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Annotation

This thesis is devoted to special techniques for interpolation of planar (points and associated tangent
vectors) and spatial (quadrilateral mesh of points with associated normal vectors) data.

In the first theoretical part, we study Hermite interpolation by cubic Pythagorean hodograph (PH)
curves. Inspired by Walton and Meek (see [80]), we correctedand extended their results and de-
scribed all input Hermite data for which an interpolating arc of PH cubic exists. Moreover, we
analyze a number of solutions and existence of a loop on an interpolant for given data. Further, we
prove that arbitraryG1 Hermite data can be interpolated by at most two interpolating arcs of PH
cubic and there are infinitely many such pairs for any input data. Finally, we focus onC1 Hermite
interpolation by PH cubic. Similarly toG1 interpolation, anyC1 Hermite data can be interpolated
by at most two arcs of PH cubics and we present a method which gives all four possible solutions.
We also discuss an appearance of a loop on interpolating arcs.

The second theoretical part of the thesis deals with Bubble patches as a new method for generating
an interpolationGn-surface from a quadrilateral mesh with normals. The methodis based on a lo-
cal construction which works uniformly for vertices of arbitrary valency. For each quadrilateral we
construct a surface patch, represented by a bubble patch, insuch a way that these patches are pieced
together withGn continuity. The construction of a single patch is based on Gordon-Coons inter-
polation. The obtained surface is piecewise rational with arbitrary smoothness and interpolates the
vertices and normals. In the case ofG0, G1 andG2-surface, the construction is described in detail.
The method can be generalized toGn-surfaces for anyn ≥ 3. We also show different examples of
obtained continuity and verify the corresponding smoothness with the help of reflection lines.

Keywords:
G1 Hermite interpolation, Pythagorean hodograph cubic, Tschirnhausen cubic,C1 Hermite interpo-
lation, Bézier curve,Gn-surface, Interpolating surface, Bubble patch, Quadrilateral mesh, Gordon-
Coons interpolation.
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Anotace

Disertǎcńı práce se zab́yvá specíalńımi interpolǎcńımi technikami rovinńych (zadańe body s těcnými
vektory) a prostorov́ych (̌ctyřúhelńıková śıť bod̊u s norḿalovými vektory) geometricḱych dat.

V prvńı teoreticḱe části pŕace se v̌enujeme Hermitov̌e interpolaci rovinnou kubikou s Pythagore-
jským hodografem (PH). Práce opravuje a rozšǐruje výsledky zčlánku Waltona a Meeka (viz [80])
a popisuje v̌sechna vstupnı́ Hermitovsḱa data, pro kteŕe existuje PH kubicḱy interpolant. Nav́ıc je
provedena analýza pǒctu a kvality (zda-li dańy interpolant obsahuje samoprůnik či ne) řěseńı pro
vstupńı data. Vzhledem k tomu,̌ze libovolńa G1 Hermitova data nenı́ možné interpolovat pouze
jedńım PH interpolantem, je v práci doḱaźano, že libovolńa vstupńı G1 data je mǒzné vždy in-
terpolovat dv̌emi částmi PH kubiky ǎze ťechto dvojic interpolantů existuje pro dańa vstupńı data
nekoněcně mnoho. D́ale se pŕace zab́yváC1 Hermitovou interpolaćı PH kubikami a podobňe jako u
G1 interpolace, libovolńaC1 data je mǒzné interpolovat pomoćı dvou oblouk̊u PH kubiky. V źavěru
prvńı části je uḱaźan postup, jak nalézt v̌sechnǎctyři možná řěseńı a je provedena diskuze ohledně
kvality každého interpolantu, tj. v́yskytu samopr̊uniku.

Druhá teoreticḱa část pŕace se zab́yvá novouGn interpolǎcńı metodou – Bubble plátov́ańı – na
čtyřúhelńıkových śıtı́ch s asociovańymi normálovými vektory. Metoda je zalǒzena na loḱalńı kon-
strukci a lze ji poǔźıt pro vrcholy libovolńe valence. Pro kǎzdý čtyřúhelńık v śıti je konstruov́an
takov́y plát, že je se sousednı́mi pláty napojen vGn spojitosti. Konstrukce kǎzdého d́ılč́ıho pĺatu
je zalǒzena na Gordon-Coonsově interpolaci a v́ysledńy plát má raciońalńı popis. ProG0, G1 a G2

plochy je konstrukce popsána detailňeji a odpov́ıdaj́ıćı spojitost je ov̌ěrena pomoćı tzv. metody “re-
flection lines”.

Kl ı́čová slova:
G1 Hermitova interpolace, kubika s Pythagorejským hodografem, Tschirnhausenova kubika,C1

Hermitova interpolace, B́ezierova ǩrivka, Gn plocha, Interpolǎcńı plocha, Bubble pĺat, Čtyřúhelńık-
ová śıť, Gordon-Coonsova interpolace.

iv



Contents

Declaration i

Acknowledgments ii

Annotation iii

Anotace iv

Contents v

I I NTRODUCTION 1

1 Introduction 2

2 Computer Aided Geometric Design 4
2.1 Historical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 4

3 State of Art of Pythagorean Hodograph 8
3.1 The theorema2 + b2 = c2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 The use of Pythagorean Hodograph . . . . . . . . . . . . . . . . . . . .. . . . . . 9

II PYTHAGOREAN HODOGRAPH CURVES 16

4 G1 Hermite interpolation 17
4.1 Hermite interpolation by Tschirnhausen cubic . . . . . . . .. . . . . . . . . . . . . 17
4.2 TC-interpolant with and without a loop . . . . . . . . . . . . . . . .. . . . . . . . . 21

4.2.1 TC-interpolants containing a loop . . . . . . . . . . . . . . . . .. . . . . . 21
4.2.2 TC-interpolants without a loop . . . . . . . . . . . . . . . . . . . .. . . . . 25

4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

v



5 Hermite interpolation by two PH cubics 29
5.1 G1 Hermite interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 29
5.2 C1 interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 A loop on TC-interpolatns . . . . . . . . . . . . . . . . . . . . . . . . .. . 38
5.2.2 Rational curves on Blaschke cylinder . . . . . . . . . . . . . . . .. . . . . 39

5.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
5.4 C1 TC-spline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

III SURFACES 53

6 Interpolating Bubble patches on quadrilateral meshes 54
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 54
6.2 Bubble patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 55
6.3 Construction ofGn-surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.4 Gn-surface strips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4.1 G0-surface strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.4.2 G1-surface strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.4.3 G2-surface strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4.4 Gn-surface strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.5 Construction of bubble functions . . . . . . . . . . . . . . . . . . . .. . . . . . . . 64
6.5.1 Evaluation of boundary values and cross boundary derivatives . . . . . . . . 64
6.5.2 Applying Gordon-Coons interpolation . . . . . . . . . . . . . .. . . . . . . 68

6.6 Implementation details and examples . . . . . . . . . . . . . . . .. . . . . . . . . . 69
6.6.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 69
6.6.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

IV SUMMARY 75

7 Conclusion 76

Bibliography 78

List of authors’ publications 85

vi



Part I

I NTRODUCTION

1



1
Introduction

Current CAD/CAM systems mostly rely on NURBS representation of curves and surfaces, i.e., ob-
jects are represented by polynomial or rational parameterizations. A natural requirement is to have
also the derived objects, such as offset curves and surfacesor convolution curves and surfaces repre-
sented by rational parameterizations. Unfortunately, therationality of these objects is not generally
preserved. This problem motivated the study of special classes of objects with rational offsets. In
1990, Farouki and Sakkalis in [37] introduced an important subclass of polynomial parametric curves
called Pythagorean Hodograph (PH) curves. The most significant properties of these curves are that
their arc-length function is piecewise polynomial and theypossess rational offset curves. The state
of art of Pythagorean hodograph curves and related topics iswritten down in Chapter 3. Moreover,
Chapter 2 is devoted to the historical overview of standard approaches and techniques in Computer
Aided Geometric Design.

In the second part of the thesis (Chapters 4 and 5), we focus on the simplest non-trivial polyno-
mial PH curve, which is the only one PH cubic know as Tschirnhausen cubic. Walton and Meek in
[80] studiedG1 Hermite interpolation by arcs of Tschirnhausen cubic, but the results in their paper
were not precise. This fact inspired us to describe for whichinputG1 Hermite data an interpolating
arc of PH cubic exists (Proposition 6). Moreover, we discussa number of interpolating PH cubics for
given input data. Further, in Section 4.2, we analyze a quality of PH cubic arc in the manner whether
it contains a loop or not. A discussion dealing with the quality of PH interpolant is influenced by the
results from a paper written by Stone and DeRose (see [110]), who analyzed a quality of a standard
Bézier cubic.

Since PH cubic interpolant does not exist for arbitraryG1 Hermite data, we also investigate
a number of interpolants necessary to match any input data. We prove that anyG1 Hermite data
can be interpolated by at most two interpolating arcs of PH cubics (Theorem 14). Although PH
cubic does not have enough flexibility in comparison to a standard cubic, it is always possible to
interpolate anyC1 Hermite data by a pair of PH cubic interpolants joined withC1 continuity. This
surprising result is summarized in Theorem 17. Further, theproof of Theorem 17 is considered as a
construction how to obtain desired four pairs of interpolants.

The third part of the thesis, i.e., Chapter 6, is devoted to theinterpolation of quadrilateral mesh
given by points with associated normal vectors. We design a new technique for interpolation of such
data with arbitraryGn smoothness. A constructed interpolation is called Bubble patch and is mainly

2



Chapter 1. Introduction

based on Gordon–Coons interpolation. We present several advantages of the construction, e.g., the
Bubble patch construction possesses rational parametrization, it works for the meshes of arbitrary
valency (this is not usual in standard approaches), the determining compatible twist vectors at the
vertices is given as a solution of the system of linear equation. In Subsection 6.4 we studyG0, G1

andG2 smoothness in detail and in Subsection 6.6 we present our method on several examples and
we verify the desired smoothness by reflection lines.

Main results of the thesis can be summarized as follows:

• We precisely describe for which inputG1 Hermite data an interpolating arc of PH cubic exists.
Moreover, we specify the quality of a PH cubic interpolant, i.e., if it contains a loop or not.
These results have been already published in journal, see [9].

• We show that at most two interpolating arcs of PH cubic are needed to interpolate anyG1

Hermite data. Further, we formulate a criteria how to find twoarcs of PH cubic matching
C1 Hermite data and we show a construction how to obtain all fourpairs of interpolating PH
cubics joined withC1 smoothness.

• We design a new technique for interpolation of quadrilateral mesh with associated normal
vectors. This approach is based on Gordon–Coons interpolation and has several advantages,
e.g., it possesses rational parametrization, it works for meshes with arbitrary valency.

3



2
Computer Aided Geometric Design

A development of geometry and related sciences is as old as a human being. The earliest beginnings
go back to ancient Mezopotamia and Egypt around 3000 BC. The geometry was considered as
a collection of empirically discovered principles concerning lengths, angles, areas, and volumes,
which were developed to meet some practical needs in surveying, construction, astronomy, and
various crafts. One of the branch which has been developed through centuries is a shipbuilding.
The other were car and aeronautical industry, which have arisen after industrialization at the end of
nineteenth century and a big progress was noticed one century later. Usually, research in geometric
modelling have been motivated by technical needs in industrial production. This fact caused that
several today’s know descriptions have been discovered separately, because the companies kept them
in a secret.

The foundation of Computer Aided Geometric Design (CAGD) dated back to 1974, when R.
Barnhill and R. Riesenfeld organized the first CAGD conference for researches from Europe and
U.S. Ten years later, CAGD journal was established by R. Barnhill and W. Boehm.

2.1 Historical Overview

The first use of curves is recorded in AD Roman times, where theyserved as a tool in shipbuilding.
The construction consists of ship’s ribs, which were woodenplanks and which created a template for
ship construction. The advantage was that they could be reused several times, but the disadvantage
was that they could not be recreated. In the Renaissance, Venetians improved ribs techniques in a
way that they defined ribs as tangent continuous circular arcand consequently they got a ship hull
by changing the ribs’ shapes along the keel. The first mentionof today’s known spline is referred to
[24]. Another branch, where a spline appeared, was aeronautical engineering. R. Liming, who was
working for North American Aviation, wrote in his book1 an approach how to use conics in building
aircrafts.

In 1963, a French mathematician Paul de Faget de Casteljau introduced his algorithm in technical
report, see [11], for the car company Citroën2, where he was employed since 1959. He used an

1Analytical Geometry with Application to Aircraft
2Founded in 1919 by André-Gustave Citröen, Citröen was the first mass-production car company outside of the USA
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Chapter 2. Computer Aided Geometric Design

unusual idea to combine control polygon and Bernstein polynomials3 instead of defining a curve
through points on it. It was used to change a curve directly and this concept of curves gave a
possibility to change or control a curve by its control polygon. The Casteljau’s construction had
been already introduced by Blaschke in [6], but at that time nobody saw a contribution of such
definition of a curve. Although the algorithm have been established by the author in sixties, it was
named after him in seventies when W. Boehm4 started to use it.

Independently, Pierre B́ezier in Ŕenault realized the need for computer representations of curves
and surfaces. His main idea was to represent a curve as the intersection of two elliptic cylinders,
which were defined inside a parallelepiped and therefore affine transformation of a curve has been
allowed. With the help of polynomial representation he gavea description of a curve, which was
later rewritten using Bernstein polynomials by A. R. Forrest,see [42].

An important tool in geometrical modeling are B-splines, which were introduced by I. Schoen-
berg5 in 1946, see [106], where he investigated an equidistant (which is considered as an offset in
nowadays CAGD). Since Schoenberg studied B-spline only on uniform knots, it did not take so long
and H. Curry generalized them to nonuniform knots in 1947. In sixties, C. de Boor, who was work-
ing for General Motors, was using B-splines for geometry representation and derived a recursive
evaluation of B-splines (known as de Boor algorithm), which possesses a good numerical stability
in evaluation.

To find the father of NURBS (Non-Uniform Rational B-Splines) description is not a simple task.
In 1968, A.R. Forrest wrote his Ph.D. thesis about the curves and surfaces for CAGD, which deeply
inspired Coons research in rational curves. Consequently Coons’ student K. Versprille first dealt
with NURBS description. Even though NURBS is a powerful tool in CAGD, it has its disadvantages.
Recently, A. Bakenov gave a new technique based on NURBS, which iscalled T-spline, see [1]. A
main difference between T-Splines and NURBS is the existence of T-points. A T-point is a vertex
where on one side, there is an isoparm6, and on the other side, there isn’t. This allows lines to end
elegantly and also it simplifies the control meshes of a surface, i.e., to reduce a number of control
points, see Fig. 2.1.

Although Liminig’s conic construction was used to design anairplane fuselage in US aircraft
company Boeing, a wing construction had used a different kindof curves developed by J. Ferguson
and D. Maclaren. They joined cubic spatial curves together to create curves which were overall
twice differentiable. The unassailable contribution of these curves was to interpolate a set of points.
Ferguson applied piecewise monomial form and further he used cubic Hermite form defined by two
endpoints with associated tangent vectors.

One side of a coin is to find good representation of a curve and the second is to focus on surfaces.
Several techniques or approaches suit for curves and as wellfor surfaces. But there are methods
only for surfaces. The most popular approach has became tensor product surface, which was first
introduced by C. de Boor by his bicubic spline interpolation in1962, see [19], and two years later
followed by J. Ferguson, who was working with an array of bicubic patches interpolating a grid of
points. At the same year, Coons in his technical report studied a simple formula how to fit a patch

and pioneered the modern concept of creating a sales and services network that complements the motor car.
3Polynomials in Bernstein form were first used by Sergei Natanovich Bernstein in a constructive proof for the

Stone–Weierstrass approximation theorem. With the adventof computer graphics, Bernstein polynomials, restricted
to the intervalt ∈ [0, 1], became important in the form of Bézier curves.

4Barry W. Boehm (1935) is an American software engineer.
5A Romanian mathematician (1903-1990).
6Lines on a NURBS surface connecting points of constantu or v coordinate values, and representing cross sections

of the NURBS surface in theu or v directions.
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Chapter 2. Computer Aided Geometric Design

Figure 2.1: A ship hull. Left: NURBS description by 72 control points; Rigth: T-spline description
by 42 control points. The pictures are undertaken from [115].

between any four arbitrary boundary curves. The Coons’ method is known as the bilinearly blended
Coons patch and it was used by Ford, where Coons was a consultantalthough he was working at
MIT. A generalization was done by W. Gordon at General Motorsin 1969 and in 1974 J. Gregory
applied cubic boundary curves and cubic derivatives to obtain rational description.

Another method in CAGD are triangular patches, which are based on barycentric coordinates7.
The first mention goes back to Finite Elements Method8. The simplest type is a linear element,
which was first mentioned in Ritz-Galerkin method9. There are several well known techniques on
triangular patches which provide desired smoothness. One of the popular is Clough and Tocher ele-
ment, which uses cubic polynomial and was originally designed for FEM method. Such constructed
patches ensureC2 continuity. Another patches introduced in 1977 by Powell and Sabin are con-
structed by piecewise quadratic polynomials and ensures a globalC1 continuity, see [100]. A lot of
geometers and mathematicians paid attention to triangularmeshes, e.g., B́ezier triangles, which were
constructed by an automotive researcher and which started to be used in 1980’s. Other approaches
were developed by S. Coons, G. Farin, R. Barnhill. Today, this topic is still worth studying and is an
active research area.

Further technique is subdivision curves and surfaces, which have been widely investigated. As
usual there is also not clear who first introduced this method. In 1974 at the conference in Utah,
G. Chaikin first presented a new technique how to generate a curve although the similar algorithm
had been already done in the work of G. de Rham in 1947. This ideamotivated several scientists
in geometric modeling. In 1978, E. E. Catmull10 and J. H. Clark11 published subdivision scheme
based on bi-cubic uniform B-spline, which yieldsC2 continuity except at extraordinary vertices, see
[10]. At the same year, D. Doo and M. Sabin came out with bi-quadratic uniform B-spline gener-
ating subdivision scheme, which is extended Chaikin’s corner-cutting method for curves to surfaces

7Barycentric coordinates are a form of homogeneous coordinates. The system was introduced (1827) by August
Ferdinand M̈obius.

8The finite element method (FEM) is a numerical technique for finding approximate solutions of partial differential
equations (PDE) as well as of integral equations. The development of the finite element method began in the middle
1950s for airframe and structural analysis and gathered improvement at the University of Stuttgart through the work of
John Argyris and at Berkeley through the work of Ray W. Cloughin the 1960s for use in civil engineering.

9Ritz-Galerkin methods are a class of methods for convertinga continuous operator problem (such as a differential
equation) to a discrete problem.

10A computer scientist and current president of Walt Disney Animation Studios and Pixar Animation Studios
11A prolific entrepreneur and former computer scientist. He founded several notable Silicon Valley technology com-

panies.
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Chapter 2. Computer Aided Geometric Design

and which givesC1 continuity, cf. [23]. Both schemes work on quadrilateral meshes and thus in
1987, C. T. Loop proposed subdivision scheme on triangular meshes which providesC2 continu-
ity, see [75]. J.Peters and U. Reif developed mid-edge subdivision scheme working on quadrilateral
mesh, see [94]. This scheme was also independently established by Habib and Warren. The previous
subdivision schemes are approximation techniques. A interpolation subdivision schemes have been
developed a little bit latter. The first interpolating subdivision approach was showen by Dyn, Levin
and Gregory in 1990. This scheme is constructed for triangular meshes and is known as butterfly
scheme. It was generalized for irregular triangulation by Zorin, Schr̈oder and Schwelden in 1996.
Recently, L. Kobbelt introduced

√
3 subdivision scheme for triangular meshes and also subdivision

scheme for quadrilateral meshes known as Kobelt method. Allinterpolating subdivision techniques
possess at leastC1 continuity. In 1998, Sederberg et al. in [109] introduced a new technique called
NURSS (Non Uniform Rational Subdivision Surface) based on a knot insertion or recursive subdivi-
sion and used Catmull Clark or Doo Sabin subdivision technique. The idea of NURSS was improved
by T-splines to T-NURCC (Non Uniform Rational Catmull-Clark surfaces with T-junctions), which
gives more possibilities in geometric modeling, see [108].

During last two decades, a lot of effort was dedicated to the study of objects with Pythagorean
hodograph property, which were first introduced by Farouki and Sakkalis in [37]. The state of art of
this still worth studying topic is written down in the Chapter3.

7



3
State of Art of Pythagorean Hodograph

“Geometry has two great treasures: one is the Theorem of
Pythagoras, and the other the division of a line into extremeand
mean ratio; the first we may compare to a measure of gold, the
second we may name a precious jewel.”

Johannes Kepler

3.1 The theorema2
+ b2

= c2

Theorem 1.

The sum of the squares of the lengths of the two other
sides of any right triangle will equal the square of the
length of the hypotenuse.

Proof. The theorem can be proved geometrically using four copies ofa right triangle with sidesa, b
andc, set inside a square with sidec. The four triangles have the same areaab/2 and the small

cb − a

Figure 3.1: Proof of the theorema2 + b2 = c2

8



Chapter 3. State of Art of Pythagorean Hodograph

square inside has an area(b − a)2. The area of the large square is therefore

(b − a)2 + 4
ab

2
= (b − a)2 + 2ab = a2 + b2,

which is a square with sidec and areac2, and therefore

c2 = a2 + b2.

Around 4000 years ago, the Chinese and the Babylonians were aware of the fact that a triangle
with the sides of3, 4 and5 have to be a right triangle. Around 2500 BC, the Megalithic monuments
in Egypt and Northern Europe comprised of right triangles with integer sides. During the reign
of Hammurabi the Great (1790 – 1750 BC), the Mesopotamian tablet Plimpton consisted of many
entries closely related to Pythagorean triples. In the period from eighth to second century BC an
Indian book Baudhayana Sulba Sutra contains a list of Pythagorean triples and several statements,
theorems and the geometrical proofs of the theorems for an isosceles right triangle.

Pythagoras (569–475 BC), used algebraic methods to constructPythagorean triples. Accord-
ing to Sir Thomas L. Heath, there was no ascription of the theorem for nearly five centuries after
Pythagoras lived. However, authors like Plutarch and Ciceroattributed the theorem to Pythagoras
in such a way that the attribution was widely known and accepted. In 400 BC, Plato established a
method for finding Pythagorean triples which joined both algebra and geometry. Around 300 BC, in
the Euclid’s Elements, the oldest existing axiomatic proofof the theorem is presented.

The Chinese text Chou Pei Suan Ching written between 500 BC and 200AD contained the visual
proof of the Pythagorean theorem or “Gougu theorem” for the (3,4,5) triangle. During the Han Dy-
nasty (202 BC – 220 AD), the Pythagorean triples appear in the Nine Chapters on the Mathematical
Art together with the right triangles. The first recorded useof the theorem was in China as “Gougu
theorem”, and in India as the “Bhaskara theorem”.

However, it is not yet confirmed whether Pythagoras was the first person, who founded the rela-
tionship between the sides of the right triangles, as no texts written by him were found. Nevertheless,
the theorem has still got his name credited to it.

3.2 The use of Pythagorean Hodograph

In the middle of the last century, new engineering disciplines arose, which gave several fields of
interesting problems to the scientists. One of such fields was the area of tool path and motion
planing, NC1 and CNC machining and branches close to them. These problems have been solved
using Minkowski sum2 and by theory of offsets. The Minkowski sum has been widely studied and a
lot of efficient algorithms were introduced, see [26, 72].

Let us focus on an offset3, which is often called classical offset. The term offset wasknown for
centuries as parallel curves and surfaces (first mentioned by G. W. Leibnitz) or as an envelope curve

1The birth of NC (numerical control) is generally credited toJohn T. Parsons, a machinist and salesman at his father’s
machining company, Parsons Corp. In 1942, he was told that helicopters were going to be the ”next big thing” by the
former head of Ford Trimotor production, Bill Stout.

2Minkowski sum was established by Hermann Minkowski in 1903.
3There are other branches where the word offset is used, e.g. printing, greenhouse gas emission (carbon offset),

computer science, electronic engineering (DC offset).
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and surface (first studied in optics) or as a canal surface (inclassical differential geometry, e.g. in
[25]). In 1960s, an offset was introduced by M. Sabin in [104]and an analysis of offsets has started
by J. Hoschek in [52, 53] and was extended by R.T. Farouki in [30], Y. J. Chen and B. Ravani in [12].
An offset was defined to be a curve or a surface (for these caseswe can shortly use hypersurfaces)
given by following expression

po = p + d
n

|n| , d ∈ R, (3.1)

wherep is a parametric expression of an input hypersurface andn is a normal vector field of a
generating hypersurfacep. In this way, we can construct an offset at arbitrary distanced. The disad-
vantage of such description is that for a polynomially or rationally described hypersurface we do not
obtain polynomial or rational expression of an offset in general. Therefore, all techniques concern-
ing offset computation mentioned in [12, 30, 52, 53] are based on approximation or interpolation of
offsets.

Because all CAD (Computer Aided Design) and CAM (Computer Aided Manufacture) systems
use NURBS (Non-Uniform Rational B-Spline) description, which is a standard form how to keep or
represent curves, surfaces and solid objects, the motivation was to identify such curves and surfaces
which possess an offset with rational parametrization. Despite it looks like an effortless task the
scientists have spent twenty years solving this topic.

In [37], Farouki and Sakkalis came out with a quite simple idea. Only one term, i.e.,|n| in the ex-
pression (3.1), influences the rationality of an offset parametrization. They investigated polynomial
curves and arrived at the condition

x′2(t) + y′2(t) = σ2(t), (3.2)

where(x(t), y(t))>, t ∈ I ⊂ R, describes a polynomial parametric curve andσ(t) ∈ R[t]. Conse-
quently, according to theorem for polynomial triples (see [69]), they derived the functionsx′(t), y′(t)
fulfilling the condition (3.2), namely

x′(t) = w(t)[u2(t) − v2(t)],
y′(t) = 2w(t)u(t)v(t),

(3.3)

wherew(t), u(t), v(t) are polynomials. Since the condition (3.2) is identical with the Pythagorean
theorem, it also gave to rise to the namePythagorean Hodograph4 (or abbreviated to PH) curves.

This interesting and useful property started a deep investigation of PH curves. They do not only
possess a rational description of offsets but also a polynomial arc-length function, which is useful
in mechanical engineering, e.g., an easier way how to control the speed of the cutting tool in CNC
machining.

In [37], it has been also shown that the simplest polynomial PH curves are cubics (except lines).
Moreover, it has been proved that PH cubic is only one (Tschirnhausen cubic). Unfortunately, it does
not have enough flexibility in a practical use in comparison with a standard cubic. This PH cubic
behavior has started the investigation of PH curves of higher degrees, especially five, seven and nine.
In [13, 29, 36, 40, 58, 80, 81, 83, 85, 112, 113] several techniques of PH splines construction can
be found, typically withG1, C1 or C2 continuity. Recently, a quartic Pythagorean Hodograph were
derived from control polygon and were used forG1 Hermite interpolation, see [116]. In [55], Jaklič

4The word Hodograph means a curve of which the radius vector represents the velocity of a moving particle, from
Greek hodos is a way.
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et al. studied Lagrange interpolation and they formulated aconjecture that PH curve of degreen
can, under some natural restrictions on data points, interpolate up ton + 1 points.

It did not take so long and an idea to investigate rational curves possessing rational offsets ap-
peared. Pottmann in [98] studied such curves and gave a bright new construction in a dual form and
arrived at the expression

x(t) = 2ab(a′b − ab′)fg − 1
2
(a4 − b4)(f ′g − fg′),

y(t) = (a2 − b2)(a′b − ab′)fg + ab(a2 + b2)(f ′g − fg′),
w(t) = (a2 + b2)(a′b − ab′)g2,

where a plane curve is expressed in the form(x(t)/w(t), y(t)/w(t))> and thea(t), b(t) andf(t), g(t)
are prime polynomials. Recently,Š́ır et al. in [111] shown that all hypocycloids and epicycloids yield
rational offset.

Although the polynomial and rational PH curves have rational offsets, they differ significantly
in their arc-length function. The integration of the polynomial speedσ(t) yields a polynomial arc
length function for polynomial PH curves, but for rational PH curves, integration of the rational
function σ(t) needs partial fraction expansion and an arc length functioncontains transcendental
and rational term in general.

In [89], Peternell and Pottmann gave an interpretation for the construction of the rational curves
with rational offsets using Laguerre geometry, where oriented lines and circles in plane are basis
elements. The orientation of each element is fixed by associating a field of normal vectors with it.
Points are treated as circles with zero radius.

In [38], Farouki and Sakkalis have introduced the spatial PHcurves. Although the generalization
of standard curves from a plane to a space is not a big deal, to shift up PH curves to a space is not so
easy. Similar task was solved, i.e., we need to find polynomial solutions of the spatial Pythagorean
hodograph condition

x′2(t) + y′2(t) + z′2(t) = σ2(t),

where(x(t), y(t), z(t))>, t ∈ I ⊂ R describes spatial polynomial parametric curve andσ(t) is
polynomial.

The spatial PH curves are distinguished from plane PH curve in practical use. The offset of a
spatial curve is meant as a canal surface (or pipe or tubular surface), which can be described as an
envelope of spheres. Peternell and Pottmann in [90] showed that any rational spine curver(t) and a
rational radius functiond(t) possesses rational parametrization of a canal surface. Letus emphasize
that to get a real envelope surface, the derivative of the spine curve and radius function have to
satisfy the condition|r′(t)|2 ≥ d′2(t) and moreover the non-negative function|r′(t)|2 − d′2(t) has
to be possible to rewrite as a sum of squares, which Peternelland Pottmann proved in [90]. This
decomposition can be determined exactly only for PH curves.

Another significant property of the spatial PH curves is thatthey are automatically equipped with
the rational frames, which have been widely studied in [14, 31, 34, 35, 79, 117, 118]. Therefore, the
spatial PH curves are used for construction of PH spline curves, as in planar case. There are similar
approaches as for plane PH curves, i.e., they are investigated in the manner of control polygon.
The simplest nontrivial spatial PH curves are PH cubics and they admit characterization directly in
the term of the geometry of their Bézier control polygons. This is consequence of special intrinsic
geometry of spatial PH cubics, i.e., they are all helical curves.

11
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In [38], there is further mentioned how the first derivativeshave to look like to fulfill the Pythagorean-
hodograph condition, i.e.

x′(t) = h(t)[u2(t) − v2(t) − w2(t)],
y′(t) = 2h(t)u(t)v(t),
z′(t) = 2h(t)u(t)w(t),

(3.4)

for polynomialsh(t), u(t), v(t), w(t). However, the condition (3.4) is a sufficient but not a necessary
condition for a spatial hodograph(x′(t), y′(t), z′(t)) to satisfy the Pythagorean condition. For exam-
ple, the hodograph given byx′(t) = (1 − t)2, y′(t) = t2, z′(t) = 1 vanishes Pythagorean-hodograph
condition, i.e.σ(t) =

√
2(t2 − t + 1) but it can not be written by above introduced equations (3.4).

The reason is that it is invariant under rotation about thex axis, but not about the remainingy andz
axes, or axes of arbitrary orientation in space.

Dietz et al. in [22] gave a characterization of Pythagorean condition in the form

x′(t) = u2(t) + v2(t) − p2(t) − q2(t),
y′(t) = 2[u(t)q(t) + v(t)p(t)],
z′(t) = 2[v(t)q(t) − u(t)p(t)],
σ(t) = u2(t) + v2(t) + p2(t) + q2(t),

(3.5)

for prime real polynomialsu(t), v(t), p(t), q(t). This result can be reformulated using quaternions5

with basis elementsi, j,k, which multiplication is determined by the set of rules

i2 = j2 = k2 = ijk = −1

with noncommutative multiplication

ij = −ji = k, jk = −kj = i, ki = −ik = j.

The hodograph of a curve is obtained as

(x′(t), y′(t), z′(t))> = A(t)iA∗(t) = [u2(t) + v2(t) − p2(t) − q2(t)]i
+2[u(t)q(t) + v(t)p(t)]j
+2[v(t)q(t) − u(t)p(t)]k,

(3.6)

whereA = u(t) + v(t)i + p(t)j + q(t)k andA∗ = u(t) − v(t)i − p(t)j − q(t)k is conjugated.
Recent investigation of spatial Pythagorean curves gave a birth to double Pythagorean hodograph

(shortly DPH) introduced by Beltran and Monterde in [4]. The DPH curves are such spatial curves
r(t) with the property that|r′(t)| and|r′(t) × r′′(t)| are both polynomial in parametert. Farouki et
al. in [32] and [33] have studied spatial DPH curves using quaternion and Hopf6 map. They have
found out that all helical PH curves are DPH curves, which encompass all PH cubics and all helical
PH quintics, although non-helical DPH curves of higher order exist.

5Quaternion algebra was introduced by Irish mathematician Sir William Rowan Hamilton in 1843 and is a four
dimensional extension of complex numbers. Important precursors to this work included Euler’s four-square identity
(1748) and Olinde Rodrigues’ parameterization of the general rotation by four parameters (1840), but neither of these
authors treated the four-parameter rotations as an algebra. Gauss had also discovered quaternions in 1819, but this work
was only published in 1900

6In the mathematical field of topology, the Hopf fibration (also known as the Hopf bundle or Hopf map) describes
a 3-sphere (a hypersphere in four-dimensional space) in terms of circles and an ordinary sphere. Discovered by Heinz
Hopf in 1931, it is an influential early example of a fiber bundle.
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As in a plane where polynomial PH curves were generalized to rational PH curves, it has been
done also for spatial PH curves. Recently, Farouki andŠ́ır in [41] have introduced rational spatial
PH curves as an edge of regression of envelope of osculating plane.

Rotation Minimizing Frame (abbreviated to RMF) is another topic where spatial PH curves are
used. RMF was introduced in [61] and commonly used in computergraphics, sweep surface, tube
surface etc. The idea is to investigate an adapted frame (it is the framee1, e2, e3, wheree1 is the
tangent of the curve andei · ei = 1 andei · ej = 0) such that the rotation rate ofe2 ande3 along
the curve is minimal. The computation of the RMF means to solvean ordinary differential equation
(for more information see [5] and [59]), which is solvable inthe case of PH curves, i.e., we obtain
the result as rational or transcendental function.

Choi and Han in [14] have used Euler-Rodriques parameters to describe frame of PH curve by
rational function and using quaternion calculus they have arrived at

e1(t) =
A(t) iA∗(t)

|A(t)|2 , e2(t) =
A(t) jA∗(t)

|A(t)|2 , e3(t) =
A(t)kA∗(t)

|A(t)|2 . (3.7)

Further, in [79], it has been noted the existence of rationalframe on spatial PH curves. Unlike the
Frenet frame, the Euler-Rodrigues frame (for brevity ERF, which is described by Euler-Rodrigues
parameters) is uniquely defined at each point of regular spatial PH curve, including inflection and
varies smoothly along the curve.

Moreover, Choi and Han in [14] have characterized the angularvelocity of the ERF relative to
RMF for spatial cubic and quintic curves. They have also shownfor PH cubic that among Frenet
frame and ERF the constant angle occurs, and the ERF coincides with RMF if and only if the PH
cubic is planar. They proved that no RMF exists on spatial PH cubics and the simplest non-planar
PH curves with ERF that can be RMF is thus of degree five.

The interesting branch in RMF topic is to focus on the rationality of RMF. Han in [48] has proved
that there are no rational RMF on cubic curves. Recently, Farouki et al. in [31] have studied quintic
spatial curves which provide Rational RMF (abbreviated to RRMF)and Farouki and Sakkalis in [39]
have studied polynomial spatial curves, which possess RRMF.

The Minkowski Pythagorean Hodograph curves, or MPH curves for brevity, was first introduced
by Moon in [82]. Their distinctive feature is that Pythagorean condition is treated under metric of
the Minkowski spaceR2,1. The MPH curves are such curves which allow the medial axis transform7

(abbreviated to MAT) of a planar domain to be specified in suchway that the boundary of the domain
is exactly expressable by rational curves.

The Pythagorean Hodograph condition is modified in the Minkowski space to the condition

x′2(t) + y′2(t) − r′2(t) = σ2(t), (3.8)

for a polynomial curve(x(t), y(t), r(t))>, σ(t) ∈ R[t], and is satisfied if and only ifx′(t), y′(t), r′(t)
can be written in the form

x′(t) = u2(t) + v2(t) − p2(t) − q2(t),
y′(t) = 2[u(t)p(t) − v(t)q(t)],
r′(t) = 2[u(t)v(t) − p(t)q(t)],
σ(t) = u2(t) − v2(t) + p2(t) − q2(t),

(3.9)

7The Medial Axis of an object is the set of all points having more than one closest point on the object’s boundary.
Originally referred to as the topological skeleton, it was introduced by Blum, see [7], as a tool for biological shape
recognition. In mathematics, the closure of the medial axisis known as the cut locus. The Medial Axis together with
the associated radius function of the maximally inscribed discs is called the Medial Axis Transform. The Medial Axis
Transform is a complete shape descriptor, meaning that it can be used to reconstruct the shape of the original domain.
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whereu(t), v(t), p(t), q(t) are polynomials as in previous discussion. The computationof medial
axis can be found in [15, 62, 63, 66]. Recently, Kosinka and Lávička in [65] generalized polyno-
mial class of Minkowski Pythagorean hodograph curves to rational. They showed that any rational
Minkowski Pythagorean hodograph curve can be obtained in terms of its associated planar rational
Pythagorean hodograph curve and an additional rational function.

Not only PH curves have been generalized to spatial PH curvesand also MPH curves. Choi et
al. in [16] have investigated MPH curves using Clifford8 algebra and they have widely studied their
behavior in Minkowski spaceR3,1.

If we return to the formula of an offset, it is obvious to see that the normal consists of the terms of
velocity of a given curve in in the planar case. This propertygave the name Pythagorean Hodograph.
Looking for the surfaces which possess rational offsets we arrive at the similar condition as (3.1),
i.e.,

n(u, v) · n(u, v) = σ2(u, v), (u, v) ∈ R
2, (3.10)

wheren(u, v) is normal of a surfacep(u, v) andσ(u, v) ∈ R(u, v). Such class of surfaces which
fulfill the condition (3.10) is called surfaces withPythagorean Normal(shortly PN) and it has been
first studied by Pottman in [98]. Further, this class of surfaces was widely investigated and used for
interpolating and approximating techniques, for more detail see [77, 67, 68] and [70].

Like PH curves have been generalized to PN surfaces, the samehave been done for MPH curves.
In [64], Kosinka and J̈uttler have established MOS (Medial surface transform which Obeys the
Sum-of-square-condition) surfaces. The Medial Surface Transform (MST) of a volume is the set of
surface patches (or curves segment) in four dimensional Minkowski spaceR3,1. Every point of MST
represents the center and the radius of a maximal sphere inscribed into the domain. The advantage
of MOS surfaces is analogous to MPH curves. If MST of volume isdescribed by MOS surface then
associated envelope and all offsets admit exact rational parametrization. Recently, Peternell et al. in
[87] have proved that quadratic triangular Bézier surfaces inR3,1 are MOS surfaces. Further, several
techniques concerning Minkowski metric have been developed, see [86, 88].

In 1992, Brechner introduced a general offset, which was a generalization of a classical offset,
see [8]. The motivation was in 3-axis milling in comparison with 5-axis milling, which was crucial
for classical offset. General offset can be expressed in themanner of convolution. The convolution
hypersurfacec = a ? b is defined asc = {A + B|A ∈ a,B ∈ b and α(A)||β(B)}, where
α(A), β(B) are tangent hyperplanes of smooth hypersurfacesa,b at the pointA ∈ a,B ∈ b.

According to the definition of convolution the classical offset can be treated as a convolution of a
circle or sphere with arbitrary curve or surface. The general offset can be considered as a convolution
of two curves or surfaces (generally hypersurfaces), whereone of them often describes the shape of
a cutting tool. Also in this point of view, we can ask whether an output object (convolution object or
general offset) is polynomial or rational. In general, it isnot true that convolution of polynomial or
rational hypersurface with polynomial or rational one is again rational. This problem opened several
questions, e.g., for which polynomial or rational hypersurface we obtain rational convolution with
arbitrary polynomial or rational hypersurface. Sampoli etal. in [105] have introduced a subclass
of PN class called surfaces with Linear Normal (abbreviatedto LN). The computational advantage
is that LN surfaces possess always rational convolution with arbitrary rational surfaces. Inspired by

8Clifford algebras are a type of associative algebra. They can be thought of as one of the possible generalizations
of the complex numbers and quaternions. The theory of Clifford algebras is intimately connected with the theory of
quadratic forms and orthogonal transformations. Cliffordalgebras have important applications in a variety of fields
including geometry and theoretical physics. They are namedafter the English geometer William Kingdon Clifford.
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convolution approach and with the help of Gröbner basis Ĺavička and Bastl in [71] classified the sur-
faces with respect to the rationality of the convolution. They identified classes of parametrizations
of hypersurfaces which yield always rational convolution with arbitrary rational parametrization of
hypersurfaces (General Rational Convolution – GRC) and parametrization of hypersurfaces, which
possess rational convolution in special cases (Special Rational Convolution – SRC). Moreover, they
have proved that the convolution surfaces of non-developable quadratic B́ezier surfaces and an arbi-
trary rational surface are always rational.
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4
G1 Hermite interpolation

In this chapter we focus onG1 Hermite interpolation by PH cubic. We extend some results men-
tioned in the paper of Walton and Meek, see [80], especially we discuss for which input data the
interpolating arc of PH cubic exists. Further, we deal with the quality of PH cubic interpolant, i.e.,
whether it contains a loop or not.

4.1 Hermite interpolation by Tschirnhausen cubic

In this section we want to describe all initial data forG1 Hermite interpolation problem for which an
interpolating arc of the Tschirnhausen cubic exists. We usesome basic facts from [37, 80] and [56].

First, we recall some basic notation about PH curves.

Definition 2. A polynomial parametric curver(t) = (x(t), y(t))>, t ∈ I ⊂ R is called aPythago-
rean Hodograph curve(or PH curve) if there exists a polynomialσ(t) ∈ R[t] such that

x′(t)2 + y′(t)2 = σ(t)2.

It follows from the definition that coordinates of hodographs of PH curves andσ(t) form Pytha-
gorean triples. K. K. Kubota proved in [69] the following:

Theorem 3 (Kubota). Three real polynomialsa(t), b(t) and c(t), wheremax[deg(a), deg(b)] =
deg(c) > 0, satisfy the Pythagorean conditiona2(t) + b2(t) = c2(t) if and only if they can be
expressed in terms of real polynomialsu(t), v(t) andw(t) in the form

a(t) = w(t)[u2(t) − v2(t)],
b(t) = 2w(t)u(t)v(t),
c(t) = w(t)[u2(t) + v2(t)].

This theorem directly implies the following lemma.

Lemma 4. The polynomial curve corresponding to the Pythagorean hodograph is of degreen =
λ + 2µ + 1, whereλ = deg[w(t)] andµ = max[deg[u(t)], deg[v(t)]].
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Proof. Can be found in [37].

According to Lemma 4 the simplest nontrivial PH curves are cubics. Hence, we consider two
linear polynomialsu(t), v(t) given in Bernstein-B́ezier form as

u(t) = u0(1 − t) + u1t,
v(t) = v0(1 − t) + v1t, t ∈ R,

(4.1)

where we assume that the ratiosu0 : u1 andv0 : v1 are unequal. We call the equation (4.1) as
preimageof PH cubic.

As initial data we consider two boundary pointsP0, P3 with two associated unit tangent vectors
t0, t3. Moreover, we denote angles

θ0 = ∠(t0,P3 − P0), θ3 = ∠(P3 − P0, t3).

If we fix the angleθ0 to be in the interval[−π, 0], which is always possible, then

θ0 = − arccos

(

t0 ·
P3 − P0

||P3 − P0||

)

. (4.2)

The computation of the correspondingθ3 ∈ [0, 2π) depends on the orientation of the initial system
which is determined by the signs of the plane cross products

w0 = t0 × (P3 − P0), w3 = (P3 − P0) × t3. (4.3)

Namely,

θ3 = arccos

(

t3 ·
P3 − P0

||P3 − P0||

)

or θ3 = 2π − arccos

(

t3 ·
P3 − P0

||P3 − P0||

)

, (4.4)

if the signs ofw0 andw3 are equal (i.e.,w0w3 > 0) or not equal (i.e.,w0w3 < 0), respectively.
The special casew0w3 = 0 will be discussed below. In the following text, whenever we consider
anglesθ0, θ3 to be the initial data for a Hermite interpolation problem, we always mean that they
were obtained using (4.2) and (4.4).

Definition 5. Let P0, P3 be distinct points inR2, t0, t3 two unit tangent vectors associated to
these points andθ0, θ3 the corresponding angles computed using(4.2) and (4.4). Then an arc of
Tschirnhausen cubic interpolating theseG1 Hermite interpolation data is calledTC-interpolant.

Moreover, the set of all pairs(θ0, θ3) ∈ [−π, 0] × [0, 2π) taken together withP0, P3 as initial
data forG1 Hermite interpolation problem for which TC-interpolant exists is called thedomain of
definition of TC-interpolant.

Farouki and Sakkalis in [37] described conditions on control pointsP0, P1, P2, P3, lengths of the
control polygon legsdi,i+1 = ||Pi+1−Pi||, i = 0, 1, 2, and their anglesθi = ∠(Pi−1−Pi,Pi+1−Pi),
i = 1, 2, which ensure that the corresponding Bézier cubic has a Pythagorean hodograph, see Fig.
4.1. Namely, it has to hold that

θ1 = θ2 and d01d23 = d2
12.
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P0
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Figure 4.1:G1 Hermite data and interpolating Bézier cubic with its control pointsP0, . . . ,P3, con-
trol polygon, anglesθ0, . . . , θ3 and control polygon legsd01, d12, d23.

Using these results, Meek and Walton in [80] derived a methodhow to compute the lengthsd01,
d23 for given initial Hermite data such that these conditions are fulfilled. Assuming that the control
pointsP0 andP3 lie on the real axis andD =

√

d23/d01, we denote byD±(θ0, θ3) the roots of

sin(θ0) + D sin

(
θ0 + θ3

2

)

+ D2 sin(θ3) = 0. (4.5)

Then we get

d01(θ0, θ3) =
||P3 − P0||
G±(θ0, θ3)

, (4.6)

where

G±(θ0, θ3) = cos(θ0) + D±(θ0, θ3) cos

(
θ0 + θ3

2

)

+ D2
±(θ0, θ3) cos(θ3).

Before we start to investigate the domain of definition of TC-interpolant we have to discuss some
special cases. Firstly, if(θ0, θ3) = (α, β) whereα ∈ {−π, 0} andβ ∈ {0, π}, then the corresponding
TC-interpolant degenerates to a line segment and we exclude these cases from our considerations.

Concerning other special cases, the equation (4.5) degenerates to the linear one ifθ3 ∈ {0, π}.
Moreover, ifw0w3 = 0, we are not able to decide about the orientation of the initial system – this
happens when the vectorst0, P3−P0 or t3, P3−P0 are collinear, i.e.,θ0 ∈ {−π, 0} or θ3 ∈ {0, π},
respectively. The existence of TC-interpolants for these special cases is summarized in Table 4.1.

Further, we want to cover all initial Hermite data which can occur and discuss the existence of
TC-interpolants for these data. It is enough to consider initial angles(θ0, θ3) from the domainΓ =
(−π, 0) × (0, 2π), as the existence of TC-interpolants for(θ0, θ3) on the boundary ofΓ is described
in Table 4.1. We look for such pairs(θ0, θ3) ∈ Γ fulfilling G+(θ0, θ3) > 0 or G−(θ0, θ3) > 0. The
situation is influenced by the fact that the discriminant of (4.5) is not non-negative for all(θ0, θ3) ∈ Γ.
We obtain that the domain whereG+(θ0, θ3) > 0 is bounded by the curves (see Fig. 4.2 (left))

θ3 = f1(θ0) = θ0 + 4
3
π, θ0 ∈ (−π,−1

6
π),

θ3 = f2(θ0) = θ0 + 8
3
π, θ0 ∈ (−5

6
π,−2

3
π),

θ3 = f3(θ0) = θ0 + α+(θ0), θ0 ∈ (−5
6
π, 0),

θ3 = f4(θ0) = θ0 + α−(θ0), θ0 ∈ (−1
6
π, 0),

(4.7)
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Table 4.1: Existence of TC-interpolants for(θ0, θ3) on the boundary ofΓ.

D G TC-interpolant exists for

θ3 = 0 −2 cos
(

θ0

2

)
1 + 2 cos(θ0) θ0 ∈

(−2π
3

, 0
)

θ3 = π −2 sin
(

θ0

2

)
−1 + 2 cos(θ0) θ0 ∈

(−π
3

, 0
)

θ0 = 0 − 1

2 cos( θ3
2
)

1 − 1
2+2 cos(θ3)

θ3 ∈
(
0, 2π

3

)
∪

(
4π
3

, 2π
)

θ0 = −π 1

2 sin( θ3
2
)

−1 + 1

4 sin2( θ3
2
)

θ3 ∈
(
0, π

3

)
∪

(
5π
3

, 2π
)

where

α±(θ0) = 4 arctan

(

−7 cot
(

θ0

2

)
± 4

√
3
√

cot
(

θ0

2

)2
+

+

√

csc
(

θ0

2

)2
(

49 + 48 cos(θ0) ± 28
√

3
√

cot
(

θ0

2

)2
)

sin(θ0)

)

.

Thus,G+(θ0, θ3) > 0 if and only if (θ0, θ3) ∈ ΓPH
+ , whereΓPH

+ is of the form1

ΓPH
+ = Γ ∩

((
(−π,−π

6
) × (0, f1)

)
∪

(
(−5

6
π,−2

3
π) × (f3, f2)

)
∪

∪
(
(−5

6
π, 0) × (0, f4)

)
∪

(
(−2

3
π, 0) × (f3, 2π)

))
.

Similarly, the domain whereG−(θ0, θ3) > 0 is bounded by the same curvesθ3 = f1(θ0), . . .,
θ3 = f4(θ0) (cf. (4.7), only the domain of definition is changed in this case) and one new curve
θ3 = f5(θ0) = θ0 + 2

3
π, θ0 ∈ (−2

3
π, 0) (see Fig. 4.2 (middle)). Thus,G−(θ0, θ3) > 0 if and only if

(θ0, θ3) ∈ ΓPH
− , where

ΓPH
− = Γ ∩

((
(−π,−5

6
π) × (f2, 2π)

)
∪

(
(−5

6
π, 0) × (f3, 2π)

)
∪

∪
(
(−1

6
π, 0) × (f1, f4)

)
∪

(
(−2

3
π, 0) × (0, f5)

))
.

Finally, we can formulate

Proposition 6. For given Hermite interpolation dataP0, P3, t0, t3, whereP0 andP3 are distinct
points on the real axis andθ0 = ∠(t0,P3 − P0) ∈ (−π, 0), θ3 = ∠(P3 − P0, t3) ∈ (0, 2π) such
that

(θ0, θ3) ∈ ΓPH = ΓPH
+ ∪ ΓPH

− ,

there exists at least one TC-interpolant that matches the given initial Hermite data. The domainΓPH

describesall possible initial Hermite datafor which at least one TC-interpolant fulfilling these data
exists.

Remark 7. Let us point out that

1. if we consider(θ0, θ3) ∈ (−π, 0) × (0, π), a TC -interpolant exists if−θ0 + θ3 < 4
3
π holds

– this result was also proved in [56] where it describes the domain of anglesθ0, θ3 for TC-
interpolant without a loop,

2. if −θ0 + θ3 < 2
3
π, then there exist two TC-interpolants fulfilling the given initial Hermite data

– one without and one with a loop.

1For the sake of simplicity, we use a notation(a, b) × (f, g) for the description of the domain{(x, y) ∈ R
2 : a <

x < b ∧ f(x) < y < g(x)} between curvesy = f(x) andy = g(x) restricted on the interval(a, b).
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Chapter 4. G1 Hermite interpolation

Figure 4.2: Left:ΓPH
+ ; Middle: ΓPH

− ; Right: ΓPH. All domains (light blue) are in theθ0θ3-plane and
are bounded by the curvesf1 (dashed),f2 (dot-dashed),f3 (dotted),f4 (thin solid),f5 (thick solid).

4.2 TC-interpolant with and without a loop

In this section, we want to analyze the number of TC-interpolants satisfying given initial data and
their quality, i.e., if they contain a loop or not.

The discussion of inflections, cusps, arches and loops of general cubic B́ezier curves with respect
to a control polygon was done by Stone and DeRose in [110]. Now,we want to summarize results
of a general approach used in [110] which we will adapt to our case of TC-interpolants in the next
subsections.

Let us consider the control polygon of a cubic Bézier curve given by the pointsQ0,Q1,Q2,Q3,
where the first three points are fixed toQ0 = (0, 0)>,Q1 = (0, 1)>,Q2 = (1, 1)>. By moving the
point Q3 = (x, y)> the control polygon is changed and consequently the cubic Bézier curve. As
usual, we deal with standard Bézier curves (cf. e.g. [95]) defined for a parameter in the interval
[0, 1]. The domains where cusps, inflection points, loops or archesoccur are bounded by conic
sections. Our interest is focused on the domain where a loop arises. This domain is described by the
inequalities

x2 −3x+3y ≥ 0 ∧ x2

4
+

x

2
− y +

3

4
> 0 ∧ x2 + y2 +xy−3x ≥ 0 ∧ x ≤ 1 , (4.8)

see Fig 4.3.

4.2.1 TC-interpolants containing a loop

Now, we want to describe such initial Hermite data for which the corresponding TC-interpolant
contains a loop. We use a well-known expressions of the control points of a cubic PH B́ezier curve
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0 1

0

1

0 1

0

1

0 1

0

1

0 1

0

1

0 1

0

1

0 1

0

1

xxx

xxx

yyy

yyy

Figure 4.3: Three pointsQ0 = (0, 0)>,Q1 = (0, 1)>,Q2 = (1, 1)> and moving pointQ3. A
lightblue color shows a domain where a loop occurs. Bounding curves from the equation (4.8) are
drawn in solid, dashed, dotted and dotdashed curves.

(see [37])

P1 = P0 + 1
3
(u2

0 − v2
0, 2u0v0)

>
,

P2 = P1 + 1
3
(u0u1 − v0v1, u0v1 + u1v0)

> ,

P3 = P2 + 1
3
(u2

1 − v2
1, 2u1v1)

>
,

(4.9)

whereP0 corresponds to translation. Without loss of generality we can identify pointsP0, Q0 and
P1,Q1, i.e.,P0 = (0, 0)>,P1 = (0, 1)>. SinceP1 depends only on two parametersu0, v0 (cf. (4.9))
we can solve

P1 = P0 +
1

3

(
u2

0 − v2
0, 2u0v0

)>
= (0, 1)>

with respect tou0, v0. We obtain two solutions

(u1
0, v

1
0) = (

√

3/2,
√

3/2) and (u2
0, v

2
0) = (−

√

3/2,−
√

3/2).

Since both these solutions provide two domains symmetricalwith respect to the origin we will
consider only the first solution in the remainder of the section. Substitutingu1

0, v
1
0 into P2, P3 (cf.

(4.9)) we obtain the remaining control points as

P2 =
(

1√
6
(u1 − v1), 1 + 1√

6
(u1 + v1)

)>

P3 =
(

1
6
(u1 − v1)(

√
6 + 2u1 + 2v1),

1
6
(6 +

√
6v1 + u1(

√
6 + 4v1))

)>
.
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Chapter 4. G1 Hermite interpolation

Transformation from the xy-plane to theu1v1-plane

In general, affine transformations do not preserve the PH condition. Nevertheless, we need only
to find out, if the TC-interpolant contains a loop or not and this property is preserved under affine
transformations. Using the affine transformation which mapthe pointsP0,P1,P2 to Q0,Q1,Q2 we
can map alsoP3 to a new pointQ′

3, i.e.,

Q′
3 =

[ √
6

u1−v1

0

−u1+v1

u1−v1

1

]

· P3 =

(
1√
6
(
√

6 + 2u1 + 2v1),
1

3
(3 − u2

1 − v2
1)

)>

. (4.10)

The inequalities (4.8) describe the domain whereQ3 has to lie in order to get a cubic Bézier
curve with a loop. We can use thex- andy-coordinates ofQ′

3 given by (4.10) to transform the
xy-plane into theu1v1-plane, i.e., we can substitute

x = 1√
6
(
√

6 + 2u1 + 2v1),

y = 1
3
(3 − u2

1 − v2
1)

into (4.8). After some simplifications we obtain a semialgebraic setΣ, defined as a union of two sets
Σ1 andΣ2 where

Σ1 = {(u1, v1) ∈ R
2 :

(u1 − v1)
2 > 0 ∧ u1(

√
6 + u1) + v1(

√
6 + v1) < 3 + 4u1v1∧

3 +
√

6u1 +
√

6v1 ≤ 0
}

,

(4.11)

Σ2 = {(u1, v1) ∈ R
2 :

9 + (
√

6 − 2u1)u1 + (
√

6 − 2v1)v1 > 3
√

9 + 2
√

6v1 − 2(−
√

6u1 + u2
1 + 2u1v1 + v2

1)∧
∧(u1 − v1)

2 > 0 ∧ −3 <
√

6(u1 + v1) < 0
}

.

(4.12)

If we choose parameters(u1, v1) ∈ Σ (see Fig. 4.4 (left)) and substitute these parameters toP3 (cf.
(4.9)), we get a control polygon providing TC-interpolant with a loop.

Moreover, since both pairs of parameters(u1, v1) and(v1, u1) provide the same pointP3, the
domainΣ is symmetrical with respect to the lineu1 = v1 and we can use only one half of this
domain in the remaining text.

Transformation from the u1v1-plane to theθ0θ3-plane

In this section we focus on the last transformation from theu1v1-plane to theθ0θ3-plane, i.e., we
want to be able to determine whether the TC-interpolant contains a loop directly from anglesθ0, θ3.

As it was mentioned at the beginning of Section 4.1, the angles θ0, θ3 can be computed using
(4.2) and (4.4). The computation ofθ3 depends on signs ofw0 andw3 given by (4.3). Thus, we can
divide theu1v1-plane into two domains with respect to the signs ofw0, w3 and also the computation
of the corresponding anglesθ0, θ3 – the domains are (see Fig. 4.4 (middle)):

Ω1 = {(u1, v1) ∈ R
2 : w0(u1, v1)w3(u1, v1) > 0},

Ω2 = {(u1, v1) ∈ R
2 : w0(u1, v1)w3(u1, v1) < 0}.
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Chapter 4. G1 Hermite interpolation

Figure 4.4: Left:Σ1 (yellow), Σ2 (blue); Middle: Ω1 (pink), Ω2 (light gray); Right:Λ1 (blue),Λ2

(green),Λ3 (red),Λ4 (light yellow), Λ5 (orange),Λ6 (brown). All domains are in theu1v1-plane.

The domainsΩ1, Ω2 are bounded by the three implicit curves

d1(u1, v1) = u1 − v1 = 0,

d2(u1, v1) = 2u1 + 2v1 +
√

6 = 0,

d3(u1, v1) = u1

(√
6u1 + 6

)
+ v1

(√
6v1 + 6

)
= 0.

Intersecting the domainsΩ1 andΩ2 with the domainΣ (only one half of it, according to the symme-
try, cf. (4.11) and (4.12)) we get three new domains

Λ1 = Ω1 ∩ Σ1 ∩ {(u1, v1) ∈ R
2 : u1 < v1},

Λ2 = Ω2 ∩ Σ2 ∩ {(u1, v1) ∈ R
2 : u1 < v1},

Λ3 = Ω2 ∩ Σ1 ∩ {(u1, v1) ∈ R
2 : u1 < v1},

(4.13)

which differ by a computation ofθ0 andθ3 and which represent subdomains of theu1v1-plane pro-
viding TC-interpolant(s) with a loop. The domainsΛi, i = 1, 2, 3, are shown in Fig. 4.4 (right).

Further, we can define mappings

Φ1 : Ω1 → R(θ0, θ3) : (u1, v1) 7→ (θ0(u1, v1), θ3(u1, v1)),
Φ2 : Ω2 → R(θ0, θ3) : (u1, v1) 7→ (θ0(u1, v1), θ3(u1, v1)),

which differ by a computation ofθ3(u1, v1) (cf. (4.4)). UsingΦ1 andΦ2 we can transform the
domainsΛi, i = 1, 2, 3 (cf. (4.13)) to theθ0θ3-plane in order to obtain a subdomain ofΓPH providing
TC-interpolants with a loop. The general approach for the transformation ofΛi to theθ0θ3-plane
consists of two steps:

1. finding the parametric description of the domainΛi using rational B́ezier surfaces (see e.g.
[95] for more details), we obtain a parameterization of the form (û1(s, t), v̂1(s, t))

>,

2. transformation ofΛi usingΦ1 (or Φ2).

To demonstrate these steps in more detail, we transformΛ2 usingΦ2 into theθ0θ3-plane. The cor-
responding control net (the third coordinate represents the weight of the control point) is described
by the control points

R2
1 =

(

−
√

3

2

2
,−

√
3

2

2
, 1

)>

, R2
2 = (0, 0, 1)> ,

R2
3 =

(

−3+
√

3
2
√

2
, 1

2

√

6 − 3
√

3, 1
)>

,R2
4 =

(

−1
2

√

2 +
√

3,
√

3−3
2
√

6
,
√

3
2

)>
.
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Computing a rational B́ezier surface for this control net we arrive at the parametric description of
the domainΛ2 in the form

(û2
1(s, t), v̂

2
1(s, t)) =

(
s
(

3
√

2−2
√

3(2+
√

3)t
)

+
√

2(3+
√

3)(t−1)

4(
√

3−2)(s−1)(t−1)t+4
,

s((
√

3−3)t(2t−3)−3)−(
√

3−3)(t−1)(2t−1)

2
√

2((
√

3−2)(s−1)(t−1)t+1)

)>

,

where(s, t) ∈ (0, 1) × (0, 1). Then

Ψ2 = Φ2(û
2
1(s, t), v̂

2
1(s, t))

represents the subdomain ofΓPH corresponding toΛ2 (see Fig. 4.5 (left)).
Similarly, we can find parametric descriptions(û1

1(s, t), v̂
1
1(s, t))

> and(û3
1(s, t), v̂

3
1(s, t))

> of the
domainsΛ1 andΛ3, respectively. Then

Ψ1 = Φ1(û
1
1(s, t), v̂

1
1(s, t)) and Ψ3 = Φ2(û

3
1(s, t), v̂

3
1(s, t))

represent subdomains ofΓPH corresponding toΛ1 andΛ3, respectively (see Fig. 4.5 (left)).

Proposition 8. For given Hermite interpolation dataP0, P3, t0, t3, whereP0 andP3 are distinct
points on the real axis andθ0 = ∠(t0,P3 − P0) ∈ (−π, 0), θ3 = ∠(P3 − P0, t3) ∈ (0, 2π) such
that

(θ0, θ3) ∈ Ψ1 ∪ Ψ2 ∪ Ψ3,

there exists at least one TC-interpolant with a loop that matches given initial Hermite data.

Remark 9. It can be seen from Fig. 4.5 (left) that some parts ofΨ2 andΨ3 are “folded”. According
to Section 4.1, there exist two TC-interpolants for such initial Hermite data. Moreover, initial data
taken fromΨ2 and Ψ3 always produce TC-interpolants with a loop. This implies that there exist
exactly two TC-interpolants with a loop for such initial data.

4.2.2 TC-interpolants without a loop

To analyze the number of TC-interpolants, it is necessary to map also the remaining subdomains of
intersection ofΩ1 andΩ2 with Σ where a loop does not occur. Similarly to Section 4.2.1, we obtain
three domains (see Fig. 4.4 (right))

Λ4 = Ω1 ∩ Σ′
1 ∩ {(u1, v1) ∈ R

2 : u1 < v1},
Λ5 = Ω2 ∩ Σ′

1 ∩ Σ′
2 ∩ {(u1, v1) ∈ R

2 : u1 < v1 ∧ d2(u1, v1) < 0},
Λ6 = Ω2 ∩ Σ′

1 ∩ Σ′
2 ∩ {(u1, v1) ∈ R

2 : u1 < v1 ∧ d2(u1, v1) > 0},

whereΣ′
i = R

2 \ Σi, i = 1, 2. Further, we find parametric descriptions(ûj
1(s, t), v̂

j
1(s, t))

> of the
domainsΛj, j = 4, 5, 6. Then

Ψ4 = Φ1(û
4
1(s, t), v̂

4
1(s, t)) and Ψj = Φ2(û

j
1(s, t), v̂

j
1(s, t)), j = 5, 6,

represent subdomains ofΓPH corresponding toΛj, j = 4, 5, 6 (see Fig. 4.5 (middle)).
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Chapter 4. G1 Hermite interpolation

Figure 4.5: Left: Ψ1 (blue), Ψ2 (green),Ψ3 (red); Middle: Ψ4 (light yellow), Ψ5 (orange),Ψ6

(brown); Right: Subdomains ofΓPH where exactly one without a loop (yellow), one with and one
without a loop (cyan), two without a loop (magenta) and two with a loop (gray) TC-interpolant(s)
exist. All domains are in theθ0θ3-plane.

Proposition 10. For given Hermite interpolation dataP0, P3, t0, t3, whereP0 andP3 are distinct
points on the real axis andθ0 = ∠(t0,P3 − P0) ∈ (−π, 0), θ3 = ∠(P3 − P0, t3) ∈ (0, 2π) such
that

(θ0, θ3) ∈ Ψ4 ∪ Ψ5 ∪ Ψ6,

there exists at least one TC-interpolant without a loop that matches given initial Hermite data.

Remark 11. It can be seen from Fig. 4.5 (middle) that some parts ofΨ5 andΨ6 are again “folded”.
According to Section 4.1, there exist two TC-interpolants forsuch initial Hermite data. Moreover,
initial data taken fromΨ5 andΨ6 always produce TC-interpolants without a loop. This implies that
there exist exactly two TC-interpolants without a loop for suchinitial data.

Remark 12. Let us summarize some consequences of Propositions 8 and 10:

1. If (θ0, θ3) ∈ (Ψ1 ∪ Ψ2 ∪ Ψ3) ∩ (Ψ4 ∪ Ψ5 ∪ Ψ6), then there exist one TC-interpolant without a
loop and one TC-interpolant with a loop.

2. If the anglesθ0, θ3 fulfil

2

3
π ≤ −θ0 + θ3 <

4

3
π or − θ0 + θ3 >

8

3
π,

then there exists exactly one TC-interpolant without a loop.
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Chapter 4. G1 Hermite interpolation

Remark 13. It remains to study the number and the quality of TC-interpolants on the boundary of
the domainΓ, i.e., forθ0 ∈ {−π, 0} or θ3 = 0. According to the discussion of these special cases at
the beginning of Section 4.1 and with respect to Propositions8 and 10, we can write that

• for θ3 = 0, there exists only one TC-interpolant forθ0 ∈ (−2π/3, 0) with a loop,

• for θ0 = 0, there exists only one TC-interpolant forθ3 ∈ (0, 2π/3) ∪ (4π/3, 2π) with a loop,

• for θ0 = −π, there exists only one TC-interpolant forθ3 ∈ (0, π/3) ∪ (5π/3, 2π) without a
loop.

4.3 Examples

In this section we show several examples which demonstrate the existence of TC-interpolant(s) for
given Hermite data.

Example 1. Let us find TC-interpolant(s) for the following Hermite data

P0 = (0, 1)>, P3 = (6, 1)>, t0 =
(

1√
2
,− 1√

2

)>
, t3 =

(
1√
2
, 1√

2

)>
.

We can easily check thatw0 and w3 have the same signs. Using (4.2) and (4.4) we compute
θ0 = −π/4 and θ3 = π/4. Since−θ0 + θ3 < 2π/3, we expect two qualitatively different so-
lutions according to Propositions 8 and 10. Further, using (4.6) we can computed01 and also the
correspondingd23 from D =

√

d23/d01 in the form

d+
01 = 6

1+
√

2
, d−

01 = 6
−1+

√
2
, d+

23 = d+
01D+ = 6

1+
√

2
, d−

23 = d−
01D− = 6

−1+
√

2
.

Finally, we determine the control points of Bézier curves providing TC-interpolants to obtain their
parameterizations

r±(t) =
1

±1 +
√

2

(

3t(3
√

2 − 3(∓2 +
√

2)t + 2(∓2 +
√

2)t2),±1 +
√

2 − 9
√

2t + 9
√

2t2
)>

,

t ∈ [0, 1], with PH conditionx′(t)2 + y′(t)2 = 162(17 ∓ 12
√

2)(±2 +
√

2 ± 2(−1 + t)t)2. The
TC-interpolants are shown in Fig. 4.6 (left). �

Example 2. Let us consider the Hermite data

P0 = (0, 1)>, P3 = (6, 1)>, t0 =
(√

2+
√

6
4

,
√

2−
√

6
4

)>
, t3 =

(

−
√

5
8
−

√
5

8
, −1−

√
5

4

)>

.

In this case,θ0 = −π/12 and θ3 = 13π/10. According to Proposition 10, we expect two TC-
interpolants without a loop, which we can find analogously toExample 1. The TC-interpolants are
shown in Fig. 4.6 (right). �

Example 3. Let us consider Hermite data

P0 = (0, 1)>, P3 = (6, 1)>, t0 =
(

−
√

3
2

,−1
2

)>
, t3 =

(
1+

√
3

2
√

2
,−

√
3−1

2
√

2

)>
.

For these Hermite data we getθ0 = −5π/6 andθ3 = 23π/12. Since−θ0 + θ3 > 8π/3, we expect
exactly one TC-interpolant without a loop according to Remark12, which we can find analogously
to Example 1. This TC-interpolant is shown in Fig. 4.7. �
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Chapter 4. G1 Hermite interpolation

Figure 4.6: TC-interpolants with their control polygons andunit tangent vectors. Left: Example 1;
Right: Example 2.

Figure 4.7: Example 3: TC-interpolant with is control polygon and unit tangent vectors.
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5
Hermite interpolation by two PH cubics

In this chapter we cover all possible initial Hermite data, including data which is impossible to inter-
polate by only one TC-interpolant. Moreover, we show that there exist at most two TC-interpolants
which match such data. In the first section, we studyG1 Hermite interpolation where the proof is
done and in second section we focus onC1 Hermite interpolation by two TC-interpolants. At the
end of this chapter we set several statements how to get good TC-interpolants approximating a given
curve.

5.1 G1 Hermite interpolation

First, we formulate the theorem describing the number of TC-interpolants matching anyG1 Hermite
data.

Theorem 14.AnyG1 Hermite dataP0,P3, t0, t3 can be interpolated by at mosttwo TC-interpolants
joined withG1 continuity.

Proof. (of Theorem 14) Let us suppose connecting pointP lying on the line segmentP0P3 with
associated tangent vectort. We denoteθ = ∠(t,P0 − P3). We have to emphasize that we do not
care about the orientation! The main idea is to show thatθ lies in the intervalI, which is always
nonempty.

Let us consider any point(θ0, θ3) ∈ ΓPH. Since we knowθ0 ∈ (−π, 0) andθ3 ∈ (0, 2π) then
the point(θ0, θ3) determines two line segments in the domain(−π, 0) × (0, 2π) parallel with the
axis. Such two line segments intersect the domain of definition of TC-interpolant in horizontal line
segmentI0 and the second one is vertical line segmentI3, which can be described as follows

I0 = (0, a1) ∪ (a2, a3)
︸ ︷︷ ︸

for θ3> 5π
3

, I3 = (0, b1) ∪ (b2, b3),

whereai and bi are values lying on boundary of the domain of definition of TC-interpolant and
according to its symmetry we arrive at nonempty intersection I = I0 ∪ I3. Since the interval
I is nonempty, it means that the input data can be interpolatedby infinitely many pairs of TC-
interpolants.
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Chapter 5. Hermite interpolation by two PH cubics

Now, let us discuss all the cases in detail. The discussion can be considered as an outline how
to construct a pair of TC-interpolants. Let us emphasize thatwe do not preserve the sign ofθ0, θ3

in all the outline, but we keep the orientation, which gives the direction of the tangent vector and
consequently the sign of the correspondent angles. If we have kept the sign we did not get an
nonempty intervals.

We split up the outline into two parts. We consider that on theline segmentP0P3 lies such point
P with unit tangent vectort which connects arbitraryG1 Hermite data. The choice of the pointP can
be done in different way but we do this for simplification of all contruction, i.e.,θ = ∠(t,P3 −P0).

1. (θ0, θ3) 6∈ ΓPH ∧ θ3 ≤ π
This condition can be rewritten as−θ0 + θ3 ≥ 4π/3 ∧ θ3 ≤ π.

(1a) We have to find first TC-interpolant, which matchesP0 andP and which is determined
by the anglesθ0, θ3. We get all anglesθ3 such as

θ3 ∈ I3 = (0, 4π/3 + θ0),

which describe the family of TC-interpolants.

According to the orientation of the system (w0, w3 from the equation (4.3)) and according
to the assumption ofθ3 we know that for the second TC-interpolant the angle isθs

3 =
2π − θ3 > π. Now we have to find allθ0 which create second TC-interpolant. All angles
θ0 are

θ0 ∈ I0 =

{

(−f−1
4 (θs

3), 0), θs
3 ∈ (7π/6, 5π/3)

(−4π/3 + θs
3, 0), θs

3 ∈ (π, 7π/6〉,

wheref−1
4 is inverse function to the functionf4 from equation (4.7). The intervalI of

the angleθ is described as

θ ∈ −I0 ∩ I3 = −I0 6= ∅,

see Fig. 5.1 (left) and appropriate TC-interpolants are visualized in Fig. 5.3. Let us
notice that the smallest interval isI = (0, f−1

4 (5π/3)). It means if we choose arbitrary
value from this interval we can always create two TC-interpolants for such data.

(1b) Let us discuss the remaining area for the angleθ3 which is expressed as

θ3 ∈ I3 =

{

(8π/3 − θ0, 2π), θ0 ∈ (−π,−5π/6)

(f−1
3 (θ0), 2π), θ0 ∈ 〈−5π/6,−2π/3).

Knowing the value of the angleθ3 > π, we do not computeθs
3 for second TC-interpolant

and we are able to computeθ0 directly. We arrive at

θ0 ∈ I0 = (−4π/3 + θ3, 0)

and consequently to the angleθ

θ = −I0 ∩ Is

3 = Is

3,
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whereIs

3 is

Is

3 =

{

(0, 2π/3 − θ0), θ0 ∈ (−π,−5π/6)

(0, 2π − f−1
3 (θ0)), θ0 ∈ 〈−5π/6,−2π/3).

The described construction is shown in Fig. 5.1 (right) and one pair of possible TC-
interpolants are shown in Fig. 5.3.

Similarly, we know the smallest intervalIs

3 = (0, 2π − f−1
3 (−π/3)), from which we can

always choose the valueθ.

Figure 5.1: A point(θ0, θ3) (black) and point(θ0, θ
s
3) (red). Green line segment is an intervalI3 and

blue line segment describes an intervalI0. Left: Situation in item (1a); Right: Situation in item (1b).

2. (θ0, θ3) 6∈ ΓPH ∧ θ3 > π
This case is very similar to the first case of the constructionand we also subdivide the ideas
into two subitems:

(2a) The angle rangeI3 can be written as

θ3 ∈ I3 =

{

(0, 4π/3 + θ0), θ0 ∈ (−π,−π/6〉
(0, f−1

4 (θ0)), θ0 ∈ (−π/6, 0).
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Since the angleθ3 > π and according to the orientation of the system we have to compute
the angleθs

3 = 2π − θ3 < π. Using this value we are able to computeθ0 as

θ0 ∈ I0 =

{

(−4π/3 + θs
3, 0), θs

3 ∈ (π/3, π)

(−π, 0), θs
3 ∈ (0, π/3).

Finally, the interval for angleθ, i.e. I = −I0 ∩ I3 is not empty. The situation is shown
in Fig. 5.2 (left) and one pair of TC-interpolants is visualized in Fig. 5.4.

(2b) Now, let us use the remaining part of the domain of definition of TC-interpolant. The
angleθ3 is in the interval

θ3 ∈ I3 =

{

(8π/3 − θ0, 2π), θ0 ∈ (−π,−5π/6〉
(f3(θ0), 2π), θ0 ∈ (−5π/6, 0).

According to the orientation of the system, we can compute aninterval of the angleθ0 as

θ0 ∈ I0







〈−π,−f−1
3 (θ3)) ∪ (−f−1

4 (θ3), 0), θ3 ∈ (11π/6, 2π),

〈−π,−8π/3 + θ3) ∪ (−f−1
4 (θ3), 0), θ3 ∈ (5π/3, 11π/6),

(−f−1
4 (θ3), 0), θ3 ∈ (7π/6, 5π/3),

(−4π/3 − θ3, 0), θ3 ∈ (π, 7π/6).

Analogously, we arrive at the final interval range of the angle θ, which is written as an
intersection ofIs

3 and−I0 and is always nonempty. The construction is shown in Fig. 5.2
(right) and TC-interpolants in Fig. 5.4.

In every item we have showed that an intervalI is not empty and therefore there exist at most two
TC-interpolants matching givenG1 Hermite data, which do not belong to the domain of definition
of TC-interpolant.

Example 4. Let us considerG1 Hermite data not lying inΓPH, e.g.,

P0 = (0, 0)>,P3 = (6, 1)>, θ0 = −11

12
π, θ3 =

3

5
π.

On the line segmentP0P3 we suppose the pointP with associated anglesθ3, θ0. We seek such two
TC-interpolants, where the first one is determined by the points P0,P and by the anglesθ0, θ3 and
the second one is given by the pointsP,P3 and by the anglesθ0, θ3.

Sinceθ3 < π we obtain the interval

I3 = (0 ,
4

3
π − 11

12
π

︸ ︷︷ ︸
5

12
π

) ,

from which we can pick up the value of the angleθ3 and therefore it determines all possible TC-
interpolants matching the pointsP0,P.
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Figure 5.2: A point(θ0, θ3) (black) and a point(θ0, θ
s
3) (red). Green line segment is an intervalI3

and blue line segment describes intervalI0. Left: Situation in item (2a); Right: Situation in item
(2b).

From the first TC-interpolant we get all tangent vectorst which have the same orientation like
t3. Knowing this fact we have to considerθs

3 = 2π − θ3 = 7π/5 1 and consequently we arrive to the
interval determining angleθ0

I0 = (−f−1
4

(
7

5
π

)

︸ ︷︷ ︸

≈− π
18

, 0).

Finally we have the intervalI = −I0 ∩ I3,2 which can be rewritten as

I =
(

0,
π

18

)

.

Choosing the valueθ = π/19 we get two TC-interpolants, see Fig. 5.3.
Moreover, the first TC-interpolant is defined for theθ3 lying in the interval

I3 = (
8

3
π − 11

3
π

︸ ︷︷ ︸
7

4
π

, 2π)

1The upper left indexs means symmetrical value with respect to the lineθ3 = π. We will do the similar with the
interval, i.e. for the intervalI = (a, b) we obtainIs = (2π − b, 2π − a).

2By the interval−I we mean the symmetrical interval to the intervalI = (a, b), i.e.−I = (−b,−a).
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Figure 5.3: Two pairs of TC-interpolants. Green-black curveconstructed using the item (1a) and
red-blue curve is done according to the item (1b).

which implies the intervalI0 as follows

I0 = (−4

3
π +

3

5
π

︸ ︷︷ ︸

− 11

15
π

, 0).

Because we keep the same orientation we have to transform the range of the intervalI3 to Is

3 =
(0, π/4) and the final intervalI = −I0 ∩ Is

3 = (0, π/4). Using the valueθ = π/7 we get two
TC-interpolants, see Fig. 5.3.

It remains to show the construction forG1 Hermite data havingθ3 > π, for example

P0 = (0, 0)>,P3 = (6, 1)>, θ0 = − 7

10
π, θ3 =

28

15
π.

We apply similar approach as for previous data, except the change of orientation. Therefore, we
arrive at the intervals

I3 = (0,
4

3
π − 7

10
π

︸ ︷︷ ︸
19

10
π

), I0 = (−π, 0),

which give usI = (0, 19π/30) and two TC-interpolants for specific valueθ = π/7 are shown in
Fig. 5.4. The first TC-interpolants are also defined for the angle θ3 in the interval

I3 = (f−1
3

(

− 7

10
π

)

︸ ︷︷ ︸

≈ 44

23
π

, 2π),

which figures out the interval

I0 = 〈−π,−f−1
3

(
28

15
π

)

︸ ︷︷ ︸

≈− 23

29
π

) ∪ (−f−1
4

(
28

15
π

)

︸ ︷︷ ︸

≈− π
80

, 0〉

and the final interval isI = −I0 ∩ Is

3 = (0, π/80). For the random valueθ = π/85 we get a pair of
appropriate TC-interpolants, see Fig. 5.4. �
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Figure 5.4: Two pairs of TC-interpolants. Green-black curveconstructed using the item (2a) and
red-blue curve is done according to the item (2b).

5.2 C1 interpolation

In this section we describeC1 Hermite interpolation by TC-interpolants. We prove that at most two
TC-interpolants are always necessary to match this data.

Theorem 15. Let us consider two TC-interpolantsr(t) andr(t), t ∈ [0, 1] which are determined by
the control pointsP0,P1,P2,P3 andP0,P1,P2,P3. Such two TC-interpolants areC1 connected
if and only if

u1 = u0 ∧ v1 = v0 ∧ P3 = P0. (5.1)

Proof. We want to prove that the control pointsP2,P3 (= P0) andP1 are collinear and that the
distances|P2 − P3| and|P1 − P0| hold.

According to the expression of the control points of TC-interpolant, see equation (4.9), we can
rewrite the collinearity condition as

P3 − P2 = α(P1 − P0), α 6= 0,
P2 + 1

3
(u2

1 − v2
1, 2u1v1)

> − P2 = α(P0 + 1
3
(u2

1 − v2
1, 2u1v1)

> − P0), α 6= 0,
1
3
(u2

1 − v2
1, 2u1v1)

> = α1
3
(u2

0 − v2
0, 2u0v0)

>, α 6= 0.

If α = 1, the statement of the theorem follows.

Corollary 16. If two TC-interpolants areC1 connected then their preimages areC0 connected, but
opposite statement does not hold, see Fig. 5.5.

In Chapter 4 we have found out for whichG1 Hermite data there exists one TC-interpolant. Now,
we want to derive for whichC1 Hermite data there exist two TC-interpolantsC1 connected. We can
formulate the following theorem.

Theorem 17. For anyC1 Hermite data there always exist four pairs ofC1 joined TC-interpolants.

Proof. For the sake of simplicity we can consider

A = (0, 0)> and B = (b, 0)> (5.2)

with their tangent vectorstA andtB. Further, the tangent vectors determine the control pointsof
the control polygon of TC-interpolants, i.e.,tA givesP1 = (p1x, p1y)

> andtB determinesP2 =
(p2x, p2y)

>.
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Figure 5.5: Situation describing the statement in Corollary16, whereC0 continuity of preimages of
TC-interpolants do not giveC1 continuity of TC-interpolants.

First, we have to solve the system of equations

p1x = 1
3
(u2

0 − v2
0),

p1y = 2
3
u0v0,

(5.3)

for unknownsu0, v0. We get four solutions

u0 = (−1)m

√
3

2
p1y

√

(−1)n
√

p2

1x+p2

1y−p1x

,

v0 = (−1)m
√

3
2

√

(−1)n
√

p2
1x + p2

1y − p1x, {m,n} ∈ {1, 2},
(5.4)

where two pairs are real and two pairs are complex solution (see Fig. 5.8, where the equations (5.3)
can be seen as an intersection of two hyperbolas). It is important to emphasize that if we setp1y = 0
we get zero denominator in the expression ofu0. Such situation we have to solve in a different way.
Since we setp1y = 0 then the equation2

3
u0v0 = 0 describes two linesu0 = 0 andv0 = 0 and the

solution, i.e., the intersection of the hyperbola with its axes, is in the form

u0 = ±
√

3p1x, v0 = 0, and u0 = ±i
√

3p1x, v0 = 0, (5.5)

where the real ones are exactly the vertices of the hyperbola. In further text we assumep1y 6= 0. If
we substitute (5.4) to (4.9) we get pointsP2,P3 dependent only on parametersu1, v1.

Next, we have to solve the system of equations

b − p2x = 1
3
(u2

1 − v2
1),

p2y = 2
3
u1v1.

(5.6)
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We solve this system for unknownsu1, v1, and we obtain the solution

u1 = (−1)m

√
3

2
p2y

√

(−1)n
√

(p2x−b)2+p2

2y+p2x−b
,

v1 = (−1)m
√

3
2

√

(−1)n
√

(p2x − b)2 + p2
2y + p2x − b, {m,n} ∈ {1, 2},

(5.7)

where as in the equation (5.4) we have two real and two complexsolutions and we also have to pay
attention what happens if we setp2y = 0. Analogous to the settingp1y = 0 we arrive to

u1 = ±
√

3(b − p2x), v0 = 0, and u0 = ±i
√

3(b − p2x), v0 = 0. (5.8)

Using the expression of the control points of the TC-interpolant we rewrite the pointP0 as

P0 = P2 −
1

3
(u2

0 − v2
0 + u0u1 − v0v1, 2u0v0 + u0v1 + u1v0)

>.

If we substitute foru1, v1 from the equation (5.7) we get a pointP0 dependent on the variablesu0, v0

and it can be written asP0 = (gx, gy)
>, where

gx(u0, v0) = c11
︸︷︷︸

− 1

3

u2
0 + c22

︸︷︷︸
1

3

v2
0 + c13u0 + c23v0 + c33, cij ∈ R (5.9)

and

gy(u0, v0) = q12
︸︷︷︸

− 2

3

u0v0 + q13u0 + q23v0 + q33, qij ∈ R. (5.10)

Let us emphasize that the pointP3 depends on the parametersu1, v1, i.e.,

P3 = P1 +
1

3
(u2

1 − v2
1 + u0u1 − v0v1, 2u1v1 + u0v1 + u1v0)

>,

whereu0 andv0 are obtained from equation (5.4). Consequently, the final point can be written as
P3 = (fx, fy)

>, wherefx, fy have the forms

fx(u1, v1) = h11
︸︷︷︸

1

3

u2
1 + h22

︸︷︷︸

− 1

3

v2
1 + h13u1 + h23v1 + h33, (5.11)

fy(u1, v1) = k12
︸︷︷︸

2

3

u1v1 + k13u1 + k23v1 + k33. (5.12)

Using condition from the equation (5.1) we arrive at the expression

P3 = P0 ⇒ (gx, gy)
> = (fx, fy)

> ⇒ (gx − fx
︸ ︷︷ ︸

wx

, gy − fy
︸ ︷︷ ︸

wy

)> = (0, 0)>.

If we substituteu1 = u0, v1 = v0 we obtain two quadratic surfaces

wx(u1, v1) = m11
︸︷︷︸

± 2

3

u2
1 + m22

︸︷︷︸

∓ 2

3

v2
1 + m13u1 + m23v1 + m33,

wy(u1, v1) = n12
︸︷︷︸

± 2

3

u1v1 + n13u1 + n23v1 + n33,
(5.13)
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with the coefficientsmij = cij − hij, nij = qij − kij,mij, nij ∈ R. Looking for the zero set, we
obtain two conic sections

wx(u1, v1) = 0 and wy(u1, v1) = 0

with the same center3 S = (sx, sy)
>. If we want to decide about the type of conic section, we have

to focus on two invariants4

∆(a) =

∣
∣
∣
∣
∣
∣

a11 a12 a13

a12 a22 a23

a13 a23 a33

∣
∣
∣
∣
∣
∣

, δ(a) =

∣
∣
∣
∣

a11 a12

a12 a22

∣
∣
∣
∣

(5.14)

of the arbitrary conic section

a(x, y) = a11x
2 + 2a12xy + a22x

2 + 2a13x + 2a23y + a33 = 0.

By the computing of the invariants (5.14) of the conic sectionswx, wy we get

δ(wx) =

∣
∣
∣
∣

±2
3

0
0 ∓2

3

∣
∣
∣
∣
= −4

9
< 0, δ(wy) =

∣
∣
∣
∣

0 ±2
3

±2
3

0

∣
∣
∣
∣
= −4

9
< 0

and, moreover,

∆(wx) 6= 0, ∆(wy) 6= 0,

which imply that the conic sectionswx andwy are hyperbolas. Only for the valuev0 = 0 or v1 = 0
(see equation (5.5), (5.8)) we obtain two intersecting lines (singular conic section).

Let us solve the system of equation

wx(u1, v1) = 0 ∧ wy(u1, v1) = 0. (5.15)

Knowing that both functionwx, wy are of degree 2 and using Bézout theorem we obtain four solu-
tions. We are interested only in real solutions which do not have to exist for two arbitrary hyperbolas.
Now, we have to use the properties of the axes and asymptotes of these two conic sections, i.e., the
conic sectionwx has axesu1 = sx andv1 = sy and conic sectionwy has asymptotesu1 = sx and
v1 = sy, which implies that these two curves have always two real intersections, see Fig. 5.8.

We have found the intersection of two conic section which gives the value of joining point. This
point always exists and therefore we can interpolate arbitrary Hermite data withC1 smoothness.

5.2.1 A loop on TC-interpolatns

In this section we discuss the quality of TC-interpolant matching C1 Hermite data, i.e., whether
it contains a loop or not. Let us assume that PH cubic has parametric expressionr(t) which is
dependent on parametersu0, v0, u1, v1, see Equation (4.9). If we want to determine a selfintersection
we have to solve the following system of equations

r(t+) = r(t−) ∧ t+ 6= t−,

3Using the expression of the center of the hyperbola we can check that the hyperbolas described above have the same
values of the center.

4In general, there are two invariants, the first one is determinant of the conic section and the second one is determinant
of quadratic terms of conic section. The notation of these two invariants can be different depending on a source.
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Figure 5.6: Left: Behavior of the point(u1, v1)
> where we fix(u0, v0)

>; Right: Corresponding
TC-interpolants.

for unknownst+, t−. We obtain following expressions

t+ =
u2

0 + v2
0 − u0u1 − v0v1 +

√
3(u1v0 − u0v1)

(u0 − u1)2 + (v0 − v1)2
, (5.16)

t− =
u2

0 + v2
0 − u0u1 − v0v1 −

√
3(u1v0 − u0v1)

(u0 − u1)2 + (v0 − v1)2
. (5.17)

The PH cubic as a B́ezier curve is given for the parameter in the domain[0, 1], and therefore we can
easily check the domain, where the self intersection is, i.e.,

Υ = {0 ≤ t+ ≤ 1 ∧ 0 ≤ t− ≤ 1}.
This domain is bounded by the curves obtained from the previous equations, which can be rewritten
as

u2
0 + v2

0 − u0u1 − v0v1 ±
√

3(u1v0 − u0v1) = 0,

u2
0 + v2

0 − u0u1 − v0v1 ±
√

3(u1v0 − u0v1) − ((u0 − u1)
2 + (v0 − v1)

2) = 0.
(5.18)

For each TC-interpolant we fix eitheru0, v0 or u1, v1 and then the equations (5.18) describe two lines
and two circles which bound the domain, eitherΥ(u1, v1) = Υ1 or Υ(u0, v0) = Υ0, where a loop
appears, see Fig. 5.6.

To decide if a computed pair of TC-interpolants contains a loop, we only evaluate Equations (5.16)
and (5.17), because we know all the valuesu0, v0, u1, v1.

5.2.2 Rational curves on Blaschke cylinder

We describe some properties of PH curves in dual space. This concept was first introduced in works
of W. Blaschke. Further, Pottmann and Peternell inspired by Laguerre geometry set several statement
about the PH curves, c.f. [89], [96], [97], [98]. Let us mention the theorem describing PH curve on
Blaschke cylinder.
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Theorem 18. The image of any plane PH curve on Blaschke cylinder is a spatial rational curve.

Proof. Can be found in [89].

The aim is to describe the behavior of two TC-interpolants connected inG1 or C1 smoothness.
We can formulate the following theorem.

Theorem 19. Images of any two TC-interpolants joined withC1 or G1 continuity areG1 connected
on Blaschke cylinder.

Proof. The TC-interpolant given by the control points

P0 = (ax, ay)
>, P1 = (bx, by)

>,P2 = (cx, cy)
>,P3 = (dx, dy)

> (5.19)

has a parametric expression

r(t) = (ax(1−t)3+3bx(1−t)2t+3cx(1−t)t2+dxt
3, ay(1−t)3+3by(1−t)2t+3cy(1−t)t2+dyt

3)>,

wheret ∈ [0, 1]. Then the first derivative has an expression

r′(t) = (3(−ax + bx + 2(ax − 2bx + cx)t + (−ax + 3bx − 3cx + dx)t
2),

3(−ay + by + 2(ay − 2by + cy)t + (−ay + 3by − 3cy + dy)t
2))>,

with PH property, i.e.〈r′(t), r′(t)〉 = σ(t)2, σ ∈ R[t]. The tangent line is written as

〈n(t),x〉 + x3 = 0, x = (x1, x2)
>,

wheren(t) = (nx(t), ny(t))
> is unit normal vector andx3 = −〈n(t), r(t)〉. Since the PH cubic is

of degree 3, its curve on Blaschke cylinder is of degree 5, because the third coordinatex3 is a dot
product ofn (degree 2) andr(t) (degree 3). The curvec(t) on Blaschke cylinder is written as

c(t) = (nx(t), ny(t), x3(t))
>,

where

x3(t) = (−ay(t − 1)2(bx + 2(cx + bx)t + (bx − 2cx + dx)t
2)+

ax(t − 1)2(by + 2(cy − by)t + (by − 2cy + dy)t
2)+

t2((cxdy + cydx)t
2 − by(t − 1)(3cx(t − 1) − 2dxt)+

bx(t − 1)(3cy(t − 1) − 2dyt)))/σ(t).

Computing the first derivative of the curvec(t) and evaluating it for the valuest = 0, t = 1 we arrive
at

c′(0) = α0(ax − bx, ay − by, ax(bx − ax) + ay(by − ay))
>,

where

α0 = 2
bxcy − bycx + ay(cx + bx) + ax(by − cy)

((ax − bx)2 + (ay − by)2)3/2

and

c′(1) = α1(cx − dx, cy − dy, dx(dx − cx) + dy(dy − cy))
>, (5.20)
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where

α1 = 2
cxdy − cydx + by(dx − cx) + bx(cy − dy)

((cx − dx)2 + (cy − dy)2)3/2
.

Let us focus on two TC-interpolants and their connection. We have two curvesc(t) andc(t) on
Blaschke cylinder, the first TC-interpolant is determined by the control points (5.19) and the second
TC-interpolant is given by the points

P0 = (ax, ay)
>, P1 = (bx, by)

>, P2 = (cx, cy)
> P3 = (dx, dy)

>.

By the investigation of the first derivatives at the end points, we getc′(1), see equation (5.20) and
the first derivative

c′(0) = α0(ax − bx, ay − by, ax(bx − ax) + ay(by − ay))
>.

If two TC-interpolants areG1 or C1 connected, they have common pointP3 = P0 and the corre-
sponding tangent vectors have to be collinear, or similarly

| P3 − P2
︸ ︷︷ ︸

(dx−cx,dy−cy)>

| = λ| P1 − P0
︸ ︷︷ ︸

(bx−ax,by−ay)>

|, λ ∈ R,

whereλ = 1 yieldsC1 continuity.
Let us focus on the vectorsc′(1) andc′(0) and we want to decide whether they are also collinear.

It is obvious that the first two parts are collinear and therefore we investigate only the third part,
where we substituteP0 = P3

dx(dx − cx
︸ ︷︷ ︸

tx

) + dy(dy − cy
︸ ︷︷ ︸

ty

)
?
= dx(bx − dx

︸ ︷︷ ︸

βtx

) + dy(by − dy
︸ ︷︷ ︸

βty

), β ∈ R,

where the equality holds, because the pointsP2,P3(= P0) andP1 are collinear. The remaining part
is to find whether the first two parts are also multiplied byβ, i.e.,

(cx − dx
︸ ︷︷ ︸

−tx

, cy − dy
︸ ︷︷ ︸

−ty

)> = (dx − bx
︸ ︷︷ ︸

−βtx

, dy − by
︸ ︷︷ ︸

−βty

)>,

which gives the desired continuity on Blaschke cylinder.

Corollary 20. It is obvious that the previous theorem holds not only for PH cubics but also for
arbitrary Bézier cubics joined inG1 or C1 continuity, although they do not possess rational curve
on Blaschke cylinder.

Moreover from the Blaschke cylinder we cannot distinguish whether the curves areC1 or G1

connected.

In Fig. 5.7 TC-interpolantsG1 andC1 connected are shown and there is visualized the corre-
spondence on Blaschke cylinder, where appropriate TC-interpolants are shown.
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c2(t)

c(t)

c1(t)

r2(t)

r1(t)

r(t)

Figure 5.7: Left: Rational curves on Blaschke cylinder which are G1 connected. Right:G1 con-
nected (green and black) andC1 connected (green and gray) TC-interpolants drawn with theircon-
trol polygons.

5.3 Example

In this section we showC1 Hermite interpolation on one example.

Example 5. ForC1 Hermite data

A = (0, 0)>, B = (5, 0)>, tA = (6, 6)>, tB = (6, 3)>

find all TC-interpolants and decide whether they contain a loop.
Knowing the tangent vector we can directly express the control pointsP1 = (2, 2)> andP2 =

(3,−1)> and obviouslyP0 = (0, 0),P3 = (5, 0)>.
By solving the system of equations (5.3) for unknownu1, v1 we obtain four solutions which are

described by (5.4). We get

(ua
0, v

a
0)

> = (−2.691,−1.114)>, (ub
0, v

b
0)

> = (2.691, 1.114)>

(uc
0, v

c
0)

> = (0 + 1.114i, 0 − 2.691i)>, (ud
0, v

d
0)

> = (0 − 1.114i, 0 + 2.691i)>

and we pick up only the real solutions(ua
0, v

a
0)

>, (ub
0, v

b
0)

>, which are moreover symmetrical with
respect to the origin(0, 0)>. The solution of the system of equations (5.3) can be also seen as to find
the intersection of two hyperbolas, see Fig. 5.8.

If we substitute(ua
0, v

a
0)

>, (ub
0, v

b
0)

> to the expression of the control pointP3 we obtainP3 =
(fx(u1, v1), fy(u1, v1))

>, wherefx, fy are gained from the equation (5.11) and (5.12). These func-
tions have formulas

fa
x : 2 + 1

3
(u2

1 − v2
1 − 2.691u1 + 1.114v1),

fa
y : 2 + 1

3
(2u1v1 − 1.114u1 − 2.691v1), where (u1, v1) ∈ R

2
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u0

v0

Figure 5.8: The solution of the system of equation (5.3) described as an intersection of two hyper-
bolas. Gray hyperbola is2u0v0/3 − 2 = 0 and black hyperbola is(u2

0 + v2
0)/3 − 2 = 0. The points

(ua
0, v

a
0)

>, (ub
0, v

b
0)

> are drawn in red and green color, respectively.

and

fb
x : 2 + 1

3
(u2

1 − v2
1 + 2.691u1 − 1.114v1),

fb
y : 2 + 1

3
(2u1v1 + 1.114u1 + 2.691v1), where (u1, v1) ∈ R

2,

which are shown in Fig. 5.9.
Now, let us focus on the equations (5.6). According to the equations (5.7), (5.9) and (5.10) we

arrive at four solutions, where first two are real and other two are complex, i.e.,

(ua
1, v

a
1)

> = (−2.52,−0.595)>, (ub
1, v

b
1)

> = (2.52, 0.595)>,
(uc

1, v
c
1)

> = (0.595i,−2.52i)>, (ud
1, v

d
1)

> = (−0.595i, 2.52i)>.

By substituting the real values(ua
1, v

a
1), (u

b
1, v

b
1) to the expression of the pointP0 we obtain

ga
x : 3 − 1

3
(u2

0 − v2
0 − 2.52u0 + 0.595v0),

ga
y : −1 − 1

3
(2u0v0 − 0.595u0 − 2.52v0),

gb
x : 3 − 1

3
(u2

0 − v2
0 + 2.52u0 − 0.595v0),

gb
y : −1 − 1

3
(2u0v0 + 0.595u0 + 2.52v0),

where(u0, v0) ∈ R
2.

The next step is to compute the functionswx, wy from the equation (5.13). In general, we have
four values forwx and four values forwy in the form

wj,k
x = gj

x − fk
x

wj,k
y = gj

y − fk
y , j, k ∈ {a, b},

namely

wj,j
x = −1 ± 1.737u1 + 2

3
u2

1 ∓ 0.569v1 − 2
3
v2

1, j ∈ {a, b},
wj,k

x = −1 ± 0.056u1 + 2
3
u2

1 ∓ 0.173v1 − 2
3
v2

1, j, k ∈ {a, b} ∧ j 6= k,
wj,j

y = 3 ± 1.737v1 ∓ 0.569u1 + 22
3
u1v1, j ∈ {a, b},

wj,k
y = 3 ± 0.056v1 ∓ 0.173u1 + 22

3
u1v1, j, k ∈ {a, b} ∧ j 6= k.

(5.21)
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u1

v1

u1

v1

Figure 5.9: Left: Functionsfa
x (cyan) andfb

x (yellow) with their zero sets. Right: Functionsfa
y

(cyan) andfb
y (yellow) with their zero sets.

u0

v0

u0

v0

Figure 5.10: Left: Functionsga
x (magenta) andga

x (orange) with their zero sets. Right: Functionsgb
y

(magenta) andgb
y (orange) with their zero sets.
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-2 2

-2

2

u1

v1

-3 3

-3

3

u1

v1

Figure 5.11: Zero sets of functionwx, wy and their intersection (colored points). Left:wa,a
x = 0

(gray), wa,b
x = 0 (black dashed) andwa,a

y = 0 (black), wa,b
y = 0 (gray dashed). Right:wb,a

x = 0
(gray),wb,b

x = 0 (black dashed) andwb,a
y = 0 (black),wb,b

y = 0 (gray dashed).

Their zero sets, i.e., conic sections, are plotted in Fig. 5.11.
By finding the intersection points of conic sections we obtainthe valuesu1, v1, which we get as a

solution of the system of equations (5.15), which are shown as colored points in Fig. 5.11. We arrive
at eight points (we know(uj,k

1,m, vj,k
1,m) = (uj,k

0,m, vj,k
0,m))

(ua,a
1,1, v

a,a
1,1)

> = (3.245,−0.443)>, (ub,b
1,1, v

b,b
1,1)

> = (−3.245, 0.443)>,

(ua,a
1,2, v

a,a
1,2)

> = (−0.639, 1.298)>, (ub,b
1,2, v

b,b
1,2)

> = (0.639,−1.298)>,

(ua,b
1,1, v

a,b
1,1)

> = (−1.719, 1.403)>, (ub,a
1,1, v

b,a
1,1)

> = (1.719,−1.403)>,

(ua,b
1,2, v

a,b
1,2)

> = (1.805,−1.143)>, (ub,a
1,2, v

b,a
1,2)

> = (−1.805, 1.143)>,

(5.22)

where for values(uk,l
1,j, v

k,l
1,j)

> hold

(uk,l
1,j, v

k,l
1,j)

> = −(ul,k
1,j, v

l,k
1,j)

>, for j ∈ {1, 2}, k, l ∈ {a, b},

(uk,k
1,j , v

k,k
1,j )> = −(ul,l

1,j, v
l,l
1,j)

>, for j ∈ {1, 2}, k, l ∈ {a, b},
i.e., they are symmetrical with respect to the origin(0, 0)>, see Fig. 5.12.

If we substitute (5.22) to the corresponding formula (5.21), we get only four distinct points
P3 = P0. For the coefficientsm13,m23 andn13, n23 of the formulawx andwy, see equation (5.13),
hold

mk,l
j3 = −ml,k

j3 , mk,k
j3 = −ml,l

j3, nk,l
j3 = −nl,k

j3 , nk,k
j3 = −nl,l

j3, j ∈ {1, 2}, k, l ∈ {a, b}.

Finally, we arrive at the four pairs of TC-interpolants (all TC-interpolants have the same control
pointsP0,P1,P2 andP3).

1. The first two TC-interpolants are determined by the controlpoints

P
a,a
2,1 = (−1.076, 1.192)>,Pa,a

3,1 = (2.369, 0.231)> = P
a,a
0,1,P

a,a
1,1 = (5.815,−0.729)>
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u1

v1

Figure 5.12: All solution of the system of equation (5.15). The same colored points are symmetrical
with respect to the origin. Symmetrical points(ua,a

1,1, v
a,a
1,1)

> (blue), (ua,a
1,2, v

a,a
1,2)

> (red), (ua,b
1,1, v

a,b
1,1)

>

(green),(ua,b
1,2, v

a,b
1,2)

> (yellow).

and parametric expressions have the following formulae

r
a,a
1 (t) = (6t − 15.23t2 + 11.59t3, 6t − 8.423t2 + 2.654t3)>,

r
a,a
1 (t) = (2.369 + 10.338t − 18.784t2 + 11.076t3, 0.231 − 2.882t + 2.069t2 + 0.581t3)>,

wheret ∈ [0, 1]. The TC-interpolants are shown in Fig. 5.13 (top left).

2. The second TC-interpolants have the control points

P
a,a
2,2 = (3.056, 1.072)>,Pa,a

3,2 = (2.63, 0.518)> = P
a,a
0,2,P

a,a
1,2 = (2.204,−0.035)>

and parametric expressions

r
a,a
2 (t) = (6t − 2.83t2 − 0.539t3, 6t − 8.782t2 + 3.301t3)>

r
a,a
2 (t) = (2.631 − 1.277t + 3.663t2 − 0.016t3, 0.518 − 1.662t − 1.231t2 + 2.374t3)>,

see Fig. 5.13 (top right).

3. The third TC-interpolants have the control points

P
a,b
2,1 = (4.064, 1.38)>,Pa,b

3,1 = (4.393,−0.228)> = P
a,b
0,1,P

a,b
1,1 = (4.723,−1.838)>

and parametric expressions

r
a,b
1 (t) = (6t + 0.193t2 − 1.799t3, 6t − 7.859t2 + 1.63t3)>,

r
a,b
1 (t) = (4.393 + 0.988t − 6.159t2 + 5.776t3,−0.228 − 4.827t + 7.341t2 − 2.285t3)>,

see Fig. 5.13 (bottom left).

46



Chapter 5. Hermite interpolation by two PH cubics

0 1 2 3 4 5

-1

0

1

x

y

0 1 2 3 4 5

-1

0

1

x

y

0 1 2 3 4 5

-1

0

1

x

y

0 1 2 3 4 5

-1

0

1

x

y

Figure 5.13: The four pairs of TC-interpolants matching given C1 Hermite data

4. The fourth TC-interpolants have the control points

P
a,b
2,2 = (−0.044, 2.355)>,Pa,b

3,2 = (0.606, 0.978)> = P
a,b
0,2,P

a,b
1,2 = (1.256,−0.397)>

and parametric expressions

r
a,b
2 (t) = (6t − 12.132t2 + 6.738t3, 6t − 4.934t2 − 0.086t3)>

r
a,b
2 (t) = (0.606 + 1.951t + 3.279t2 − 0.836t3, 0.978 − 4.128t + 2.32t2 + 0.829t3)>,

see Fig. 5.13 (bottom right).

The remaining step is to decide about the quality of the TC-interpolants, i.e., whether they contain
a loop or not. Knowing all the valuesu0, v0, u1, v1 andu0, v0, u1, v1, which describe control points of
TC-interpolants we obtain the equations from the expression(5.18), which bound the domain where
a loop arises.

1. Substituting the values either(ua
0, v

a
0)

> or (ua
1, v

a
1)

> to the equations (5.18) we get two lines
and two circles, see Fig. 5.14 (left).

To decide about the quality of TC-interpolants (containing aloop) we have to discuss where
the points(ua,a

1,1, v
a,a
1,1)

> = (ua,a
0,1, v

a,a
0,1)

> and(ua,a
1,2, v

a,a
1,2)

> = (ua,a
0,2, v

a,a
0,2)

> lie, or, from a computa-
tional point of view, we have to check the value oft+ andt−, see equations (5.16), (5.17).
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The point(ua,a
1,1, v

a,a
1,1)

> = (ua,a
0,1, v

a,a
0,1)

> = (3.245,−0.443)> lies in both domains, i.e., inΥ0 ∩
Υ1 which implies that both TC-interpolants contain a loop, see Fig. 5.14 (left), or by the
computing the parameter values we get for the first TC-interpolant

t+ = 0.235, t− = 0.702 ⇒ t+, t− ∈ [0, 1]

and for the second TC-interpolant

t+ = 0.719, t− = 0.401 ⇒ t+, t− ∈ [0, 1].

The point(ua,a
1,2, v

a,a
1,2)

> = (ua,a
0,2, v

a,a
0,2)

> = (−0.639, 1.298)> does not lie either inΥ1 or in Υ2

and therefore TC-interpolants are without a loop, see Fig. 5.14 (left) or analogously we arrive
to

t+ = 0.092, t− = 1.545 ⇒ t+ ∈ [0, 1], t− 6∈[0, 1]

for the first TC-interpolant and

t+ = −0.711, t− = 1.064 ⇒ t+, t− 6∈[0, 1]

for the second TC-interpolant.

2. In the second case we use the value(ua
0, v

a
0)

> again, but instead(ua
1, v

a
1)

> we use(ub
1, v

b
1)

>.
This value create new domainΥ1 bounded by lines and circles see Fig. 5.14 (right).

Checking where the points(ua,b
1,1, v

a,b
1,1)

> = (ua,b
0,1, v

a,b
0,1)

> and(ua,b
1,2, v

a,b
1,2)

> = (ua,b
0,2, v

a,b
0,2)

> lie, we
decide about a loop on TC-interpolants.

The point(ua,b
1,1, v

a,b
1,1)

> = (ua,b
0,1, v

a,b
0,1)

> = (−1.719, 1.403)> lies only in the domainΥ0 and
therefore second TC-interpolant has a loop. Or by the substitution to the equations (5.16) and
(5.17) we obtain parameter values of the first TC-interpolant

t+ = 2.098, t− = −0.609 ⇒ t+, t− 6∈[0, 1]

and values

t+ = 0.876, t− = 0.028 ⇒ t+, t− ∈ [0, 1],

which belong to the second TC-interpolant.

Finally, the point(ua,b
1,2, v

a,b
1,2)

> = (ua,b
0,2, v

a,b
0,2)

> = (1.805,−1.143)> does not lie neither in
domainsΥ1 or Υ0 which causes no loop on both TC-interpolants. This we can verify by
checking the parameter values of the first TC-interpolant

t+ = 0.161, t− = 1.033 ⇒ t+ ∈ [0, 1], t− 6∈[0, 1]

and the second TC-interpolant

t+ = −1.742, t− = 2.136 ⇒ t+, t− 6∈[0, 1]. �

Remark 21. It is obvious that we can discuss only a local self-intersection, i.e. loop. Otherwise for
global self-intersection we have to use some techniques, see[2], [107], where several approaches
are introduced.
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u1, u0

v1, v0

Υ1

Υ0

Υ1 ∩ Υ0

u1, u0

v1, v0

Υ1

Υ0

Figure 5.14: The domainsΥ1 (orange) andΥ0 (cyan) and the preimages of the first (orange line
segment) and the second (cyan line segment) TC-interpolants. Left: Points(ua,a

1,1, v
a,a
1,1)

> (blue point)
and(ua,a

1,2, v
a,a
1,2)

> (red point); Right:(ua,b
1,1, v

a,b
1,1)

> (green point) and(ua,b
1,2, v

a,b
1,2)

> (yellow point).

5.4 C1 TC-spline

In this section, we conclude Chapter 5 by setting a criteria oninitial data to obtain a “nice” interpo-
lation or, equivalently, to achieve good approximation order. First, we deal only with Hermite data,
where we show the criteria, how to get good TC-interpolants. Further, we extend the observation for
any data and createC1 TC-spline.

Conjecture 22. Let us supposeC1 Hermite dataA,B with associated tangent vectorstA, tB. If the
data fulfill the condition

|tA| ≤
√

3

2
|B − A| ∧ |tB| ≤

√
3

2
|B − A| (5.23)

we obtain at least one pair of TC-interpolants without a local and global self-intersections.

The condition (5.23) is estimated from several observationwhich have been done and we men-
tion only the lower bound for which good TC-interpolants undoubtedly exist. The criterium (5.23)
depends on the initial data, especially on the orientation of associated tangent vectors, see Fig. 5.15.

Let us point out the difficulties of the ’proof’ of Conjecture 22. In Section 5.2 the construc-
tion of C1 TC-interpolants was done, but we do not discuss which data possess a local (or a
global) self-intersection. From the equation (5.16), (5.17) we obtain a subdomain where a point
(u1, v1)

> = (u0, v0)
> has to lie to get TC-interpolants without local self-intersections. The problem

occur when we want to describe the point(u1, v1)
> = (u0, v0)

>, which is the intersection of two
hyperbolas. Expressing the formula of intersection of two hyperbolas described in Equation (5.13)
is a computational problem. It is impossible to decide exactly which input data offer TC-interpolants
without loops, since we do not know almost anything about theintersection of hyperbolas.

Let us suppose a sequence of pointsP0, . . . ,Pn, n ∈ N, and tangent vectors at the first and last
points, i.e.,t0, tn. Using previous observation (5.23) we derive two importantstatements how to
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Figure 5.15: All TC-interpolants for the same dataPi = (0, 0)>,Pi+1 = (3, 0)> where only tangent
vectorsti, ti+1 are changed. Also plotted Ferguson cubic (green) for given data. Top left: ti =
(−3, 3)/

√
2, ti+1 = (3, 3)/

√
2; Top right: ti = (−9, 9)/

√
2, ti+1 = (9, 9)/

√
2; Bottom left: ti =

(−3, 3)/
√

2, ti+1 = (−2,−4)/
√

2; Bottom right:ti = (−5, 5)/
√

2, ti+1 = (−4,−6)/
√

2

obtain a good interpolation by TC-interpolants. The first oneis to compute the directions of tangent
vectorsti, i = 1, . . . , n − 1 at corresponding pointsPi as follows

ti =
Pi − Pi−1

||Pi − Pi−1||
+

Pi+1 − Pi

||Pi+1 − Pi||
. (5.24)

The second one is to control a length ofti

|ti| = min

{√
3

2
|Pi − Pi+1|,

√
3

2
|Pi − Pi−1|

}

. (5.25)

Remark 23. To find only the direction of tangent vectorsti we can use different approaches, e.g. to
use cubic spline with its tangent vectors. Then we have to use condition (5.25) for a length, which
ensure a good pair of TC-interpolant.
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Figure 5.16: Left: B́ezier curve of degree 7. Right: Approximation byC1 TC-interpolants using
only end points with associated tangent vectors.

There are two branches, where the construction of TC-interpolants suits. The first one was
described in previous section, i.e.,C1 Hermite interpolation. The second one is to approximate
given curve.

In general, when we want to approximate given curve byC1 TC-interpolants then we have to
subdivide5 a curve to several segments, which we approximate separately. Each segment is deter-
mined by points (which are computed from given curve) and tangent vectors, which direction and
length should be suitable. The direction of tangent vectorscan be computed either according to the
formula (5.24) or taking the same direction of tangent vector of the given curve. Let us emphasize
that for small number of segments the direction of tangent vector differs significantly, but by the
increasing of the number of segments both approaches gives quite similar directions. Finally, using
the statement in equation (5.25) we obtain acceptable tangent vectors.

To compute approximation order we recall Hausdorff distance, which is defined as

dH(X,Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)},

whereX,Y are subsets of a metric space andd(·, ·) is classical Euclidean distance. The distance can
be estimated via sampling points on the curves and evaluating their distances, which is not easy in
general, since the distance depends on the number of sampling point. In Figures 5.16, 5.17, 5.18 are
shown up to sixteen approximating pairs.

5We can subdivide the curve differently, but we use the numberof parts from the formula2n, n ∈ N.
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Figure 5.17: Approximation of given B́ezier curve (green) byC1 TC-interpolants. Left: Two pairs
of C1 TC-interpolants; Right: Four pairs ofC1 TC-interpolants.

Figure 5.18: Approximation of given B́ezier curve (green) byC1 TC-interpolants. Left: Eight pairs
of C1 TC-interpolants; Right: Sixteen pairs ofC1 TC-interpolants.
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SURFACES
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6
Interpolating Bubble patches on quadrilateral meshes

The idea of this chapter is to introduce brand new technique for data interpolation. We consider
quadrilateral mesh with unit normals at each vertex. Such data are usually called PN (Point and
Normal) data.

6.1 Motivation

The construction of smooth surfaces from given data, such astriangular or quadrilateral meshes, is
an important problem in Computer Aided Geometric Design (cf.[27, 54]) and it is of substantial
interest in the design process of geometric objects in industrial applications. In the literature, a
large number of different methods for generating parametric representations of smooth surfaces can
be found. Two main approaches for constructingGn-surfaces are the manifold construction and
the multi-patch scheme. Many related references for these two design methods can be found in
[47, 120].

The fundamental idea of the manifold approach is to define thesurface with the help of over-
lapping charts and transition functions, which possess thesame order of smoothness as the desired
surface. A first constructive manifold construction was given by Grimm and Hughes in [45]. In
[120], Ying and Zorin presented a method for creating manifold surfaces from quadrilateral meshes,
which was based on the manifold approach from [45]. Further examples of manifold-type construc-
tions can be found in [17, 20, 21, 43, 44, 121].

In the multi-patch approach, surfaces with the appropriategeometric continuity are built by join-
ing several polynomial or rational surface patches together. A survey of this concept can be found
in [92]. In general, multi-patch schemes generate smooth surfaces of relatively low degree, but typ-
ically require some additional consideration at extraordinary points. For instance, a construction
method for curvature continuous free-form surfaces of degree(3, 5) is explained in [91]. It can be
generalized to aGn-construction of degree(n + 1, d + 2n − 2), whered is a flexibility parameter
at extraordinary points. In [47], aG1 interpolation scheme for quadrilateral meshes with vertices of
arbitrary valency is presented, where the resulting surfaces are piecewise bicubic. The same tech-
nique is used for triangular meshes in [46]. Further examples of multi-patch methods can be found
in [60, 74, 76, 101, 102, 103].
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Chapter 6. Interpolating Bubble patches on quadrilateral meshes

Adapted from the multi-patch approach, several methods forconstructing smooth surfaces, in-
terpolating a given rectangular curve mesh, have been developed (cf. [49, 73, 93, 119]). In [73, 93],
there are described different design schemes for constructing interpolatingG1-surfaces. In [49] and
[119], local construction methods for generatingG2-surfaces are explained, which interpolate a mesh
of given quintic curves. The construction in [49] is based onGregory patches, whereas the method
in [119] uses standard polynomial surfaces patches which have to fulfill certain compatibility condi-
tions. In general, networks of curves have to satisfy specific algebraic conditions to be suitable for
G1 andG2-interpolation (cf. [50, 51]).

We describe a new multi-patch scheme for generating aGn-surface, interpolating the vertices
and normals of a quadrilateral mesh. For representing the single surface patches, we introduce a
new concept, called bubble patches. In addition, our local construction scheme is based on Gordon-
Coons interpolation (cf. [27, 54]) and each surface patch is constructed in such a way that the several
patches are connected withGn-continuity. In the case ofG0, G1 andG2-surfaces our algorithm is
explained in detail.

The advantages of our method are numerous. Our constructionalso works for irregular quadri-
lateral meshes, i.e. meshes with vertices of arbitrary valency, and provides a uniform approach to all
valencies. The resulting patches are rational surfaces with arbitrary smoothness, which are joined
together withGn-continuity. We can use low degree polynomial approximations to reduce the ob-
tained degree of the rational surfaces. Furthermore, the construction is local and simple. We have
only to solve small system of linear equations.

6.2 Bubble patches

We consider a quadrilateral meshM given by verticesV ∈ V and edgese = (V,W) ∈ E with
V,W ∈ V, whereV is the vertex set andE is the edge set of the mesh. For a vertexV ∈ V we have
an associated implicitly defined algebraic surface

FV = {Z ∈ R
3 : fV(Z) = 0}

of degreem, given by its truncated Taylor expansion

fV(Z) = g(V)> · (Z − V) +
1

2
(Z − V)> ·H(V) · (Z − V) + . . . (6.1)

whereg(V) is the gradient andH(V) is the Hessian matrix of the functionfV at the vertexV.
Conceptually, we considerfV to be the Taylor expansion of a globally implicitly defined algebraic
surface about the vertexV. Therefore we can refer tog(V) andH(V) as local gradient and local
Hessian matrix atV, respectively.

Remark 24. A typical input is a mesh, where each vertexV has an associated normalnV. In this
situation, the functionfV can be estimated as follows. We generate forfV a function of degreem

fV(x, y, z) =
∑

r,s,t∈N0: r+s+t≤m

cr,s,tx
ryszt, cr,s,t ∈ R

satisfying

fV(V) = 0 (6.2)
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V

W

X

Y

g(V)

g(W)

g(X)

g(Y)

d(u0,v0)

n(u0,v0)

V

W

X

Y

g(V)

g(W)

g(X)

g(Y)

d(u0,v0)

n(u0,v0)

b(u0,v0)

Figure 6.1: Left: A quadrilateral with given vertices and normals with the pointd(u0, v0)
and the normaln(u0, v0); Right: The boundary curves and two additional parameter lines
of a bubble patch on a quadrilateral with the pointsd(u0, v0) andb(u0, v0) and the normal
n(u0, v0).

and

(5fV)(V) = g(V) = nV. (6.3)

Now we compute the unknown coefficientscr,s,t by solving the minimization problem

min
cr,s,t

∑

W∈Ωi(V)

ωW(fV(W)2 + ||(5fV)(W) − nW||2) (6.4)

subject to the constraints (6.2) and (6.3), whereΩi(V) is thei-ring neighborhood of vertices ofV
andωW is the weight for the vertexW in thei-ring neighborhoodΩi(W).

Definition 25. LetQ be a quadrilateral ofM with the verticesV,W,X,Y ∈ V, connected by the
edges(V,W), (X,Y), (V,X), (W,Y) ∈ E , and the corresponding normalsg(V), g(W), g(X),
g(Y), see Fig. 6.1 (left). On the quadrilateralQ, we define a surfaceb : [0, 1]2 → R

3 as follows

b(u, v) = d(u, v) + h(u, v)n(u, v), (u, v) ∈ [0, 1]2, (6.5)

whered andn are bilinear interpolants, given by

d(u, v) = (1 − v)((1 − u)V + uW) + v((1 − u)X + uY)

and

n(u, v) = (1 − v)((1 − u)g(V) + ug(W)) + v((1 − u)g(X) + ug(Y)),

and h is a scalar function. Moreover, we require thatb(0, 0) = V, b(1, 0) = W, b(0, 1) = X

andb(1, 1) = Y which implies thath(0, 0) = h(1, 0) = h(0, 1) = h(1, 1) = 0. The functionb is
referred to as abubble patchand the functionh is called thebubble function.

An example of a bubble patch on a quadrilateral is presented in Figure 6.1 (right).
For later reference, letn ∈ N0, k ∈ {0, 1} andj ∈ {0, . . . n}, then we denote byH2n+1

k,j the
classical Hermite polynomials of degree2n + 1, i.e.

H2n+1
k,j : [0, 1] → R

with
∂i

∂ti
(H2n+1

k,j (t))
∣
∣
t=l

= δi,jδk,l

for j ∈ {0, . . . , n} andl ∈ {0, 1}.
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Chapter 6. Interpolating Bubble patches on quadrilateral meshes

6.3 Construction ofGn-surfaces

We describe a method for constructing aGn-surface, consisting of bubble patches, that interpolates
the vertices and normals of a quadrilateral mesh with normals. For each quadrilateral we generate
a surface, which is described by the bubble patch introducedin (6.5), in such a way that the surface
patches are pieced together withGn-continuity. The main idea is to construct the bubble functionh
with the help of Gordon-Coons interpolation by using boundary data forh which provide the desired
continuity between the patches. Our construction consistsof the following two steps.

Step 1 We make a compatible mesh ofGn-surface strips between the vertices of the quadrilateral
meshM which are connected by edges. AGn-surface strip can be seen as an equivalence class of
all surfaces through a curve between two vertices having contact of ordern along this curve. The
Gn-surface strips forn ≤ 2 can be described as follows.

• A G0-surface strip is simply the boundary curve between two vertices which are connected by
an edge. The corresponding boundary curves have to meet at the vertices.

• A G1-surface strip is the boundary curve with the associated tangent planes between two
vertices which are connected by an edge. It can be seen as an equivalence class of all surfaces
through the boundary curve which have the same tangent planes along the boundary curve.

• A G2-surface strip is the boundary curve with the associated tangent planes and normal curva-
tures between two vertices which are connected by an edge. Itcan be seen as an equivalence
class of all surfaces through the boundary curve which have the same tangent planes and the
same normal curvatures along the boundary curve.

In Figure 6.2, theG0, G1 andG2-surface strips between two vertices of a quadrilateral arevisualized.
The construction of theGn-surface strip forn ∈ {0, 1, 2} is explained in detail in Section 6.4.

Step 2 We generate the bubble functions by using Gordon-Coons interpolation. Given a quadri-
lateralQ on the meshM with the associatedGn surface strip, we evaluate the boundary values
and the cross boundary derivatives of the bubble function. For this we use the fact that the desired
bubble patch need to have a contact of ordern with theGn-surface strip along the boundary curve.
Furthermore the obtained boundary data of the bubble function has to satisfy the so-called twist
compatibility condition (6.25) at the vertices of the patch, which is fulfilled by our choice of theGn-
surface strip. Then we can use Gordon-Coons interpolation toconstruct a suitable bubble function.
This step is explained in more detail in Section 6.5.

6.4 Gn-surface strips

We explain the construction of aGn-surface strip. For this we consider two verticesV,W ∈ V
which are connected by an edge. At first we construct a boundary curvep : [0, 1] → R

3, given by

p(t) = (1 − t)V + tW + ĥ(t)((1 − t)g(V) + tg(W)), (6.6)

whereĥ is the restriction of the bubble functionh on the boundary between the verticesV andW.
Then we generate a family of implicitly defined algebraic surfaces

FQ = {Z ∈ R
3 : fQ(Z) = 0}

57



Chapter 6. Interpolating Bubble patches on quadrilateral meshes
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Figure 6.2: TheG0, G1 andG2-surface strips between two vertices of a quadrilateral.
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Chapter 6. Interpolating Bubble patches on quadrilateral meshes

along the boundary curvep. For a pointQ on the boundary curve, the functionfQ is given by

fQ(Z) = g(Q)> · (Z − Q)
︸ ︷︷ ︸

only for n≥1

+
1

2
(Z − Q)> ·H(Q) · (Z − Q)

︸ ︷︷ ︸

only for n≥2

+ . . . , (6.7)

whereg(Q) is the local gradient andH(Q) is the local Hessian matrix of the functionfQ at the point
Q. At the vertices on the boundary curvep, the implicitly defined algebraic surfaces introduced in
(6.1) and (6.7) agree up to the term of degreen. The family of implicitly defined algebraic surfaces
Fq along the boundary curvep describes the compatibleGn-surface strip between the verticesV

andW. In the following subsections we explain the construction of the boundary curves and of the
implicitly defined algebraic surfaces for different valuesof the smoothness parametern. TheGn-
surface strips have to be generated in such a way that the boundary values and the cross boundary
derivatives of the bubble functionh, evaluated in Section 6.5, fulfill the so-called twist compatibility
condition (6.25) at the vertices of the patch. This is necessary for applying Gordon-Coons interpola-
tion to obtain the bubble functionh, see Section 6.5, and will be achieved by having a higher order
contact of theGn-surface strips with the implicitly defined algebraic surfaces at the vertices.

6.4.1 G0-surface strip

This case is trivial.ĥ is any function withĥ(0) = ĥ(1) = 0 and we simply choosêh = 0. The
family of implicitly defined algebraic surfaces is not required (formallyfQ = 0).

6.4.2 G1-surface strip

We explain the generation of aG1-surface strip which will be used in Section 6.5 to constructbubble
patches which are joined together withG1-continuity. This will be achieved by generating bubble
patches with a first order contact with theG1-surface strip along the boundary. In this subsection we
explain the construction of a compatibleG1-surface strip which is given by the functionsfQ, defined
up to linear terms, along the boundary curvep.

The first step is the construction of the functionĥ, specifying the boundary curvep. It is chosen
as a quintic polynomial in Bernstein-Bézier representation, i.e.

ĥ(t) =
5∑

i=0

ciB
5
i (t), (6.8)

whereB5
i are the Bernstein polynomials of degree5 andci ∈ R. To get the function̂h, we compute a

boundary curvep which has a contact of second order with the implicitly defined algebraic surfaces
FV andFW at the verticesV andW, respectively. That means the boundary curvep has to satisfy
the following conditions

(
∂i

∂ti
fV(p(t))

∣
∣
t=0

= 0 and(
∂i

∂ti
fW(p(t))

∣
∣
t=1

= 0 (6.9)

for i ∈ {0, 1, 2}. These conditions are a system of linear equations for the coefficientsci of the
function ĥ. The second order contact of the boundary curve with the implicitly defined algebraic
surfaces at the vertices ensures that the twist compatibility condition (6.25) is fulfilled, see Lemma 29
below.
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Chapter 6. Interpolating Bubble patches on quadrilateral meshes

The second step is the generation of a family of implicitly defined algebraic surfacesFp along
the boundary curvep, for which the functionsfp are needed to be defined up to linear terms. For
this we have to construct local gradientsg(p) which are compatible with the boundary curve. This
compatibility condition is described in the following lemma.

Lemma 26. Let p be the boundary curve in (6.8) andfp be the functions in (6.7), defined up to
linear terms. Then the local gradientsg(p) are compatible with the boundary curvep if

g(p(t))> · ∂

∂t
p(t) = 0. (6.10)

Proof. To get a well-definedG1-surface strip, the boundary curvep needs to have a first order
contact with the functionsfp along the boundary, i.e.

(
∂

∂s
fp(t)(p(s)))

∣
∣
s=t

= 0

for t ∈ [0, 1], which is equivalent to equation (6.10) and provides us the compatibility condition for
g(p).

We construct the local gradientsg(p) as follows. At first we consider the vector fieldsĝ(p)
along the boundary curvep which are obtained from

ĝ(p(t)) =
1∑

j=0

H3
0,jĝ

j
V + H3

1,jĝ
j
W, (6.11)

where

ĝ
j
V =

∂j

∂tj
(5fV)(p(t))

∣
∣
∣
∣
t=0

andĝ
j
W =

∂j

∂tj
(5fW)(p(t))

∣
∣
∣
∣
t=1

,

for j ∈ {0, 1}. In particular we have

ĝ0
V = g(V) andĝ0

W = g(W).

The resulting vector fieldŝg(p) ensure that the twist compatibility condition (6.25) is satisfied, see
Lemma 29.

In general, the vector fieldŝg(p) do not satisfy Lemma 26. Therefore we construct suitable
gradientsg(p) by solving the minimization problem

g(p(t)) = arg min
ḡ

||ḡ − ĝ(p(t))||2 (6.12)

subject to the constraint (6.10). Its solution is given by

g(p(t)) = ĝ(p(t)) − ĝ(p(t))> · ∂
∂t

p(t)
∂
∂t

(p(t))> · ∂
∂t

p(t)
(
∂

∂t
(p(t))). (6.13)

This possesses a simple geometric interpretation. The gradientsg(p) are obtained as the projections
of the gradientŝg(p) into the normal plane of the curvep. In addition, the projection preserves the
twist compatibility condition (6.25).
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Chapter 6. Interpolating Bubble patches on quadrilateral meshes

6.4.3 G2-surface strip

We explain the construction of aG2-surface strip, which is given by the functionsfQ, defined up
to quadratic terms, along the boundary curvep. In Section 6.5, we will use this strip to generate
bubble patches which have a second order contact with the strip to getG2-continuity between the
neighboring patches.

We start with the construction of the functionĥ, for which we choose a polynomial in Bernstein-
Bézier representation of degree9, i.e.

ĥ(t) =
9∑

i=0

ciB
9
i (t),

whereB9
i are the Bernstein polynomials of degree9 and ci ∈ R. The coefficients are obtained

by computing a boundary curvep which possesses a contact of order4 with the implicitly defined
algebraic surfaceFV andFW at the verticesV andW,respectively, i.e.

(
∂i

∂ti
fV(p(t))

∣
∣
t=0

= 0 and(
∂i

∂ti
fW(p(t))

∣
∣
t=1

= 0 (6.14)

for i ∈ {0, . . . , 4}. These conditions lead to a system of linear equations for the coefficientsci. The
contact of order4 of the boundary curve with the implicitly defined algebraic surfaces at the vertices
guarantees that the twist compatibility condition (6.25) is fulfilled, see Lemma 30 below.

Next we generate a family of implicitly defined algebraic surfacesFp along the boundary curve
p, for which the functionsfp are needed to be defined up to quadratic terms. That means we
construct local gradientsg(p) and local Hessian matricesH(p) which have to be compatible with
the boundary curvep. The following lemma describes this compatibility condition.

Lemma 27. Let p be the boundary curve in (6.8) andfp be the functions in (6.7), defined up to
quadratic terms. Then the local gradientsg(p) and the local Hessian matricesH(p) are compatible
with the boundary curvep if condition (6.10) and the condition

∂

∂t
g(p(t)) = H(p(t)) · ∂

∂t
p(t) (6.15)

are satisfied.

Proof. The boundary curvep needs to have a first and second order contact with the functionsfp

along the boundary, i.e.

(
∂

∂s
fp(t)(p(s)))

∣
∣
s=t

= 0 (6.16)

and

(
∂2

∂s2
fp(t)(p(s)))

∣
∣
s=t

= 0 (6.17)

for t ∈ [0, 1], respectively. In the proof of Lemma 26 we have seen that the conditions (6.10) and
(6.16) are equivalent. In addition we obtain by differentiating condition (6.10) the equation

g(p(t))> · ∂2

∂t2
p(t) +

∂

∂t
g(p(t))> · ∂

∂t
p(t) = 0.
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Since condition (6.17) is equivalent to

g(p(t))> · ∂2

∂t2
p(t) +

∂

∂t
p(t) ·H(p(t)) · ∂

∂t
p(t) = 0,

we obtain the compatibility condition (6.15).

The construction of the local gradientsg(p) is similar to the case ofG1-surface strips. The
only difference is that we use interpolants of degree7 for the vector fieldŝg(p), instead of cubic
interpolants, i.e.

ĝ(p(t)) =
3∑

j=0

H7
0,jĝ

j
V + H7

1,jĝ
j
W,

where

ĝ
j
V =

∂j

∂tj
(5fV)(p(t))

∣
∣
∣
∣
t=0

andĝ
j
W =

∂j

∂tj
(5fW)(p(t))

∣
∣
∣
∣
t=1

,

for j ∈ {0, . . . , 3}. In particular we obtain

ĝ0
V = g(V) andĝ0

W = g(W).

These interpolants of higher degree ensure that the twist compatibility condition (6.25) is satisfied
for G2-surfaces, which will be presented in Lemma 30.

The local gradientsg(p) are again the solution (6.13) of the minimization problem (6.12) subject
to the constraint (6.10) and still preserve the twist compatibility condition (6.25).

The next step is the construction of the local Hessian matricesH(p). For this we start with
the computation of matriceŝH(p) which are quintic interpolants of the Hessian matricesH(v) and
H(W), i.e.

Ĥ(p(t)) =
2∑

j=0

H5
0,jĤ

j
V + H5

1,jĤ
j
W, (6.18)

where

Ĥ
j
V =

∂j

∂tj
Hess(fV)(p(t))

∣
∣
∣
∣
t=0

andĤj
W =

∂j

∂tj
Hess(fW)(p(t))

∣
∣
∣
∣
t=1

,

for j ∈ {0, 1, 2} and where Hess(·) is the Hessian matrix. In particular we have

Ĥ
0
V = H(V) andĤ0

W = H(W).

The matriceŝH(p) ensure that the twist compatibilty condition (6.25) is satisfied, see Lemma 30.
But in general, condition (6.15) in Lemma 27 is not fulfilled. Therefore we generate suitable

Hessian matricesH(p) by solving the minimization problem

H(p(t)) = arg min
H̄

||H̄− Ĥ(p(t))||2 (6.19)

subject to the constraint (6.15).
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Lemma 28. The construction of the Hessian matricesH(p) is invariant with respect to the choice
of a coordinate system.

Proof. Let p be the boundary curve in (6.8) andfp be the functions in (6.7), defined up to quadratic
terms. LetU ∈ SO(3), then we denote bỹp the curve

p̃ = U
> · p

and byf̃p the function

f̃p̃(Z) = fp(U · Z).

The gradient̃g(p̃) and the Hessian matrix̃H(p̃) of f̃p̃ are given by

g̃(p̃) = U · g(p) andH̃(p̃) = U ·H(p) ·U>,

whereg(p) andH(p) are the gradient and the Hessian matrix offp, respectively. In addition, let
H(p) be the solution of the minimization problem (6.19) subject to the constraint (6.15) and let

H̃0(p̃) = U · Ĥ(p) ·U>.

Now we have to show that̃H(p̃) is the solution of the minimization problem

arg min
H̃(p̃(t))

||H̃(p̃(t)) − H̃0(p̃(t))||2

subject to the constraint

∂

∂t
g̃(p̃(t)) = H̃(p̃(t)) · ∂

∂t
p̃(t).

Let || · || be the Frobenius norm and tr(·) be the trace of a matrix. We have

||H̃(p̃) − H̃0(p̃)||2 =

tr((U · (H(p) − Ĥ(p)) ·U>) · (U · (H(p) − Ĥ(p)) ·U>)>) =

tr(U · (H(p) − Ĥ(p)) · (H(p) − Ĥ(p)) ·U>) =

tr((H(p) − Ĥ(p)) · (H(p) − Ĥ(p))) =

||H(p) − Ĥ(p)||2.
In addition, it is easy to show that

∂

∂t
g̃(p̃(t)) = H̃(p̃(t)) · ∂

∂t
p̃(t)

is equivalent to

∂

∂t
g(p(t)) = H(p(t)) · ∂

∂t
p(t).
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6.4.4 Gn-surface strip

Finally we give a short overview of the general constructionof a Gn-surface strip. At first we
construct a function̂h which is given as a polynomial in Bernstein-Bézier representation of de-
gree4n+1. The coefficients of the function̂h are obtained by computing a boundary curvep with a
contact of order2n with the implicitly defined algebraic surfacesFV andFW at the verticesV and
W, respectively.

Then we generate a family of implicitly defined algebraic surfacesFp, defined up to terms of
degreen, such that the functionsfp are compatible with the boundary functionp. For this purpose,
compatibility conditions can be formulated, which are generalizations of Lemma 27 with additional
conditions.

6.5 Construction of bubble functions

We explain the construction of the bubble functionh for a bubble patch (6.5) by using Gordon-Coons
interpolation. This method is a well-known tool for constructing a bivariate function, in our caseh,
which interpolates given boundary data (cf. [27, 54]). At first we describe the generation of this
boundary data, which will be used for Gordon-Coons interpolation and has to be chosen in such a
way thatGn-continuity between the surface patches is guaranteed. Forthis purpose we construct
a bubble patch which has a contact of ordern with theGn-surface strips along the corresponding
boundary curves to obtain the desired boundary data. Then weuse Gordon-Coons interpolation to
construct the bubble functionh.

6.5.1 Evaluation of boundary values and cross boundary derivatives

We consider the bubble patchb in (6.5) with the verticesV,W,X,Y and the correspondingGn-
surface strip with the boundary curvep for the edge(V,W), constructed in Section 6.4. Now we
use this surface strip to generate the boundary functionh(u, 0) and the cross boundary derivatives

(
∂i

∂vi
h(u, v))

∣
∣
v=0

(6.20)

for i ∈ {1, . . . , n}, which are needed for Gordon-Coons interpolation in the following subsection.
We explain the generation of these functions in detail for the casen ≤ 2. The idea can be generalized
to anyn ≥ 3.

For the generation of the boundary data, we use the fact that the bubble patchb needs to have
a contact of ordern with theGn-surface strip along the boundary curvep. Having this contact of
ordern along the boundary curvep, we guarantee that the bubble patchb and its beighboring patch
are connected withGn-continuity. Since the bubble patchb has a parametric representation and the
Gn-surface strip is given implicit, the contact of ordern can be described by the simple contact order

(
∂s

∂vs
fp(u)(b(u, v)))

∣
∣
v=0

= 0 (6.21)

for s ∈ {0, . . . , n}. Depending on the order of contact, the conditions (6.21) are used to get the
several functions as follows.
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• Contact of order0: We have

fp(u)(b(u, 0)) = 0,

which implies

b(u, 0) = p(u).

Therefore we get

h(u, 0) = ĥ(u)

whereĥ is the function in (6.6).

• Contact of order1: The condition

(
∂

∂v
fp(u)(b(u, v)))

∣
∣
v=0

= 0

has to be fulfilled, which is equivalent to

g(p(u))> · bv(u, 0) = 0. (6.22)

Since the first partial derivativebv(u, 0) is given by

bv(u, 0) = dv(u, 0) + hv(u, 0)n(u, 0) + h(u, 0)nv(u, 0),

we obtain the first partial derivative

hv(u, 0) = −g(p(u))> · dv(u, 0) + h(u, 0)g(p(u))> · nv(u, 0)

g(p(u))> · n(u, 0)
.

• Contact of order2: We have to satisfy the following condition

(
∂2

∂v2
fp(u)(b(u, v)))

∣
∣
v=0

= 0

which is equivalent to

g(p(u))> · bvv(u, 0) + bv(u, 0)> ·H(p(u)) · bv(u, 0) = 0.

Since the second partial derivativebvv(u, 0) is given by

bvv(u, 0) = hvv(u, 0)n(u, 0) + 2hv(u, 0)nv(u, 0),

we get the second partial derivativehvv(u, 0) as follows:

hvv(u, 0) = −bv(u, 0)> ·H(p(u)) · bv(u, 0) + 2hv(u, 0)g(p(u))> · nv(u, 0)

g(p(u))> · n(u, 0)
.
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• Contact of orders ≥ 3: We construct the partial derivative( ∂s

∂vs h(u, v))
∣
∣
v=0

with the help of
the condition

(
∂s

∂vs
fp(u)(b(u, v)))

∣
∣
v=0

= 0

and the already computed functions( ∂i

∂vi h(u, v))
∣
∣
v=0

for i ∈ {0, . . . , s − 1}.

Analogously, we can compute fori ∈ {0, . . . , n} the functions

(
∂i

∂vi
h(u, v))

∣
∣
v=1

, (
∂i

∂ui
h(u, v))

∣
∣
u=0

and(
∂i

∂ui
h(u, v))

∣
∣
u=1

(6.23)

with the help of theGn-surface strips for the remaining edges(X,Y), (V,X) and(W,Y), respec-
tively.

For applying Gordon-Coons interpolation we need the following additional values

(
∂i+j

∂ui∂vj
h(u, v))

∣
∣
(u,v)=(k,l)

(6.24)

for k, l ∈ {0, 1} and i, j ∈ {1, . . . , n}. These values, which are calledtwist values, are deter-
mined by the cross boundary derivatives (6.20) and (6.23) and are obtained by differentiating the
corresponding derivatives. Another possibility for computing the values (6.24) is to solve the linear
equations

(
∂i+j

∂ui∂vj
fb(k,l)(b(u, v)))

∣
∣
(u,v)=(k,l)

for k, l ∈ {0, 1} andi, j ∈ {1, . . . , n}, where the values (6.24) are the unknowns. Because of our
choice of theGn-surface strips and hence of the cross boundary derivatives(6.20) and (6.23), we
garante that

(
∂i+j

∂ui∂vj
h(u, v))

∣
∣
(u,v)=(k,l)

= (
∂i+j

∂vj∂ui
h(u, v))

∣
∣
(u,v)=(k,l)

, (6.25)

for k, l ∈ {0, 1} and i, j ∈ {1, . . . , n}. The fulfillment of condition (6.25), which is calledtwist
compatibility condition, is described forG1-surfaces (n = 1) and forG2-surfaces in Lemma 29 and
Lemma 30, respectively.

Lemma 29. Our construction of the boundary functions

h(u, 0), h(u, 1), h(0, v), h(1, v) (6.26)

and the first cross boundary derivatives

hv(u, 0), hv(u, 1), hu(0, v), hu(1, v). (6.27)

ensures that the twist compatibility condition

huv(k, l) = hvu(k, l) (6.28)

for k, l ∈ {0, 1} is fulfilled.
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Proof. We will only prove the twist compatibility condition at the vertexV, i.e.

huv(0, 0) = hvu(0, 0),

because at the other vertices the proof can be done analogously. For this purpose we first show that

buv(0, 0) = buv(0, 0).

Since the first cross boundary derivativesbv(u, 0) andbu(0, v) satisfy the corresponding condi-
tion (6.22), i.e.

g(b(u, 0))> · bv(u, 0) = 0, (6.29)

g(b(0, v))> · bu(0, v) = 0, (6.30)

we get by differentiating equation (6.29) with respect tou and by differentiating equation (6.30) with
respect tov the following two equations for the vertexV:

(
∂

∂u
g(b(u, 0))>

∣
∣
u=0

) · bv(0, 0) + g(b(0, 0))> · bvu(0, 0) = 0, (6.31)

(
∂

∂v
g(b(0, v))>

∣
∣
v=0

) · bu(0, 0) + g(b(0, 0))> · buv(0, 0) = 0. (6.32)

With the help of the fact that

∂

∂u
g(b(u, 0))

∣
∣
u=0

=
∂

∂u
(5fV)(b(u, 0))

∣
∣
u=0

(6.33)

and

∂

∂v
g(b(0, v))

∣
∣
v=0

=
∂

∂v
(5fV)(b(0, v))

∣
∣
v=0

, (6.34)

which is a consequence of (6.11), it is easy to verify that

(
∂

∂u
g(b(u, 0))>

∣
∣
u=0

) · bv(0, 0) = (
∂

∂v
g(b(0, v))>

∣
∣
v=0

) · bu(0, 0).

Therefore we have that

g(b(0, 0))> · bvu(0, 0) = g(b(0, 0))> · buv(0, 0).

Since

bvu(0, 0) = dvu(0, 0) + hvu(0, 0)n(0, 0) + hv(0, 0)nu(0, 0) +

hu(0, 0)nv(0, 0) + h(0, 0)nvu(0, 0)

and

buv(0, 0) = duv(0, 0) + huv(0, 0)n(0, 0) + hu(0, 0)nv(0, 0) +

hv(0, 0)nu(0, 0) + h(0, 0)nuv(0, 0),

we get

hvu(0, 0)g(0, 0)n(0, 0) = huv(0, 0)g(0, 0)n(0, 0),
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which implies that

hvu(0, 0) = huv(0, 0).

It remains to show that the derivatives (6.33) and (6.34) of the gradient are compatible with the
boundary curvesb(u, 0) andb(0, v) at the vertexV, i.e.

∂

∂u
g(b(u, 0))

∣
∣
u=0

= (Hess(fV)(b(0, 0))) · bu(0, 0)

and

∂

∂v
g(b(0, v))

∣
∣
v=0

= (Hess(fV)(b(0, 0))) · bv(0, 0),

respectively. But this is a consequence of the second order contact of the two boundary curves
b(u, 0) andb(0, v) with the functionfV at the vertexV, given in (6.9).

Lemma 30. Our construction of the boundary functions (6.26), the firstcross boundary deriva-
tives (6.27) and the second cross boundary derivatives

hvv(u, 0), hvv(u, 1), huu(0, v), huu(1, v) (6.35)

ensures that the twist compatibility conditions (6.28) and

huuv(k, l) = hvuu(k, l) (6.36)

huvv(k, l) = hvvu(k, l), (6.37)

huuvv(k, l) = hvvuu(k, l), (6.38)

for k, l ∈ {0, 1} are fulfilled.

Proof. The proof works similar like in Lemma 29. For the sake of brevity we only give a short
overview. At first we show step by step that

buv(0, 0) = bvu(0, 0),buuv(0, 0) = bvuu(0, 0),buvv(0, 0) = bvvu(0, 0)

and

buvv(0, 0) = bvvu(0, 0),

which provides us the twist compatibility conditions (6.28) and (6.36) - (6.38). Finally we show
the compatibility of the used derivatives of the gradients and of the used derivatives of the Hessian
matrices with the boundary curvesb(u, 0) andb(0, v) at the vertexV.

6.5.2 Applying Gordon-Coons interpolation

The bubble functionh is obtained by applying Gordon-Coons interpolation to the Hermite boundary
data, which has been computed in the last subsection. For getting the desiredGn-continuity between
the surface patches we have to choose the Gordon-Coons interpolation of degree2n + 1, which
requires Hermite boundary data given by the cross boundary derivatives (6.20) and (6.23). In addi-
tion these cross boundary derivatives have to fulfill the twist compatibility condition (6.25), which
is shown in Lemma 29 forn = 1 and in Lemma 30 forn = 2. For more detail of Gordon-Coons
interpolation we refer to [27, 54].
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6.6 Implementation details and examples

In this section we describe the implementation details of our method and present it on several exam-
ples for constructingG0, G1 andG2-surfaces. We demonstrate the smoothness by using reflection
lines which is a well-known tool for verifying the resultinggeometric continuity (cf. [114]).

6.6.1 Implementation details
We have implemented our algorithms for generatingGn-surfaces forn ≤ 2 in Mathematica and used
Povray for visualizing the surfaces with reflection lines. Since the resultingG1 andG2-surfaces
are rational surfaces of relatively high degree, we use simple low degree approximations to rep-
resent the single surface patches. In detail, we approximate the first and second cross boundary
derivatives (6.20) and (6.23), which are responsible for the rationality of the resulting surfaces, by
polynomial functions of degree9. This leads to surface patches of degree(13, 13) for G1 and of
degree(15, 15) for G2.

For some examples (see Fig. 6.3-6.6), we generate additionally an auxiliary mesh from the orig-
inal one. This new mesh has the same number of patches as the original one and is generated in the
following way. We apply two steps of the standard Catmull-Clark subdivision algorithm (cf. [94])
to the original mesh with normals to obtain a finer mesh with new vertices and normals. Now we
do not keep all new obtained vertices and normals, only those, which are related to the old ones.
These vertices and normals provide the auxiliary mesh whichis used instead of the original mesh.
By using the new mesh we generate an approximating surface of the original mesh which possesses
a better shape than an interpolating one.

6.6.2 Examples

We show different surfaces that were generated by our method.
Example 6. In Fig. 6.3-6.6, several meshes and the corresponding auxiliary meshes with associated
normals of different objects are visualized. By applying ourmethod to the original or auxiliary
meshes we constructG1 andG2-surfaces which are interpolating or approximating the vertices and
normals of the original meshes, respectively. The reflection lines verify that we have generatedG1

andG2-surfaces. In the case ofG1 andG2, all reflection lines of the resulting surfaces are at least
G0 andG1, respectively. In most of the examples we can also observe that the reflection lines of the
G1-surfaces are onlyG0 and notG1. In most of the examples we can also observe that the reflection
lines of theG1-surfaces are onlyG0 and notG1. �

Example 7. In Fig. 6.6, we have shown the mesh with associated normals ofa bottle, given by72
quadrilaterals. We have used the mesh to generateG0, G1 andG2-surfaces. The resulting surfaces
are presented with reflection lines to demonstrate the corresponding smoothness. �

Example 8. In Figure 6.7, we have presented the mesh of the implicitly defined algebraic sur-
faceF = {(x, y, z)>|z = x3 − 3xy2} (monkey saddle) with a vertex of valency6 in the saddle
point (0, 0, 0)> in two different views (side and top view). The mesh consistsof 22 patches with
vertices of different valencies (3, 4, 5 and6) and associated normals. For better visibility of the
mesh in Figure 6.7, we have not displayed the associated normals (obtained from the implicitly de-
fined algebraic surfaceF in the vertices). We have used the mesh to constructG1 andG2-surfaces
by applying our design method. The resulting smoothness of the surfaces is again verified by using
reflection lines. �
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Mesh of a simple object Mesh with auxiliary mesh

interpolatingG1-surface approximatingG1-surface

interpolatingG2-surface approximatingG2-surface

Figure 6.3: The mesh and the auxiliary mesh (blue) with associated normals of a simple
object (cube-like object), described by6 quadrilaterals, and the resulting interpolating and
approximatingG1 andG2-surfaces with reflection lines.
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Mesh of a tube Mesh with auxiliary mesh

interpolatingG1-surface approximatingG1-surface

interpolatingG2-surface approximatingG2-surface

Figure 6.4: The mesh and the auxiliary mesh (blue) with associated normals of a tube,
described by12 quadrilaterals, and the resulting interpolating and approximatingG1 and
G2-surfaces with reflection lines.
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Mesh of a rotated horse shoe Mesh with auxiliary mesh

interpolatingG1-surface approximatingG1-surface

interpolatingG2-surface approximatingG2-surface

Figure 6.5: The mesh and the auxiliary mesh (blue) with associated normals of a rotated horse shoe,
described by20 quadrilaterals, and the resulting interpolating and approximatingG1 andG2-surfaces
with reflection lines.
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Mesh of a bottle G0-surface

G1-surface G2-surface

Figure 6.6: The mesh with associated normals of a bottle, described by72 quadrilaterals,
and the resultingG0, G1 andG2-surfaces with reflection lines.
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Mesh (side view) Mesh (top view)

G1-surface G1-surface

G2-surface G2-surface

Figure 6.7: The mesh of the implicitly defined algebraic surfaceF = {(x, y, z)>|z = x3 − 3xy2}
(monkey saddle) with a vertex of valency6 in the saddle point(0, 0, 0)> in two different views and
the resultingG1 andG2-surfaces with reflection lines.
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7
Conclusion

This doctoral thesis dealt with data interpolation, which is still active research area in CAGD. In the
first part of the thesis, we served historical overview of CAGDand we focused on a state of art of
Pythagorean hodograph curves and related topics.

Chapters 4 and 5 are devoted to the study of PH curves. In Chapter4, we investigatedG1 Hermite
interpolation by PH cubic, where we described for which input data an interpolating PH cubic arc
exists. These results are extension of the results in [80], which were moreover not precise. Further,
we discussed the quality and a number of PH cubic interpolantfor input data. We described for
which data only one, two qualitatively (if it contain a loop or not) different or two qualitatively
same interpolants exist. These results have been already published in the journal Computer Aided
Geometric Design, see [9].

Since interpolating PH cubic does not exist for arbitraryG1 Hermite data, in Chapter 5 we an-
alyzed how many PH cubics are needed to interpolate anyG1 Hermite data. Moreover, we demon-
strated that PH cubic is also suitable forC1 Hermite interpolation, although it has not so much
flexibility like standard cubic. We proved that anyC1 Hermite data can be fitted by a pair of PH
cubic joined inC1 continuity. In the thesis is also presented a technique how to gain all four so-
lutions, which matchC1 Hermite interpolation. In the Section 5.4, we constructedC1 TC-spline
and used it for a curve approximation. Since the lengths of tangent vectors influence a lot the shape
of TC-spline curve, and it is not desirable to obtain a curve with selfintersections, we formulated a
conjecture about the length of tangent vectors, which yieldgood TC-splines. Further research in this
topic could be to analyze the direction of tangent vectors incurve approximation. We computed the
direction from a curve, which was approximated and there is still a question whether a better choice
exists.

In Chapter 6 we developed a new technique for interpolation ofquadrilateral meshes with asso-
ciated normals. The approach is called Bubble patch and is based on Gordon-Coons interpolation.
Our construction possessed a rational parametrization andmoreover the computation of arbitraryGn

continuity between neighboring patches was presented. In Section 6.4 we showed how to construct
G0, G1 andG2-surfaces in detail. Further, we presented the advantages of our method. One of them
was computing compatible twist values at the vertices, which we got as a solution of linear system of
equations. Another one is that the computation was not limited by the valency of quadrilateral mesh.
The reason is that the approach was based on local propertiesof the mesh. At the end of Chapter 6
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we verified the desired smoothness by the reflection lines on several examples.
Although the Bubble patch method was constructed for quadrilateral mesh with associated nor-

mal vectors, there is a challenge to generalize it for triangular meshes with normal vectors (which
are not needed, since they can be computed from the behavior of the given mesh). The advantage
of the generalization from quadrilateral mesh to triangular could be significant because a lot of solid
object is represented by triangular meshes.
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[112] Š́ır, Z., Feichtinger, R., J̈uttler, B.: Approximating curves and their offsets using biarcs and
Pythagorean hodograph quintics. Computer Aided Design, Vol. 38, pp. 608-618. Elsevier, 2006.
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