is
called 2-colorable if it has a proper 2-coloring.

Theorem 1.5 [12]. Let H = (V,E) be a k-uniform hypergraph in which every
hyperedge intersects at most 2k−1

e
− 1 other hyperedges. Then H is 2-colorable.

Proof. Suppose that we have two colors, say RED and BLUE. Randomly color
each vertex of a hypergraph H with one of these colors. Let Ai denote the "bad
event" that the hyperedge ei is monochromatic. Then the probability that the
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event Ai will occur is
P(Ai) = p =

2

2k
= 21−k.

Each event Ai is independent on the event Aj, if the hyperedges ei and ej

are disjoint. Thus, from the assumption we get that every event Ai is mutually
independent from all the other events except for at most 2k−1

e
− 1 of them.

It implies that

ep(d+ 1) ≤ e 21−k

(︃
2k−1

e
− 1 + 1

)︃
= 1.

Therefore, the condition of the Symmetric Lovász local lemma (Theorem 1.2)
is satisfied and with nonzero probability non of the events Ai will occur, which
means that the hypergraph H is 2-colorable.

Figure 1.1: An example of 2-colored hypergraph.

1.3 Algorithmic Lovász local lemma

The Lovász local lemma is indeed a powerful tool in the probabilistic method,
but for a long time it was only a non-constructive proof technique. In 1991, Beck
[4] was the first who suggested the possible existence of an algorithmic version
of the Lovász local lemma. On the example of 2-colorability of a k-uniform hy-
pergraph Beck demonstrated that there exists a polynomial time algorithm that
finds a certain 2-coloring of a hypergraph, but only if every hyperedge intersects,
i.e. shares at least one of its vertices, with at most 2

k
48 other hyperedges. There-

fore, his approach required stronger conditions than the Lovász local lemma. This
discovery started the gradual improvement and further search for a constructive
proof of the Lovász local lemma. For instance Alon [1] simplified and randomized
Beck’s algorithm and also improved its required dependency to at most 2

k
8 , but

much more work has been done in the search for algorithmic Lovász local lemma
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such as [34, 9, 27]. The biggest breakthrough came when Moser [26] presented
a constructive proof of the Lovász local lemma that worked without further re-
quired restrictions and after that together with Tardos [28] extended his previous
result in such a way that it can be used with almost all known applications of
the general version of the Lovász local lemma.

1.3.1 Moser-Tardos algorithm

The Moser-Tardos constructive proof of the Lovász local gives surprisingly
simple randomized algorithm, which not only shows the existence of an evaluation
for which no "bad event" occurs, but also finds such an evaluation.

As discussed in Section 1.1 every event from the finite set of events A in
a probability space Ω is determined by random variables from P , i.e. values
of variables determining event A ∈ A tell us whether the event A occurs or
not. There exists a minimal subset S ⊆ P that determines each event A; let us
denote this subset as vbl(A). Therefore in a dependency graph GA two events
A,B ∈ A, A ̸= B, may only be joined by an edge if vbl(A) ∩ vbl(B) ̸= ∅.

At the beginning of the algorithm we randomly assign an evaluation vP to
each variable P ∈ P . We check whether any event A ∈ A is violated by current
evaluation. If that is the case then we arbitrarily choose one of the violated events
A and assign a new evaluation vP to all variables from P ∈ vbl(A) on which A

depends. Therefore, all variables from P\vbl(A) remain unchanged. We call this
process resampling of the event A. As long as there exists any violated event A,

we continue resampling such events.

Algorithm 1 Algorithmic Lovász local lemma

1: for all P ∈ P do

2: vP ← a random evaluation of P ;

3: while ∃A ∈ A : A is violated when (P = vp : ∀P ∈ P) do

4: pick an arbitrary violated event A ∈ A;

5: for all P ∈ vbl(A) do

6: vP ← a new random evaluation of P ;
return (vp)P∈P

Surprisingly with assumptions on the events this algorithm terminates after
the finite number of steps. It means that the algorithm reaches an evaluation
of all variables for which none of the events from A is violated if the conditions
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of the Lovász local lemma are satisfied. The following theorem by Moser and
Tardos [28] shows the maximum number of steps it takes to reach the required
evaluation, i.e. the number of resamplings we must do to ensure that no bad
event occurs.

Theorem 1.6 (Algorithmic Lovász local lemma) [28]. Let P be a finite set
of mutually independent random variables in a probability space. Let A be a
finite set of events determined by variables from P and with dependency graph
D = (V,E). If there exists an assignment of reals x : A → (0, 1) such that

∀A ∈ A : P(A) ≤ x(A)
∏︂

B∈ΓA(A)

(1− x(B)),

then there exists an assignment of values to the variables P not violating any of
the events in A. Moreover the randomized algorithm described above resamples an
event A ∈ A at most an expected x(A)

1−x(A)
times before it finds such an evaluation.

Thus the expected total number of resampling steps is at most

∑︂
A∈A

x(A)

1− x(A)
.

1.3.2 Entropy compression

While examining Moser’s first algorithm from [26] Terence Tao in his blog
post [37] analyzed in detail the method that Moser used to prove the Algorithmic
Lovász local lemma. He described it by the term entropy compression - a method
that shows that the given algorithm terminates.

Since its discovery, the entropy compression was used with known results
proved by the Lovász local lemma and often obtained the stronger bounds than
which was already achieved. See [13] for its application in acyclic edge coloring.

The use of the entropy compression is overall simple. When we apply the
entropy compression to a certain problem, we must be able to record the history of
its process in a way, such that from the current state of the process we will be able
to reconstruct the state of the process of any past time, and such that the amount
of recorded information is less than the amount of information which would be
randomly generated in these steps. The amount of recorded information at any
step of the process never exceeds the amount of randomly generated information,
therefore, the algorithm certainly terminates.

The principle of the entropy compression method can be briefly summarized
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by the following theorem:

Theorem 1.7 (Entropy compression) [29]. Consider an algorithm Φ and an
input Q of independent and identically distributed uniformly sampled bits. Sup-
pose that Φ is such an algorithm that for each step t = 0, 1, 2, . . . the following
holds:

• Φ can be modified to maintain a bit string Rt recording its history after each
step t, such that the random bits of Q read so far can be recovered from Rt;

• Rt has length at most r0 + t∆r after step t;

• q0 + t∆q random bits have been read after step t.

If ∆r < ∆q, then the step after which Φ terminates is at most

r0 − q0
∆q −∆r

in expectation.
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Chapter 2

Existence of an independent
transversal

An independent transversal of a graph is an independent set of vertices in
which there is exactly one vertex from each part of partition of its vertex set.
In this chapter we will look at the history of the problem of finding an indepen-
dent transversal in a graph and construct an algorithm to find an independent
transversal. We then apply the entropy compression to this algorithm and prove
one of the earlier results from the search for the sufficient conditions for the
existence of an independent transversal in a graph.

2.1 Introduction

Let G be a graph (simple, finite and undirected) with maximum degree ∆

and V (G) = V1 ∪ V2 ∪ · · · ∪ Vr a partition of its vertex set into r pairwise disjoint
subsets called parts of V (G). An independent transversal of G with respect to
the partition {Vi}i∈[r] is an independent set of vertices which contains exactly one
vertex from each part Vi.

Figure 2.1: An independent transversal of G.
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The problem of finding sufficient conditions for the existence of an independent
transversal was first raised in 1972 by Erdős [11] who conjectured that if the size
of each part is at least ∆+ 1 then G contains an independent transversal. Even
though Graver found a proof for r = 3, Seymour constructed counterexamples for
r ≤ 4 and disproved the conjecture. Some attributed [24] the beginning of this
problem to Bollobás, Erdős and Szemerédi [6], who in 1975 studied independent
transversals in more detail. Alon [2] and independently Fellows [14] gave the first
linear bounds in the terms of the maximum degree ∆ of a graph G. Later Alon
and Spencer [3] proved by using the Lovász local lemma that if the size of each
part is at least 2e∆ then G has an independent transversal. Afterwards Haxell
[19] improved their bound to 2∆.

Theorem 2.1 [19]. If G is a graph with maximum degree at most ∆ whose vertex
set is partitioned into parts V (G) = V1 ∪ V2 ∪ · · · ∪ Vr of size |Vi| ≥ 2∆, then G

has an independent transversal.

On the other hand Jin [20] and Yuster [39] gave examples of graphs with
all parts of size 2∆ − 1 where the maximum degree ∆ had to be a power of
2 which have no independent transversal. In 2006 Szabó and Tardos [36] also
constructed graphs with size of parts 2∆− 1 and no independent transversal but
their construction works for every ∆. This means that 2∆ is the best possible
value for the size of each part of G, therefore 2∆ is tight.

2.1.1 Average degree conditions

The conditions for existence of an independent transversal in a graph G can
be defined depending on terms other than just the maximum degree of G.

Let G be a graph with partition V (G) = V1∪V2∪· · ·∪Vr of its vertex set with
size of each part at least s. The degree d(Vi) of the part Vi ∈ V (G) is the number
of edges with exactly one vertex in Vi. The maximum block average degree of the
partition of V (G) is the maximum over all blocks Vi of d(Vi)

|Vi| .
Reed and Wood remarked in their article [30] that the Lovász local lemma

implies a version of Theorem 2.1 in terms of an average degree. They showed
that if a graph G has the maximum block average degree at most s

2e
, then G

has an independent transversal. This sufficient condition was later [10] improved
to s

4
. Wanless and Wood [38] used the Rosenfeld method and obtained more

general formulation of the sufficient conditions of the existence of an independent
transversal in graph G (their formulation was given in terms of hypergraphs).
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Theorem 2.2 [38]. Let G is a graph whose vertex set is partitioned into parts
V (G) = V1 ∪ V2 ∪ · · · ∪ Vr of size |Vi| ≥ s and whose maximum block average
degree is at most s

4
. Then there exist

(︁
s
4

)︁r independent transversals in G.

Recently it was shown in the article [18] that the bound in Theorem 2.2 cannot
be improved.

Loh and Sudakov [24] defined the local degree of a graph G with its vertex
set partitioned into parts V (G) = V1 ∪ V2 ∪ · · · ∪ Vr as the maximum number of
neighbors of a vertex v ∈ Vi, taken over all choices of Vi and v ̸∈ Vi. Through the
local degree they proved the existence of an independent transversal in G.

Theorem 2.3 [24]. For every ϵ > 0 there exists γ > 0 such that the following
holds. If G is a graph with maximum degree at most ∆ whose vertex set is
partitioned into parts V (G) = V1 ∪ V2 ∪ · · · ∪ Vr of size |Vi| ≥ (1 + ϵ)∆, and
the local degree of G is at most γ∆, then G has an independent transversal.

This result was later reformulated such that instead of the maximum degree
the sufficient condition for the existence of an independent transversal in a graph
is dependent on the maximum block average degree [22, 17].

2.2 Proof by Lovász local lemma

One of the breakthrough results achieved in the search for sufficient conditions
for existence of an independent transversal in a graph was proved with the use
of the symmetric Lovász local lemma. Alon [2, 3] using Lemma 1.2 obtained a
simple proof which showed that an independent transversal in a graph exists as
long as the size of each part is at least 2e∆ :

Theorem 2.4 [2, 3]. If G is a graph with maximum degree at most ∆ whose
vertex set is partitioned into parts V (G) = V1 ∪ V2 ∪ · · · ∪ Vn of size |Vi| ≥ 2e∆,

where e = 2,718 . . . is Euler’s number, then G has an independent transversal.

Proof. Assume that every Vi has size exactly ⌈2e∆⌉, other wise we can replace
each Vi by its subset of size ⌈2e∆⌉ and replace graph G by its induced subgraphs
on these new parts.

We will independently choose one random vertex in every Vi. The bad event Ae

means that we chose both endvertices of edge e. This can happen with probability
⌈2e∆⌉−2.
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Every event Ae where e is the edge with its endvertices in Vi and Vj is mutually
independent of all other events except for those whose corresponding edges have
their endvertices in Vi ∪ Vj. Therefore, every event Ae is independent of all other
events {Ai} except at most 2⌈2e∆⌉∆−1 of them. Applying the symmetric Lovász
Local lemma we get that

2e∆

⌈2e∆⌉
< 1,

i.e. with nonzero probability none of the bad events Ae occur, so we can find
independent transversal in graph G.

2.3 Proof by entropy compression

Bissacot, Fernández, Procacci and Scoppola [5] improved the Lovász local
lemma and used this approach to refine Alon’s condition to 4∆. In this section
we will prove their result with the entropy compression.

Theorem 2.5 [5]. Let G = (V,E) be a graph with maximum degree ∆ and
V (G) = V1 ∪ V2 ∪ · · · ∪ Vr a partition of vertex set V (G) into r pairwise dis-
joint parts. Suppose that for each set Vi we have |Vi| ≥ 4∆. Then, there exists
an independent transversal.

The result obtained in this thesis is weaker than the result in Theorem 2.5,
but it illustrates the application of the entropy compression.

Firstly, we need to define some auxiliary terms that will be useful in our
approach. The global ordering is a fixed ordering of all vertices within each part
Vi. On the other hand the local ordering is a fixed ordering of all neighbours of
any vertex vi.

Without loss of generality assume that no vertex is connected to another
vertex inside the same part, we can neglect these edges, because they do not
affect the existence of an independent transversal in any way.

Now, we can construct Algorithm 2 which will find an independent transversal
in a graph G. The main goal of the following algorithm is to record its process
into a binary string R in such a way, that from R and from the current selection
of the vertices of final independent transversal we can reconstruct a history of the
algorithm at any step of its execution. Each time we randomly select a vertex
v ∈ Vi from such a part Vi, in which no other vertex was selected. Because in an
independent transversal there are no two vertices connected by edge, we consider
a bad event as the selection of a vertex which is connected by edge with any other
vertex already selected into an independent transversal. If the bad event occurs,
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we write down this "wrong" selection into our record R. Otherwise we write down
in the binary encoding that no of the bad events occur.

Algorithm 2 Finding an independent transversal in a graph G

1: for i ∈ [n], such that i is the smallest index for which Vi has no selected
vertex do

2: randomly select vi ∈ Vi

3: if {vi,vj} ∈ E(G) for some already selected vj then

4: write down to R : 1, binary encoded global ordering of vi and local
ordering of vj

5: unselect vi and vj

6: else

7: write down 0 to R

For the reconstruction of the history of the previous algorithm we need to
read the record R twice and each time we encode either part Vi or selected vertex
vi. In the first reading we start at the beginning of the record R and gradually
assign each action (recorded at each step of the algorithm) to a certain part Vi.

On the contrary, in the second reading we start at the end of the record R and
find out which vertex in a part assigned to a certain action was selected.

Example 2.1. Let us now look at the first few steps of one particular example
of the application of the algorithm used to find an independent transversal in a
graph.

Define a graph G = (V,E) with its vertex set partitioned into five parts
V (G) = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 with each part of size at least 4∆. Without loss of
generality assume that no edge joins two vertices contained in the same part Vi.

The graph G is shown in the following Figure 2.2 with global ordering of all
vertices in every part Vi. In the steps of the algorithm all vertices will be repre-
sented by dots, but the global ordering remains fixed during the whole execution
of the algorithm.
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V1
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V5

Figure 2.2: Graph G with the global ordering of all vertices inside each part Vi.

1st step
We start the algorithm in the part with the lowest index, i.e. in the part V1.

Randomly select a vertex from part V1 and write 0 to the record R (with only
one selected vertex there cannot be any wrong selection).

V1

V2 V3

V4
V5

Record R :

0
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2nd step
Continue the part V2 and randomly select one of its vertices. The selected

vertex is not connected with previously selected vertex from V1, therefore again
write 0 to R.

V1

V2 V3

V4
V5

Record R :

0

0

3rd step
After selection in V3, there are two selected vertices that are joined by the edge

- the currently selected vertex from V3 and the already selected vertex from V1.

Therefore, write to R number 1 (representation of the wrong selection), binary
encoded global index of the vertex from V3 and binary encoded local index of the
vertex from V1.

Furthermore, delete the selected vertices from V1 and V3, thus these parts are
now without selected vertices.

V1

V2 V3

V4
V5

1

Record R :

0

0

1,110,1
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4th step
After deleting the vertices from wrong selection, the part with the lowest

index is again V1. Therefore, randomly select a vertex from V1 and write 0 to
the R because there is no edge connecting this vertex with other already selected
vertices.

V1

V2 V3

V4
V5

Record R :

0

0

1,110,1

0

After the fourth step, the execution of Algorithm 2 will continue in the same
way until it finds an independent transversal in the graph G.

We will prove that Algorithm 2 terminates (finds an independent transversal
in G) after finite number of steps assuming weaker bound for size of each part Vi

than in Theorem 2.5.

Theorem 2.6. Let G = (V,E) be a graph with maximum degree ∆ whose vertex
set is partitioned into r pairwise disjoint parts V (G) = V1∪V2∪ · · ·∪Vr. Suppose
that for each part Vi we have |Vi| ≥ 8∆, then G has an independent transversal.

Proof. We want to prove by the entropy compression that the Algorithm 2 ter-
minates, i.e. it finds an independent transversal. Firstly, we demonstrate that
we can pair together right and wrong selection throughout the whole execution
of the Algorithm 2. Let us denote the size of each part Vi by x. In the record
R we can pair together each bad selection (starting with 1) and one previous 0.
That is so, because every bad selection of vertex vi had to be preceded by the
selection of vertex vj which is joined by an edge with the newly selected vertex
vi, otherwise the bad selection would not happen.
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Now we will use the properties of the entropy compression and show that the
Algorithm 2 actually terminates. To binary encode arbitrarily selected vertex
from each part Vi (in its global ordering) we need 1 + ⌊log2 x⌋ bits. However,
to binary encode selections through our algorithm we need 1 bit to specify the
correctness of the selection, 1 + ⌊log2 x⌋ bits for global index of selected vertex
and 1 + ⌊log2∆⌋ for local index of conflict vertex, i.e. our record R requires

⎧⎨⎩1 bit for right selection(︂
1 + (1 + ⌊log2 x⌋) + (1 + ⌊log2∆⌋)

)︂
bits for wrong selection

If we pair right and wrong selections, as mentioned above, the resulting pair
will be binary encoded by at most(︂

1 + (1 + ⌊log2 x⌋) + (1 + ⌊log2∆⌋)
)︂
+ 1

bits. On the other hand, binary encoding of two randomly selected vertices needs
at most 2(1+⌊log2 x⌋). In order to use the entropy compression we must compare
these two binary encodings and show that the binary encoding of the record R

requires less bits than the binary encoding of random selection.
By the assumption of Theorem 2.6 each part Vi is of size

x ≥ 8∆.

Thus, it holds that
log2 x ≥ 3 + log2∆.

Thanks to the properties of the floor function

⌊log2 x⌋ ≥ ⌊3 + log2∆⌋

⌊log2 x⌋ ≥ 3 + ⌊log2∆⌋

Therefore,
⌊log2 x⌋ > 2 + ⌊log2∆⌋.

In order to get the requiring comparison, we make some trivial addition

2 + 2⌊log2(x)⌋ > 4 + ⌊log2(x)⌋+ ⌊log2(∆)⌋.

And finally, if we arrange expressions into brackets according to binary en-
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codings, we get that

2
(︂
1 + ⌊log2(x)⌋

)︂
>
(︂
1 + (1 + ⌊log2(x)⌋) + (1 + ⌊log2(∆)⌋)

)︂
+ 1.

Therefore, the binary encoding of the record R of the Algorithm 2 is smaller
than the binary encoding of the random selection as long as the size of each part
Vi is at least 8∆.

Which means that we are able to binary encode the whole process of the
Algorithm 2 in such a way that we need less bits for the record R than for
binary encoding of each randomly selected vertex from an independent transversal
separately and at the same time from the final record R we are able to reconstruct
the whole process of Algorithm 2. Therefore, by Theorem 1.7 the algorithm
terminates, i.e. we will find an independent transversal of the graph G.
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Chapter 3

Shrinking hypergraphs

The Lovász local lemma and its related methods are effective proof techniques
which are quite simple to apply. But sometimes we can achieve better results
without these techniques and in this chapter we will look at one such example.

Klimošová and Thomassé in their article [23] showed that for every ℓ, there
exists dℓ such that every every 3-edge connected graph with minimum degree dℓ

can be edge partitioned into paths with length ℓ which divides the number of
edges of this graph. One of the tools used in their article is the following Lemma
3.1 which was proved using entropy compression (see Section 3.1 for definitions).

Lemma 3.1 . Let H = (V,E) be a hypertree with hyperedges of size at most three.
It is possible to shrink all hyperedges of size three so that the resulting graph is a
spanning tree T such that

dT (v) ≥
dH(v)

100

for every v ∈ V .

In this chapter we will formulate an improvement of this lemma valid for
hypertrees with hyperedges of any size (not only for hypertrees with hyperedges
of size at most 3) and which provides a better final bound for degrees of vertices
in the resulting spanning tree.

3.1 Definitions

A hypergraph is a pair H = (V,E), where V is a finite set and E ⊆ 2V .
Elements of V are called vertices, and the elements of set E are called hyperedges
of hypergraph H.

The size of a hyperedge e ∈ E is the number of vertices which form this
hyperedge. If all hyperedges of hypergraph H are exactly of size k, then the
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hypergraph H is called k-uniform. Therefore a graph is a 2-uniform hypergraph.
Hypergraph H which does not contain loops (i.e. hyperedges of size 1) or

repeated hyperedges (i.e. hyperedges which are formed by identical vertex set) is
called simple. In this chapter we will only consider simple hypergraphs so from
now on the adjective simple will be omitted.

v1

v2

v3

v4

v5

v6

v7

v8

e1 = {v4, v6, v7}

e2 = {v5, v6, v7}

e3 = {v2, v6}

e4 = {v7, v8}

e6 = {v1, v2, v3}

e7 = {v3, v5, v8}

Figure 3.1: A hypergraph H with vertex set V = {v1, v2, v3, v4, v5, v6, v7, v8} and
set of hyperedges E = {e1, e2, e3, e4, e5, e6}.

The number of hyperedges which contain vertex v ∈ V is called the degree of
the vertex and is denoted by dH(v).

A connected hypergraph is defined analogously to a connected graph, thus the
hypergraph H is called connected if there is path between every pair of vertices,
i.e. in the hypergraph H there exists a finite sequence of vertices in which every
two vertices are connected by hyperedge in H and in which all vertices, therefore
also all hyperedges, are distinct.

To shrink a hyperedge e means to replace it by an edge e′ (with two endver-
tices, i.e. |e′| = 2) such that e′ ⊊ e. If we shrink every hyperedge of a hypergraph
H then the resulting graph GH is called a shrinked graph of a hypergraph H.
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v1

v2

v3

v4

v5

v6

v7

v8

Figure 3.2: A shrinked graph GH obtained by shrinking every hyperedge of a
hypergraph H.

A hypergraph H = (V,E) is a hypertree if there is a tree T with vertex set V
such that every edge e ∈ E induces a subtree in T (T is then called the underlying
vertex tree of E).

Lovász [25] proved that it is always possible to shrink a hypertree to a tree.

v1 v2

v3

v4

v5v6

Figure 3.3: A hypertree H with highlighted tree T.

There are many ways how we can define directed hypergraphs, however, we
will stick to the definition used in [16]. A directed hypergraph is a pair H⃗ = (V,E⃗),

where V is a finite set of vertices and E⃗ is a set of so called hyperarcs. The
hyperarc is a subset e ⊆ V of H⃗ with designated head v ∈ e and the remaining
vertices e− v are called the tails.

Every hypergraph H = (V,E) can be transformed into a directed hypergraph
by choosing an orientation, i.e. the assignment of a head to each hyperedge from
E.
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v1

v2

v3

v4

v5

v6

v7

v8

e1 = {v4, v6, v7}

e2 = {v5, v6, v7}

e3 = {v2, v6}

e4 = {v7, v8}

e6 = {v1, v2, v3}

e7 = {v3, v5, v8}

Figure 3.4: One of the possible orientations of hypergraph H with highlighted
head of each hyperarc.

The indegree of vertex v in a directed hypergraph H⃗, which is denoted by
dIN
H⃗

(v), is the number of hyperarcs whose head is v. Similarly the outdegree of
vertex v, denoted as dOUT

H⃗
(v), is the number of hyperarcs in which the vertex v

is a tail.
From the definition of a directed hypergraph we can see that every hyperarc

contributes to the indegree of exactly one vertex and also to the outdegree of
k − 1 vertices, where k is the size of this hyperarc.

3.2 Orientation with boundaries

In the previous section we defined an orientation of a hypergraph H, i.e. an
oriented hypergraph H⃗ which we obtain in such a way that we choose one vertex
from every hyperedge of a hypergraph H and this vertex we will designate as its
head vertex.

In the proof of Lemma 3.4 below we will need to create an orientation H⃗ of a
hypergraph H in such a way that an indegree dIN

H⃗
(v) of every vertex v in H⃗ will

be at least as large as a given value. Before formulating the required orientation
lemma we mention some theorems, which will be essential for its proof. Firstly,
we state a lemma allowing us to obtain an orientation H⃗ of a hypergraph H with
indegrees dIN

H⃗
(v) equal to predetermined values:
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Lemma 3.2 [16]. 1 Let H = (V,E) be a hypergraph and let f : V → Z+ be a
mapping of the vertex set V of H into the set of non-negative integers. Then
there is an orientation H⃗ of H such that dIN

H⃗
(v) = f(v) for every v ∈ V if and

only if

(i)
∑︁
v∈V

f(v) = e(H),

(ii)
∑︁
v∈F

f(v) ≥ e(F ) for every F ⊆ V,

where e(F ) denotes the number of hyperedges in the subset F ⊆ V and e(H) is
the number of all hyperedges in H.

An orientation of graphs is a special case of hypergraph orientation for which
we have the following theorem:

Theorem 3.1 [15]. The graph G = (V,E) has an orientation satisfying

dIN
G⃗

(v) ≥ f(v)

where f(v) denotes an integer function defined on the vertices of an undirected
graph G, if and only if for every subset F ⊆ V it holds that∑︂

v∈F

f(v) ≤ e∗(F ),

where e∗(F ) denotes the number of edges incident to F.

This theorem was originally formulated in terms of a lower bound for an
outdegree dOUT

H⃗
(v) of vertices v from vertex set V of graph G, but if we reverse

the orientation of every edge in graph G, i.e. each head will become tail and vice
versa, then this holds also for indegrees.

Now we have everything necessary to formulate and prove the required lemma
about an orientation H⃗ of a hypergraph H that satisfies predetermined lower
bounds of indegrees of every vertex in H⃗. We can extend Theorem 3.1 to hyper-
graphs. For the proof we use a modification of an approach used in [7]:

Lemma 3.3. Let H = (V,E) be a hypergraph and let f : V → Z+ be a mapping
of the vertex set V of H into the set of non-negative integers. Assume that∑︂

v∈F

f(v) ≤ e∗(F ), (3.1)

1Lemma 3.2 was first formulated in [16] but we will use its equivalent formulation from [7].

26



where f(v) is defined on the vertices of an undirected graph H and e∗(F ) denotes
the number of hyperedges incident to F, holds for every F ⊆ V. Then there is an
orientation H⃗ of H such that

dIN
H⃗

(v) ≥ f(v) (3.2)

for every v ∈ V.

Proof. Let g : V → Z+ be a mapping such that

(i)
∑︁
v∈F

g(v) ≤ e∗(F ) for every F ⊆ V,

(ii) g(v) ≥ f(v) for every v ∈ V,

(iii)
∑︁
v∈V

g(v) is the maximum among all functions that satisfy (i) and (ii).

We will show that
∑︁

v∈V g(v) = e(H), where e(H) denotes the number of hyper-
edges of H. Then if we substitute dIN

H⃗
(v) for g(v) there is an orientation H⃗ of a

hypergraph H for which dIN
H⃗

(v) ≥ f(v) for every vertex v ∈ V.

Let X ⊆ V be a set with maximum cardinality for which
∑︁

v∈X g(v) = e∗(X).

Firstly, we want to show that V \X does not contain any vertex w with the
function g(w) equal to the degree of w in the hypergraph H.

It is possible that X is the empty set. If X = V then we are done, so assume
that |X| < |V |. If w is a vertex in V \X for which g(w) = dH(w), where dH(w) is
a degree of w in H, then by maximality of |X| we obtain∑︂

v∈V ∪{w}

g(v) < e∗(X ∪ {w}) ≤ e∗(X) + e∗({w}) =
∑︂
v∈X

g(v) + dH(w) =

=
∑︂
v∈X

g(v) + g(w) =
∑︂

v∈V ∪{w}

g(v),

which is a contradiction. Therefore V \X contains no vertex w with g(w) =

dH(w).

Now we will prove that there exists a function h(v) which satisfies proper-
ties (i) and (ii), but for every vertex v ∈ V, h(v) > g(v) which contradicts the
maximality of

∑︁
v∈V

g(v).

Let z be a vertex in V \X and let h : V → Z+ be a mapping such that
h(v) = g(v) for all v ∈ V \{z} and h(z) = g(z) + 1. Suppose that there exists a
subset F ⊆ V such that

∑︁
v∈F h(v) > e∗(F ). Then z ∈ F and

e∗(F ) ≥
∑︂
v∈F

g(v) =
∑︂
v∈F

h(v)− 1 > e∗(F )− 1,
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which implies that
∑︁

v∈F g(v) = e∗(F ). But by the maximality of |X| and because
F is not contained in X (as z ∈ F and z ∈ V \X) we get that∑︂

v∈F∪X

g(v) =
∑︂
v∈F

g(v) +
∑︂
v∈X

g(v)−
∑︂

v∈F∩X

g(v) ≥

≥ e∗(F ) + e∗(X)− e∗(F ∩X) ≥ e∗(F ∪X),

which is again a contradiction.
Therefore for all subsets F ⊆ V it holds that

∑︁
v∈F h(v) ≤ e∗(F ) and also for

every vertex v ∈ V it holds that h(v) ≥ g(v) ≥ f(v), so the function h satisfies
properties (i) and (ii). However

∑︁
v∈V h(v) =

∑︁
v∈V g(v) + 1, i.e.

∑︁
v∈V h(v) >∑︁

v∈V g(v) which is a contradiction with maximality of
∑︁

v∈V g(v). Hence |X| =
|V | and the proof is done.

We will show an example of a function f(v) that satisfies the assumption of
Lemma 3.3 and so there exists an orientation H⃗ of a hypergraph H in which every
vertex v ∈ V has an indegree at least as large as f(v) (in adition, this function
will be later helpful for proving the Lemma 3.4):

Theorem 3.2. Let H = (V,E) be a hypergraph with hyperedges of size at most
k, then there exists an orientation H⃗ of H in which

dIN
H⃗

(v) ≥ ⌊dH(v)
k
⌋

for every vertex v ∈ V.

Proof. Let F ⊆ V be a subset of vertices of H. Hyperedge on the vertex set X is
incident to F, if X ∩ F ̸= ∅, i.e. if F contains at least one vertex from X. Since
hyperedges of H are of size at most k every subset F ⊆ V may contain at most
k vertices from their vertex set. Therefore, every hyperedge of H can be counted
into e∗(F ) (the number of hyperedges incident to F ) at most k times.

The inequality (3.1) in Lemma 3.3 certainly holds for f(v) = dH(v)
k

.
It follows that ∑︂

v∈F

⌊dH(v)
k
⌋ ≤ e∗(F ),

i.e. the assumption (3.1) also holds for the integer-valued function
∑︁

v∈F ⌊
dH(v)

k
⌋.

Thus there exists an orientation H⃗ of H in which the indegree of every vertex
v ∈ V is

dIN
H⃗

(v) ≥ ⌊dH(v)
k
⌋
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and we are done.

3.3 Heterochromatic spanning tree

An edge coloring of a graph G is a mapping f : E(G)→ N, where the assigned
integers are called colors. A graph G is said to be edge colored if G has assigned
edge coloring. If no two adjacent edges have the same color, then an edge coloring
is called proper.

A subgraph of an edge colored graph is called heterochromatic (also called
rainbow) if it does not contain any two edges with the same color. A spanning
tree of a graph G whose edges have different colors is said to be a heterochromatic
spanning tree.

v1

v2

v3
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v5

v6
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v8

v1

v2

v3

v4

v5

v6

v7

v8

Figure 3.5: An edge colored graph G and its heterochromatic spanning tree T .

One of the tools which we will use in the proof of our improvement of Lemma
3.1 is a necessary and sufficient condition for the existence of a heterochromatic
spanning tree in an edge colored connected graph:
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Theorem 3.3 [35]. An edge colored connected graph G of order n has a hete-
rochromatic spanning tree, if and only if, for any r colors (1 ≤ r ≤ n − 2), the
removal of all edges colored with these r colors from G results in a graph having
at most r + 1 components.

3.4 Improvement of Lemma 3.1

Klimošová and Thomassé [23] improved Lovász result [25] and presented Lemma
3.1. For the proof they use the entropy compression. It turns out that in this
case we can get better bounds using other methods.

We will extend Lemma 3.1 by allowing arbitrary hyperedge size, while proving
a stronger bound for the degrees of vertices in the resulting graph.

Lemma 3.4. Let H = (V,E) be a hypertree with hyperedges of size at most k. It
is possible to shrink all hyperedges of H so that the resulting graph is a spanning
tree T such that for every vertex v ∈ V ,

dT (v) ≥
dH(v)

2k
. (3.3)

Proof. In Theorem 3.2 we proved that there exists an orientation H⃗ of H in which
for every vertex v ∈ V,

dIN
H⃗
≥ ⌊dH(v)

k
⌋.

We will use the properties of the floor function and show that for every vertex
v ∈ V with degree dH(v) ≥ k,

⌊dH(v)
k
⌋ ≥ dH(v)

2k
.

Firstly, we want to prove that for every real x ≥ 1 it is true that

⌊x⌋ ≥ x

2
.

The floor function represents the greatest integer less than or equal to the
original real number, i.e. ⌊x⌋ ≥ x. From the properties of the floor function we
know that

⌊x⌋ ≥ x− 1.
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Let x ≥ 2, then surely is satisfied the inequality

2⌊x⌋ ≥ 2x− 2 ≥ x.

Now let 1 < x < 2. For the floor function of such a real number it is true that
⌊x⌋ = 1, thus

1 = ⌊x⌋ ≥ x

2
.

Therefore, every real number x ≥ 1 satisfies the required inequality

⌊x⌋ ≥ x

2
.

If we substitute dH(v)
k

for x, we get for every vertex v ∈ V with dH(v) ≥ k,

⌊dH(v)
k
⌋ ≥ dH(v)

2k
.

Therefore, the orientation H⃗ of H satisfies

dIN
H⃗

(v) ≥ dH(v)

2k

for every v ∈ V with dH(v) ≥ k.

The next step is to show that if we replace each hyperarc with vertex set
X from the orientation H⃗ with a star graph on X, then we obtain a graph GH

admitting a heterochromatic spanning tree T.
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Figure 3.6: A representation of hyperedges by complete graphs.
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Let ˜︁GH be the graph obtained from H by replacing every hyperedge with the
vertex set X in H by a complete graph on X, i.e. we connect every vertex v ∈ X

with every other vertex from X, as illustrated in Figure 3.6. If we color edges of
each complete graph on X according to its original hyperedge, we obtain edge
colored graph ˜︁GH in which there surely exists a heterochromatic spanning tree,
since H is the hypertree.

Now let us look at a different way of replacing hyperedges to obtain a graph.
We can represent every hyperarc with vertex set X of a directed hypertree H⃗

by a star graph on X such that the central vertex of this star graph is the head
vertex of the corresponding hyperarc, as illustrated in Figure 3.7. Let GH denote
the graph obtained from H by replacing every hyperedge of H⃗ with a star graph.

v1

v2

v3

v4

v5

v6

(a) A directed hypertree H⃗ with a highlighted head ver-
tex in every hyperarc.

v1

v2

v3

v4

v5

v6

(b) A graph GH in which every hyperarc is represented
by a star graph with an central vertex in its head ver-
tex.

Figure 3.7: A representation of hyperarcs by star graphs.

Color edges of every star graph of GH in the same way as the edge coloring of
complete graphs in ˜︁GH , i.e. assign one color to all edges of the star graph on the
vertex set X obtained by replacing hyperedge with the vertex set X. Therefore,
each star graph obtained from different hyperedge will have distinct edge color.

In edge colored graph GH there exists a heterochromatic spanning tree T .
That is because we have already shown that ˜︁GH contains a heterochromatic span-
ning tree and since the number of components in Lemma 3.3 does not change if we
are replacing hyperedges by complete graphs or any other connected subgraphs
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on the same vertex set, GH must contain a heterochromatic spanning tree as well.
At last, we will prove that every vertex v ∈ V has a degree

dT (v) ≥
dH(v)

2k

in the heterochromatic spanning tree T obtained from GH .

To obtain a heterochromatic spanning tree T we select exactly one edge from
every edge colored star graph. Since every hyperarc on the vertex set X con-
tributes to the indegree of its head vertex v ∈ X in H⃗, the selection of an edge
from star graph on X to the heterochromatic spanning tree T will contribute to
the degree of central vertex v ∈ X in T. Thanks to the properties of the orien-
tation H⃗ every vertex v for which dH(v) ≥ k in H⃗ has indegree dIN

H⃗
≥ dH(v)

2k
,

therefore, vertex v will certainly have dT (v) ≥ dH(v)
2k

.

For the vertices with degree less than k the inequality holds automatically,
because the resulting heterochromatic spanning tree T is a connected graph,
which means that each of its vertices must have degree at least 1.

Therefore, each vertex has degree

dT (v) ≥
dH(v)

2k

in the heterochromatic spanning tree T .
We obtained spanning tree T from hypertree H by replacing every hyperedge

from H by exactly one edge in T. Therefore, we shrinked H to T.
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Conclusion

In this thesis, we studied Lovász local lemma and related methods. We pro-
vided a brief summary of this methods and its applications.

In Chapter 2 we introduced the problem of finding a sufficient condition for the
existence of an independent transversal in a graph. We constructed an algorithm
for finding an independent transversal in a graph with maximum degree ∆ with its
vertex set partitioned into parts of size |Vi| ≥ 8∆ and afterwards we proved with
application of the entropy compression that this algorithm terminates, therefore,
it finds an independent transversal in such a graph.

In Chapter 3, we introduced the basic definitions from the hypergraph theory
and dealt with the shrinking of hypergraphs. We showed that for a result from
[23] originally proved by the entropy compression it is possible to derive a stronger
and more general statement by other method.
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