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Abstract
A graph is said to be distance-hereditary if the distance function in every connected
induced subgraph is the same as in the graph itself. We prove that the ordinary
Weisfeiler–Leman algorithm tests the isomorphism of any two graphs if one of them
is distance-hereditary; more precisely, the Weisfeiler–Leman dimension of the class
of finite distance-hereditary graphs is equal to 2. The previously best known upper
bound for the dimension was 7.
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1 Introduction

Over the past few decades, the Weisfeiler–Leman algorithm (WL) has become one
of the most studied tools for testing isomorphism of finite graphs [3]. This algorithm
colors the arcs of the graphs in question and then compares the numerical invariants of
the obtained colorings; the graphs are declared to be isomorphic if the corresponding
invariants are equal, and nonisomorphic otherwise. In the general case, the output is

B Alexander L. Gavrilyuk
gavrilyuk@riko.shimane-u.ac.jp

Roman Nedela
nedela@ntis.zcu.cz

Ilia Ponomarenko
inp@pdmi.ras.ru

1 Shimane University, Matsue, Japan

2 Department of Mathematics, University of West Bohemia, Pilsen, Czech Republic

3 School of Mathematics and Statistics of Central China Normal University, Wuhan, China

4 St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg, Russia

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00373-023-02683-3&domain=pdf
http://orcid.org/0000-0001-9296-0313


   84 Page 2 of 19 Graphs and Combinatorics            (2023) 39:84 

not always true, for example, if the input graphs are nonisomorphic strongly regular
graphs with the same parameters.

Stronger isomorphism invariants are obtained if, instead of coloring the arcs, one
considers coloring the d-tuples of vertices, d > 2; the corresponding generalization
is called the d-dimensional Weisfeiler–Leman algorithm or the d-dim WL for short.
It was introduced by Babai (see also [15]) and played an essential role in his recent
quasipolynomial algorithm testing isomorphism of arbitrary graphs [2]. For d = 1
and d = 2, the d-dim WL coincides with the naive refinement and ordinary WL,
respectively.

It can be shown that, given a graph X , there exists a positive integer dX such that if
d ≥ dX , then the d-dim WL identifies X (i.e., tests isomorphism between X and any
other graph); the smallest such dX is called the WL-dimension of the graph X . (For
the exact definitions, we refer the reader to Sect. 2.) An equivalent definition of the
WL-dimension can also be stated in terms of first-order logic with counting quantifiers
and a bounded number of variables; the interested reader is referred to the monograph
[11].

A rather general problem can be formulated as follows: determine the maximum
WL-dimension of a graph belonging to a given class K; this number is called the
WL-dimension of K (cf. [11, Definition 18.4.3]). Although the WL-dimension of the
class of all graphs cannot be bounded by a constant [5], for many natural graph classes
the situation is different. Among these classes are the interval graphs [9], the planar
graphs [16], and many others (see, e.g., [13] and references therein).

In a recent paper [12], it was proved that the WL-dimension of the class of graphs
of rank width at most r is less than or equal to 3r + 4. From [19, Proposition 7.3],
it follows that if r = 1, then the latter class coincides with the well-known class
of distance-hereditary graphs introduced in [14] (see also [4]); a graph is said to be
distance-hereditary if the distance function in every connected induced subgraph is
the same as in the graph itself. Thus, according to [12], theWL-dimension of the class
of distance-hereditary graphs is at most 7. The main result of the present paper shows
that this upper bound is not tight. More precisely, the following theorem holds.

Theorem 1 TheWL-dimension of the class of finite distance-hereditary graphs is equal
to 2.

Note that when the dimension of a graph class K is bounded from above by a
constant d, the graph isomorphism problem restricted to K is solved in polynomial
time by the d-dimWL. Thus, Theorem 1 shows that this conclusion holds with d = 2
ifK is the class of distance-hereditary graphs. An efficient algorithm for this particular
graph isomorphism problem was constructed in [18]; see also [8].

Modulo a characterization of graphs that have WL-dimension 1 (see [1, 17]),
the proof of Theorem 1 reduces to verifying that the WL-dimension of a distance-
hereditary graph is at most 2. To this aim, we use the theory of coherent configurations,
see Sect. 2. Namely, given a graph X the output coloring of the ordinary WL defines a
coherent configurationX , which preserves all information needed to test isomorphism
between X and any other graph.Moreover, it provides a full invariant ofX with respect
to algebraic isomorphisms. Aswas proved in [10], theWL-dimension of the graph X is
at most 2 if and only if the coherent configuration X is separable, i.e., every algebraic
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isomorphism ofX is induced by a suitable combinatorial isomorphism. Thus, we only
need to check that X is separable if X is a distance-hereditary graph. The proof of the
latter is based on an inductive characterization of the distance-hereditary graphs, see
[4, Theorem 1].

To make the paper self-contained, we introduce relevant concepts and statements
of the theory of coherent configurations in Sect. 2. A translation of graph-theoretical
operations (used in the inductive characterization of the distance-hereditary graphs)
to the language of coherent configurations occupies Sections 3 and 4. The proof of
Theorem 1 is given in Sect. 5.

2 Rainbows, Coherent Configurations, Graphs

In our presentation of coherent configurations, we mainly follow the monograph [6],
where all the details can be found.

2.1 Notation

Throughout the paper,� denotes a finite set. For� ⊆ �, the diagonal of the Cartesian
product � × � is denoted by 1�.

For a binary relation r ⊆ � × �, we set r∗ = {(β, α) : (α, β) ∈ r}, αr = {β ∈ � :
(α, β) ∈ r} for an element α ∈ �, �−(r) = {α ∈ � : αr �= ∅}, �+(r) = �−(r∗),
and r f = {(α f , β f ) : (α, β) ∈ r} for any bijection f from � to another set. The
product of the relations r , s ⊆ � × �, is denoted by r · s = {(α, β) : (α, γ ) ∈
r , (γ, β) ∈ s for some γ ∈ �}.

For a set S of relations on �, we denote by S∪ the set of all unions of elements
of S, put S∗ = {s∗ : s ∈ S}, and S f = {s f : s ∈ S} for any bijection f from � to
another set. For r ⊆ � × �, we define r · S = {r · s : s ∈ S}, S · r = {s · r : s ∈ S},
and αS = ∪s∈Sαs, α ∈ �.

For a class � of a partition π , we set π \ � = π \ {�}.

2.2 Rainbows

Let� be a finite set and S a partition of�×�. A pairX = (�, S) is called a rainbow
on � if

1� ∈ S∪, and S∗ = S. (2.1)

A rainbow can be thought of as an arc-colored complete directed graph with loop at
each vertex, such that the colors of loops are different from those of other arcs and
each color class is symmetric or anti-symmetric.

The elements of the sets�, S =: S(X ), and S∪ are called the points,basis relations,
and relations of X , respectively. A unique basis relation containing a pair (α, β) ∈
� × � is denoted by rX (α, β); we omit the subscript X wherever it does not lead to
misunderstanding.
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A set � ⊆ � is called a fiber of a rainbow X if 1� ∈ S; the set of all fibers is
denoted by F := F(X ). The point set � is the disjoint union of the fibers. If � is a
union of fibers, then the pair

X� = (�, S�)

is a rainbow, where S� consists of all s� = s ∩ (� × �), s ∈ S. In what follows, we
set X \ � = X�\�.

Let X = (�, S) and X ′ = (�′, S′) be rainbows. A bijection f : � → �′ is called
a combinatorial isomorphism (or simply isomorphism) from X to X ′ if S f = S′.
When X = X ′, the set of all these isomorphisms form a permutation group on �.
This group has a (normal) subgroup

Aut(X ) = { f ∈ Sym(�) : s f = s for all s ∈ S}

called the automorphism group of X .

2.3 Coherent Configurations

A rainbow X = (�, S) is called a coherent configuration if, for any r , s, t ∈ S, the
number

ctrs := |αr ∩ βs∗|

does not depend on the choice of (α, β) ∈ t ; the numbers ctrs are called the intersection
numbers of X . In this case, the set S∪ contains the relation r · s for all r , s ∈ S∪; this
relation is obviously the (possibly empty) union of those t ∈ S for which ctrs �= 0.

Let X be a coherent configuration. Then for any s ∈ S, the sets �−(s) and �+(s)
are fibers of X . In particular, the union

S =
⋃

�,�∈F(X )

S�,�

is disjoint, where S�,� consists of all s ∈ S, contained in � × � . The number |δs|
with δ ∈ � equals the intersection number c1�

ss∗ , and hence does not depend on the
choice of the point δ. It is called the valency of s and denoted by ns .

2.4 Algebraic Isomorphisms and Separability

Let X = (�, S) and X ′ = (�′, S′) be coherent configurations. A bijection ϕ : S →
S′, r �→ r ′ is called an algebraic isomorphism from X onto X ′ if

ctrs = ct
′
r ′s′ , r , s, t ∈ S; (2.2)

the set of all such ϕ is denoted by Isoalg(X ,X ′).
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Each isomorphism f from X onto X ′ induces an algebraic isomorphism between
these configurations, which maps r ∈ S to r f ∈ S′. A coherent configurationX is said
to be separable if every algebraic isomorphism from X to another coherent configu-
rationX ′ is induced by a bijection from � to �′ (which in this case is an isomorphism
of the configurations in question). In other words, a coherent configuration X is sep-
arable when the tensor of its intersection numbers defines X up to isomorphism; for
example, this is the case when all the valencies of X are equal to 1.

The algebraic isomorphism ϕ induces a bijection from S∪ onto (S′)∪: the union
r ∪s∪· · · of basis relations ofX is taken to r ′ ∪s′ ∪ · · · . This bijection is also denoted
by ϕ. It preserves the dot product, i.e., ϕ(r · s) = ϕ(r) · ϕ(s) for all r , s ∈ S.

One can see that if � ∈ F(X ), then ϕ(1�) = 1�′ for some �′ ∈ F(X ′) (and |�| =
|�′|); we also denote such a �′ by �ϕ . This extends ϕ to a bijection F(X ) → F(X ′)
so that (1�)′ = 1�′ for all �.

2.5 Parabolics and Quotients

Let X = (�, S) be a rainbow. An equivalence relation on � that is a union of basis
relations of X is called a parabolic of X . The parabolic 1� is said to be trivial. A
parabolic is said to be maximal if it is inclusion-wise maximal. Suppose further that
X is a coherent configuration. An important property of a parabolic e is that if ϕ is an
algebraic isomorphism fromX to a coherent configurationX ′, then ϕ(e) is a parabolic
of X ′ and

|αe| = |α′e′|, for all α ∈ �, α′ ∈ �′, � ∈ F(X ), (2.3)

where e′ = ϕ(e) and �′ = �ϕ . When X = X ′ and ϕ is the identity map, this shows
that the classes of the equivalence relation e restricted to � ∈ F(X ) have the same
cardinality.

Let e be an equivalence relation on �. Denote by �/e the set of all classes of e.
The map

ρe : � → �/e, α �→ αe, (2.4)

is obviously a surjection. It naturally induces a surjection from the binary relations on
� to those on �/e. We put

S/e := ρe(S) = {ρe(s) : s ∈ S}.

Given a partition π of �, we set π/e to be the partition of �/e with classes ρe(�),
� ∈ π .

Suppose that e is a parabolic of X . Then the pair

X /e = (�/e, S/e)
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is a coherent configuration. The mapping ρe induces a surjection from the parabolics
(respectively, fibers) of X on those of X /e. Every algebraic isomorphism ϕ from X
onto a coherent configuration X ′ induces a natural algebraic isomorphism from X /e
onto X ′/e′, taking ρe (s) to ρe′(ϕ(s)) for all s ∈ S, where e′ = ϕ(e). Further details
can be found in [6, Section 2.1.3].

2.6 Graphs

By a graphwemean a finite simple undirected graph, i.e., a pair X = (�, E) of a finite
set � of vertices and an irreflexive symmetric relation E ⊆ � × �, which represents
the edge set of X . The elements of E =: E(X), which are ordered pairs of vertices,
are called arcs, and E is the arc set of the graph X . Two vertices α, β ∈ � are said to
be adjacent (in X ) whenever (α, β) ∈ E ; we also say that β is an X -neighbor of α.
A vertex is said to be pendant, if it has a unique X -neighbor. The graph X is regular
if the number of X -neighbors of α is the same for all vertices α ∈ �. The distance
between any two vertices of X is defined as usual to be the length of a shortest path
in X from one to the other. For � ⊆ �, let X \ � denote the subgraph of X induced
by � \ �.

Two vertices α and β of X are called twins (in X ) if, for any vertex γ ∈ � \ {α, β},
the set γ E contains either both α and β or none of them. The relation e “to be twins
in X” is an equivalence relation on �. An equivalence relation contained in e is called
a twin equivalence of X .

Let e be a twin equivalence of X . Denote by X/e the graph with vertex set �/e, in
which two distinct vertices αe, βe are adjacent whenever every two vertices, one in
αe and the other in βe, are adjacent in X . We say that X/e is the quotient graph of
the graph X .

Lemma 2.1 Let e be a twin equivalence of a graph X. Then the quotient graph X/e
is isomorphic to an induced subgraph of X.

Proof By the definition of X/e, αe and βe are adjacent in X/e if and only if α′ and β ′
are adjacent in X for all α′ ∈ αe, β ′ ∈ βe. Thus, X/e can be seen as a graph obtained
from X by removing from each equivalence class of e all but one (arbitrarily chosen)
vertex.

�

A graph X is called distance-hereditary if the distance between any two vertices

in any connected induced subgraph of X is the same as it is in X . The lemma below
immediately follows from the definition.

Lemma 2.2 An induced subgraphof adistance-hereditary graph is distance-hereditary.

Let us recall the three one-vertex extensions by means of which all finite con-
nected distance-hereditary graphs (and only those) can be constructed (see Theorem
2.3 below). Let X be a graph and let α be any vertex of X . Extend X to a graph X ′ by
adding a new vertex α′ to X with new edges from α′ to either
• only α,
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• α and all its X -neighbors,
• just all X -neighbors of α.

In the first case the new vertex α′ has degree 1 in X ′ and we say that X ′ is obtained
from X by attaching a pendant vertex, which is α′. In the remaining two cases the
vertices α, α′ are twins in X ′, and we say that X ′ is obtained from X by splitting a
vertex.

Theorem 2.3 [4, Theorem 1] A finite connected graph is distance-hereditary if and
only if it is obtained from the one-vertex graph by a sequence of one-vertex extensions:
attaching pendant vertices and splitting vertices.

Corollary 2.4 A distance-hereditary graph with at least two vertices has either a pen-
dant vertex or two distinct twins.

2.7 Coherent Closure

There is a natural partial order ≤ on the set of all coherent configurations on the same
set �. Namely, given two coherent configurations X = (�, S) and X ′ = (�, S′), we
set

X ≤ X ′ ⇔ S∪ ⊆ (S′)∪.

The coherent closureWL(T ) of a set T of relations on � is defined to be the smallest
(with respect to ≤) coherent configuration X on � such that each element of T
belongs to S(X )∪. The operator WL is monotone in the sense that if S∪ ⊆ T∪,
thenWL(S) ≤ WL(T ) and, moreover,WL(ρe(S)) ≤ WL(ρe(T )) if e is an equivalence
relation on �. For a partition π of �, we denote by WL(T )π the coherent closure of
the union of a set T and all 1�, � ∈ π .

Lemma 2.5 Let X = (�, S) and Y = (�, T) be coherent configurations such that
X ≥ Y , and π = F(X ). Then π = F(WL(T)π ).

Proof Let σ = F(WL(T)π ). By the definition of a coherent closure, σ∪ ⊇ π∪. On
the other hand, π = F(X ) and X ≥ Y implies X = WL(S)π ≥ WL(T)π and hence
σ∪ ⊆ π∪. This yields σ = π , as σ and π are partitions of the same set �. �


Let X be a graph and π be a partition of its vertex set�. The coherent configuration
WL(X) of X is defined to be the coherent closure of the set T = {E(X)}, and we set
WL(X)π = WL(T )π . The following lemma is a special case of [6, Theorem 2.6.4].

Lemma 2.6 In the above notation, denote byAut(X)π the subgroup ofAut(X) leaving
each class of π fixed. Then Aut(WL(X)π ) = Aut(X)π .

In the present paper, we avoid (vertex) colored graphs, instead we prefer to speak
of a graph X equipped with a partition π of the vertex set (of X ). We say that π is
correct if

π = F(WL(X)π ),
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In what follows, we also say that π is a correct partition of the graph X .
The exact definition of theWL-dimension of a graph requires a discussion about the

d-dimensional Weisfeiler–Leman algorithm, which is beyond the scope of the present
paper; we refer the interested reader to the monograph [11]. In the theorem below, we
cite a characterization of regular graphs of WL-dimension 1 and a characterization of
graphs of theWL-dimension at most 2. The proofs can be found in [1, Lemma 3.1(a)],
[17] and [10, Theorem 2.1], respectively.

Theorem 2.7 Let X be a graph and d be the WL-dimension of X.

(1) If X is regular, then d = 1 if and only if X or its complement is isomorphic to a
complete graph, a cocktail party graph1, or the 5-cycle.

(2) d ≤ 2 if and only if the coherent configuration WL(X) is separable.

3 Twins in Coherent Configurations

Let X = (�, S) be a rainbow. Two points α and β are called X -twins if

r(γ, α) = r(γ, β) for all γ ∈ � \ {α, β}.

(Note that if r(γ, α) = r(γ, β) holds for all γ ∈ �, then necessarily α = β.)
Obviously, any two X -twins belong to the same fiber of X . Furthermore, the relation
“being X -twins” is an equivalence relation on �. We denote it by eX . Recall that if e
is a relation and � is a union of fibers of X , then e� denotes e ∩ (� × �) (see Sect.
2.2).

Lemma 3.1 Let X be a coherent configuration. Then e := eX is a parabolic of X .
Moreover, for all irreflexive relations r , s ∈ S(X ), we have r = s if and only if
ρe(r) = ρe(s).

Proof The equivalence relation e is the union of e�,� ∈ F(X ). Thus, to prove the first
statement, by [6, Proposition 2.1.18], it suffices to verify that e� is a partial parabolic
for every fiber�. To this end, for� ∈ F(X ) and s ∈ S := S(X ) such that� = �−(s),
put

e(s) := {(α, β) ∈ �2 : αs = βs},

and then e� coincides with

⋂

s∈S: �−(s)=�

e(s). (3.1)

Since e(s) is a parabolic ofX� by [7, Exercise 2.7.8(1)], it follows that e� is a parabolic
of X�.

1 A matching graph in the terminology of [1].
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To prove the second statement, it suffices to verify that if relations r , s ∈ S are
irreflexive and ρe(r) = ρe(s), then r = s. Suppose on the contrary that r �= s.
Without loss of generality, we may assume that there exists a pair (α, β) belonging
to r \ s. Since the pair (αe, βe) belongs to both ρe(r) and ρe(s), one can find points
α′ ∈ αe and β ′ ∈ βe such that r(α′, β ′) = s. On the other hand, since e = eX , this
implies that α, α′ are X -twins and

r(β, α) = r∗ = r(β, α′)

and hence, as β, β ′ are X -twins,

r = r(α′, β) = r(α′, β ′) = s,

whence r = s, a contradiction.
�


In view of Lemma 3.1, the equivalence relation eX is called the twin parabolic
of the coherent configuration X . A characterization of the twin parabolic among the
other parabolics of a coherent configuration is given in the following statement.

Lemma 3.2 Let e be a parabolic of a coherent configuration X . Then e = eX if and
only if e is a maximal parabolic of X satisfying the following two conditions2:

(1) e · s = s for all s ∈ S(X ) such that s ∩ e = ∅;
(2) e� = 1� or e� \ 1� ∈ S(X ) for all � ∈ F(X ).

Proof To prove the “only if” part, assume that e = eX . Then Condition (1) is obvious
(note that the equality in (1) may not hold if s ⊆ e; for example, when, for some
� ∈ F(X ), s ⊆ �×� and e� = �×�). To prove that Condition (2) holds, suppose
on the contrary that e� \ 1� /∈ S(X ). Then there are two distinct irreflexive basis
relations r and s such that r ∪ s ⊆ e�; in particular, this means that if α, β ∈ � and
r(α, β) ∈ {r , s}, then ρe(α) = ρe(β). It follows that

ρe(r) = ρe(1�) = ρe(s),

which, by Lemma 3.1, implies that r = s, a contradiction. Finally, to prove the
maximality of e, let e � e′ for some parabolic e′ of X . Then there exist α and β

that are not X -twins but (α, β) ∈ e′. It follows that the relations r = r(α, γ ) and
s = r(β, γ ) are distinct for some point γ . But then e · s ⊇ r ∪ s �= s and so
Condition (1) is violated for e′.

To prove the “if” part, assume that e is a maximal parabolic of X satisfying Condi-
tions (1) and (2). Then Condition (1) implies that every two points α and β such that
(α, β) ∈ e are X -twins. Consequently, e ⊆ eX . Now the required statement follows
from the maximality of e. �

2 In fact, for the “if” part, Condition (1) already suffices.
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Every algebraic isomorphism preserves the inclusion between the relations, the dot
product and parabolics. Thus, the following corollary is an immediate consequence of
Lemma 3.2.

Corollary 3.3 Let ϕ ∈ Isoalg(X ,X ′). Then ϕ(eX ) = eX ′ .

We complete the section with a statement showing a relationship between twins in
graphs and in coherent configurations.

Lemma 3.4 Let X be a graph, π a correct partition of X, and X = WL(X)π . Then

(1) every two X -twins are twins in X;
(2) every two twins in X belonging to the same fiber of X are X -twins.

Proof Part (1) follows by E(X) ∈ S(X )∪. Let � be the vertex set of X , and let α, β

be distinct twins in X . Then the transposition (α, β) ∈ Sym(�) is an automorphism
of X fixing pointwise the set � \ {α, β} and permuting α and β. If α, β are contained
in the same fiber of X , then this transposition preserves the partition π = F(X ) of �,
hence it is an automorphism of X by Lemma 2.6. This immediately proves Part (2). �


4 Two Operations

In this section we consider two operations on graphs: removing a matching and
reducing twins, which consist in removing subsets of vertices satisfying certain con-
ditions. In both cases, the resulting graph is an induced subgraph of the original one.
Our goal is to show how these operations affect the coherent configurations of graphs.

Throughout this section X = (�, E) is a graph.

4.1 Matchings

Let X = (�, S) be a coherent configuration. A basis relation m ∈ S is called a
matching if m is irreflexive and nm = nm∗ = 1. If this is the case, then, for every
α ∈ �−(m), the set αm is a singleton, whose unique element is also denoted by αm by
abuse of notation. Note that a matching m defines a bijection from �−(m) to �+(m).
Furthermore, one can see that if a relationm ·s (similarly, s ·m) with s ∈ S is nonempty,
then it is a basis one.

Suppose further that E ∈ S∪ and let m be a matching of X . If �−(m) �= �+(m)

and for any δ ∈ �−(m) the vertex δm is a unique X -neighbor of δ (i.e., the vertices
of �−(m) are all pendant), then m is called a pendant matching of X . If, for any
δ ∈ �−(m), the vertex δm is a twin of δ in X , then m is called a twin matching of
X . It is more precise to speak about pendant or twin matchings of X with respect to
the graph X ; in what follows we omit X if it is clear from the context.

Proposition 4.1 (Removing matching) Let X be a graph, π a correct partition of X,
m a matching ofWL(X)π , and � := �−(m). If m is pendant or twin, then

WL(X)π \ � = WL(X \ �)π\�, (4.1)
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and π \ � is a correct partition of X \ �.

Proof Put

X := (�, S) = WL(X)π , Y = X \ �, Y := (� \ �, S′) = WL(X \ �)π\�,

so that Eq. (4.1) can be rewritten as X \ � = Y , and we aim to prove this equality.
Since π is a correct partition, one has 1� ∈ S(X ), for all � ∈ π \ �, and thus

1� ∈ S(X \ �). Furthermore, since E(Y ) = E(X \ �) ∈ S(X \ �)∪ and Y is the
minimal coherent configuration containing E(Y ) and 1� , for all � ∈ π \ �, among
its relations, we have S(Y)∪ ⊆ S(X \ �)∪, i.e.,

X \ � ≥ Y . (4.2)

Let T be the set of nonempty binary relations on � belonging to the set

S′ ∪ m · S′ ∪ S′ · m∗ ∪ m · S′ · m∗.

One can see that T is a partition of � × � that satisfies Eq. (2.1); this allows us to
define an auxiliary rainbow X ′ = (�, T). Moreover, observe that

T�,� = m · S′ · m∗, (4.3)

T�,�\� = T∗
�\�,� = m · S′, (4.4)

T�\�,�\� = S′. (4.5)

Claim 4.2 Suppose that X ′ is a coherent configuration and E ∈ T∪. Then the conclu-
sion of the proposition holds.

Proof By E ∈ T∪, we see thatX ′ ≥ WL(X). Furthermore, the partition F(X ′) of� is a
refinement ofπ = F(X ), since F(X ′) = F(Y)∪{�} by the construction ofX ′ and F(Y)

is a refinement of π \� by the definition of Y . This implies that X ′ ≥ WL(X)π = X .
Hence, we obtain

X \ � ≤ X ′ \ � = Y, (4.6)

which, together with Eq. (4.2), yieldsX \� = Y , as required. Moreover, then F(Y) =
F(X \ �) = π \ � holds, i.e., π \ � is a correct partition of the graph X \ �. �


We need the following two claims to complete the proof of the proposition by using
Claim 4.2.

Claim 4.3 X ′ is a coherent configuration.

Proof We need to verify that the number

a = |αr ∩ βs∗|
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does not depend on the choice of (α, β) ∈ t for all r , s, t ∈ T. Let ct
′
r ′,s′ with r

′, s′, t ′ ∈
S′ stand for the intersection numbers of Y .

Obviously, a = 0 for all (α, β) ∈ t , if�+(r) �= �−(s); otherwise, Eqs. (4.3)–(4.5)
show that, up to replacing any of r , s, t ∈ T by r∗, s∗, t∗, respectively, we need to
consider the following cases:

• r , s, t ∈ S′: here clearly a = ctr ,s holds;
• r ∈ S′ ·m∗, s ∈ m · S′ and t ∈ S′: here r = r ′ ·m∗, s = m · s′ for some r ′, s′ ∈ S′,
and hence

a = |αr ∩ βs∗| = |α(r ′ · m∗) ∩ β(s′∗ · m∗)| = |αr ′ ∩ βs′∗| = ctr ′,s′ ;

• r ∈ m · S′, s ∈ S′ and t ∈ m · S′: here r = m · r ′, t = m · t ′ for some r ′, t ′ ∈ S′,
and hence

a = |α(m · r ′) ∩ βs∗| = |(αm)r ′ ∩ βs∗| = ct
′
r ′,s;

• r ∈ m · S′ ·m∗, s ∈ m · S′ and t ∈ m · S′: here r = m · r ′ ·m∗, s = m · s′, t = m · t ′
for some r ′, s′, t ′ ∈ S′, and hence

a = |α(m · r ′ · m∗) ∩ β(s′∗ · m∗)| = |(αm)r ′ ∩ βs′∗| = ct
′
r ′,s′ ;

• r ∈ m ·S′, s ∈ S′ ·m∗ and t ∈ m ·S′ ·m∗: here r = m ·r ′, s = s′ ·m∗, t = m · t ′ ·m∗
for some r ′, s′, t ′ ∈ S′, and hence

a = |α(m · r ′) ∩ β(m · s′∗)| = |(αm)r ′ ∩ (βm)s′∗| = ct
′
r ′,s′ ;

• r , s, t ∈ m · S′ ·m∗: here r = m · r ′ ·m∗, s = m · s′ ·m∗, t = m · t ′ ·m∗ for some
r ′, s′, t ′ ∈ S′, and, as above, a = ct

′
r ′,s′ holds.

Thus, in any case the number a does not depend on the choice of (α, β) ∈ t , and
we are done. �

Claim 4.4 E ∈ T∪ holds.

Proof We first note that E�\� = E(Y ) ∈ T∪ holds, since E(Y ) ∈ (S′)∪ by the
definition of Y and S′ ⊆ T by the definition of X ′. If m is a pendant matching, then
obviously E = m ∪ m∗ ∪ E(Y ), so we are done by m ∈ T.

Suppose that m is a twin matching. Choose an arbitrary s ∈ T with m · s �= ∅.
Observe that, for any δ ∈ �, γ := δm, and β ∈ γ s, we have that rX ′(δ, β) = m · s.
As δ and γ are twins in X , i.e., (γ, β) ∈ E ⇔ (δ, β) ∈ E , we see that

s ⊆ E ⇔ m · s ⊆ E and s ∩ E = ∅ ⇔ (m · s) ∩ E = ∅. (4.7)

If �+(s) ⊆ � \ �, then s ∈ S′ by Eq. (4.5). Since s is a basis relation of Y and
E(Y ) ⊆ E , it follows that (s ∩ E �= ∅ ⇒ s ⊆ E) holds. By Eq. (4.7), we obtain

s′ ∈ S′, (m · s′) ∩ E �= ∅ ⇒ m · s′ ⊆ E . (4.8)
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If �+(s) = �, then s = s′ · m∗ for s′ = rX ′(γ, βm), s′ ∈ S′ by Eq. (4.3). As β

and βm are twins in X , we see that

s ⊆ E ⇔ s′ ⊆ E and s ∩ E = ∅ ⇔ s′ ∩ E = ∅. (4.9)

As above, it follows that (s′ ∩ E �= ∅ ⇒ s′ ⊆ E) holds. By Eqs. (4.7), (4.9), this
implies that

s′′ ∈ S′, (m · s′′ · m∗) ∩ E �= ∅ ⇒ m · s′′ · m∗ ⊆ E . (4.10)

By Eqs. (4.8) and (4.10), we conclude that

E�,� =
⋃

�∈π

E�,� = E� ∪ ( ⋃

�∈π\�
E�,�

) ∈ (m · S′ ∪ m · S′ · m∗)∪ ⊆ T∪,

which, together with E∗
�,� = E�,�, implies that E = E�,� ∪ E∗

�,� ∪ E�\� ∈ T∪,
as required.

�

Claims 4.3 and 4.4 show that X ′ satisfies the assumption of Claim 4.2, whence the

proposition follows. �

Proposition 4.5 In the notation of Proposition 4.1, WL(X)π \ � is separable if and
only ifWL(X)π is separable.

Proof The result follows from [10, Lemma 3.3(1)]. �


4.2 Twins

Let π be a correct partition of the graph X and e the twin parabolic ofWL(X)π . Recall
(see Sect. 2.5) that π/e := ρe(π), where ρe is the mapping defined by Eq. (2.4). Since
ρe maps fibers to fibers, we have that

π/e = F(WL(X)π/e). (4.11)

The next proposition is an analogue of Proposition 4.1 in regard to twins in a graph.

Proposition 4.6 (Reducing twins) Let X be a graph, π a correct partition of X, and
e the twin parabolic of WL(X)π . Then e is a twin equivalence of X,

WL(X)π/e = WL(X/e)π/e, (4.12)

and π/e is a correct partition of X/e.

Proof The statement about e being a twin equivalence of the graph X follows from
Lemma 3.4 (1). Next, we put

X := (�, S) = WL(X)π , Y = X/e, Y := (�/e, T) = WL(Y )π/e,
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so that Eq. (4.12) can be rewritten as X /e = Y , and we aim to prove this equality.
By the definition of X /e (see Sect. 2.5), it follows that E(Y ) = ρe(E) ∈ S(X /e)∪

and 1� ∈ S(X /e) for every � ∈ π/e = F(X /e) by Eq. (4.11). Since Y is the minimal
coherent configuration containing E(Y ) and 1� , for all � ∈ π/e, among its relations,
we have

X /e ≥ Y . (4.13)

In order to proveX /e ≤ Y , we first note that since F(X /e) = π/e andY = WL(Y )π/e,
Lemma 2.5 implies that F(Y) = π/e. Then we need to define an auxiliary rainbow.
To this end, put ρ := ρe and define a set T of binary relations on � as follows:

{ρ−1(t) : t ∈ T is irreflexive} ∪ {e� \ 1� : � ∈ F}
 ∪ {1� : � ∈ F}, (4.14)

where F = F(X ) and, for any set S, S
 stands for S \ {∅}. Then ρ(t) ∈ T for any
irreflexive t ∈ T, and ρ(e� \ 1�) = ρ(1�) = 1ρ(�)

for all � ∈ F(X ). Further, one can see that T is a partition of � × � that satisfies
Eq. (2.1). Therefore, X ′ = (�, T) is a rainbow. Every r ∈ T is a union of some
relations of S; in particular, r ∈ � × � for some �,� ∈ F. Moreover, e ∈ T∪ and
hence it is a parabolic of X ′.

Claim 4.7 Suppose that X ′ is a coherent configuration and E ∈ T∪. Then the conclu-
sion of the proposition holds.

Proof Since E ∈ T∪, we see that X ′ ≥ WL(X). By Eq. (4.14), F(X ′) coincides with
π = F(X ) and hence X ′ ≥ WL(X)π = X .

Furthermore, since ρ(t) ∈ T for all t ∈ T,
it follows X ′/e = Y . Therefore,

X /e ≤ X ′/e = Y, (4.15)

which, together with Eq. (4.13), yieldsX /e = Y , as required. Finally, π/e is a correct
partition of the graph X/e, since F(Y) = π/e. �


We need the following two claims.

Claim 4.8 X ′ is a coherent configuration.

Proof It suffices to verify that the number

a = |αr ∩ βs∗|

does not depend on the choice of (α, β) ∈ t for all r , s, t ∈ T. To this end, we set
δ = ρ(δ) for every δ ∈ �, and note that r = ρ(r), s = ρ(s), and t = ρ(t) are basis
relations of Y . Therefore,

|αr ∩ βs∗| = ctrs .
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and this number does not depend on (α, β) ∈ t . Furthermore, if a = 0 for some
(α, β) ∈ t , then ctrs = 0, because e ⊆ eX ′ (by the definition of T). But then obviously
a = 0 for all (α, β) ∈ t . Thus, without loss of generality, we may assume that a �= 0.

Let γ ∈ αr ∩βs∗. Note that αr ∩βs∗ ⊆ � for some � ∈ F. By Eq. (2.3) (applied to
� = �′ = �), this implies that the number k = |γ e| does not depend on γ ∈ αr∩βs∗.
It follows that

a =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

kctr ,s if r � e ∧ s � e,

k − 1 if (r � e ∧ s ⊆ e′) ∨ (r ⊆ e′ ∧ s � e),

k − 2 if r ⊆ e′ ∧ s ⊆ e′ ∧ t ⊆ e′,
1 otherwise,

where e′ = e \ 1�; here, we made use of the fact that if x ∈ T is contained in e, then
x ⊆ e′ or x ⊆ 1�. Thus, the number a does not depend on the choice of (α, β) ∈ t ,
as required. �

Claim 4.9 E ∈ T∪ holds.

Proof It suffices to verify that E contains each irreflexive t ∈ T such that t ∩ E �= ∅.
Note that the latter condition implies that ρ(t) ∩ ρ(E) �= ∅ and hence ρ(t) ⊆ ρ(E),
since ρ(t) is a basis relation of Y and ρ(E) is a relation of Y . Thus,

ρ−1(ρ(t)) ⊆ ρ−1(ρ(E)).

On the other hand, the relation ρ−1(ρ(t)) is equal to t if ρ(t) is irreflexive, or e� for
some� ∈ F(X ) otherwise (see Eq. (4.14)). In any case, t ⊆ ρ−1(ρ(t)). Furthermore,

ρ−1(ρ(E)) ⊆ E ∪ 1�,

because e is a twin equivalence of X (see above). Thus,

t ⊆ ρ−1(ρ(t)) ⊆ ρ−1(ρ(E)) ⊆ E ∪ 1�.

Since t is irreflexive, this implies that t ⊆ E , as required. �

Claims 4.8, 4.9 show that X ′ satisfies the assumption of Claim 4.7, whence the

proposition follows. �

The following proposition, which holds for any coherent configuration, together

with Proposition 4.6 shows thatWL(X)π is separable ifWL(X/e)π/e is separable, and
this fact will be used in the proof of Theorem 1 in Sect. 5.

Proposition 4.10 A coherent configuration X is separable if X /eX is separable.

Proof Let X = (�, S) and e := eX . Assume that the coherent configuration X /e is
separable. We need to verify that given a coherent configuration X ′ = (�′, S′), any
algebraic isomorphism ϕ : s �→ s′ from X to X ′ is induced by a bijection (see Sect.
2.4). We note that by Corollary 3.3, e′ := ϕ(e) is the twin parabolic of X ′.
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Given � ∈ F(X ), we choose a full system � of distinct representatives of the
classes of the equivalence relation e�, and let � be the union of all �, � ∈ F(X ) and
S = S� be the set of the relations of S restricted to �. Then the pair X = (�, S) is
obviously a rainbow. Since the parabolic e is twin, the natural bijection

h : � → �/e, α �→ αe

is a rainbow isomorphism from X to X /e (see the second part of Lemma 3.1). In
particular, X is a coherent configuration. In a similar way, one can define the sets �′,
�′ ∈ F(X ′), and �′, the rainbow X ′, the isomorphism

h′ : �′ → �′/e′, α′ �→ α′e′,

and check that X ′ is a coherent configuration.
The algebraic isomorphism ϕ induces an algebraic isomorphism ϕ ∈ Isoalg(X /e,

X ′/e′) (see Sect. 2.5). By the proposition assumption, the coherent configurationX /e
is separable. Consequently, ϕ is induced by a bijection, say h. It follows that the
composition mapping f = h ◦ h ◦ (h′)−1 induces the restriction of ϕ to S, i.e.,

r(α, β)′ = r(α f , β f ), α, β ∈ �. (4.16)

Let us extend f to a bijection f : � → �′. To do so, given α ∈ �, we choose
an arbitrary bijection fα : αe → α′e that takes α to α′ = α f (such a bijection exists
because |αe| = |α′e′| in view of Eq. (4.16)). Since the union of αe, α ∈ �, equals �,
the desired bijection f is defined uniquely by the condition f |αe = fα .

To complete the proof it suffices to verify that r(α, β) f = r(α, β)′ for all α, β ∈ �,
i.e., the algebraic isomorphism ϕ is induced by the bijection f . Denote by α and β the
unique points of �, lying in αe and βe, respectively. Then α and β are X -twins of α

and β, respectively. Moreover, from the definition of f , it follows that α f and β f are

X ′-twins of α f and β
f
, respectively. Thus, by Eq. (4.16), we have

r(α, β) f = r(α f , β f ) = r(α f , β
f
) = r(α, β)′ = r(α, β)′,

as required.
�


5 Proof of Theorem 1

To prove Theorem 1, we need the following two auxiliary lemmas.

Lemma 5.1 The WL-dimension of the class of distance-hereditary graphs is greater
than 1.

Proof It follows from Theorem 2.7(1) that a regular graph X has WL-dimension 1 if
and only if X or its complement is isomorphic to a complete graph, a cocktail party
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graph, or the 5-cycle. Since Kn,n , a complete bipartite graph with parts of size n, is
regular, it has WL-dimension greater than 1 if n > 2. As Kn,n is distance-hereditary
by Theorem 2.3, the lemma follows. �

Lemma 5.2 Let X be a distance-hereditary graphwith at least two vertices,π a correct
partition of X, andX = WL(X)π . ThenX has a twinmatching or a pendant matching,
or the twin parabolic eX is nontrivial.

Proof Let X = (�, E) and suppose first that there are no twins in X . Then X has
pendant vertices by Corollary 2.4. No two of them share the same X -neighbor, for
otherwise they are twins in X , a contradiction. It follows that if α is a pendant vertex
and β is a unique X -neighbor of α, then m = r(α, β) is a matching in X . Moreover,
�−(m) �= �+(m), for otherwise the vertices α and β form a connected component
of X and hence are twins. Thus, m is a pendant matching.

Let X have two distinct twins α and β. If they belong to the same fiber of X , then
the twin parabolic eX is nontrivial by Lemma 3.4(2) and we are done. Thus, we may
assume that no two distinct twins in X belong to the same fiber of X . To complete the
proof, it suffices to verify that the relation m = r(α, β) is a (twin) matching. Assume
on the contrary thatm orm∗ has valency at least 2. Without loss of generality, we may
assume that there exists β ′ ∈ αm other than β.

Suppose that there exists an X -neighbor γ of β, which is not an X -neighbor of β ′.
Then the relation r = r(α, γ ) is contained in E (because r(β, γ ) ⊆ E and α and β

are twins in X ), whereas t = r(β ′, γ ) is not. On the other hand,

r(α, β) = m = r(α, β ′) ⊆ r(α, γ ) · r(γ, β ′) = r · t∗.

It follows that there exists γ ′ ∈ � such that (α, γ ′) ∈ r and (β, γ ′) ∈ t∗. Since r ⊆ E
and t ∩ E = ∅, this contradicts the fact that α and β are twins in X . Thus, the point
γ does not exist and hence βE ⊆ β ′E . Since β ′ and β lie in the same fiber of X and
E is a relation of X , this inclusion is the equality. Consequently, β and β ′ are distinct
twins in X , lying in the same fiber, a contradiction. �


We are now in a position to prove Theorem 1. Let X be a distance-hereditary graph.
By Lemma 5.1, it suffices to prove that the WL-dimension of X is at most 2, or,
equivalently, the coherent configurationWL(X) is separable (see Theorem 2.7(2)). We
shall prove a more general statement that, for a correct partition π of X , the coherent
configuration WL(X)π is separable, which implies the result by WL(X) = WL(X)π ,
where π = F(WL(X)).

We use induction on the number n of vertices of X .
Without loss of generality, we may assume that n ≥ 2 and the statement holds for

all distance-hereditary graphs with at most n − 1 vertices and their correct partitions.
By Lemma 5.2, the coherent configuration X = WL(X)π has a twin matching or a
pendant matching m, or the twin parabolic e := eX is nontrivial.

In the former case, let � denote �−(m). By Proposition 4.1, π \ � is a correct
partition of the graph X \�. Since this graph is distance-hereditary by Lemma 2.2, the
coherent configurationWL(X \�)π\� is separable by induction. Thus,X is separable
by Propositions 4.1 and 4.5.
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In the latter case, π/e is a correct partition of the quotient graph X/e by Proposition
4.6. By Lemmas 2.1 and 2.2, X/e is distance-hereditary. Hence, by induction, the
coherent configurationWL(X/e)π/e is separable. Thus,X is separable by Propositions
4.6 and 4.10.
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