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Annotation

This thesis is devoted to special techniques for intermoiadf planar (points and associated tangent
vectors) and spatial (quadrilateral mesh of points witlbeiséed normal vectors) data.

In the first theoretical part, we study Hermite interpolatlny cubic Pythagorean hodograph (PH)
curves. Inspired by Walton and Meek (see [80]), we correetad extended their results and de-
scribed all input Hermite data for which an interpolating af PH cubic exists. Moreover, we
analyze a number of solutions and existence of a loop on arpiolant for given data. Further, we
prove that arbitraryG' Hermite data can be interpolated by at most two interpajagircs of PH
cubic and there are infinitely many such pairs for any inpead&inally, we focus o' Hermite
interpolation by PH cubic. Similarly t6* interpolation, anyC'* Hermite data can be interpolated
by at most two arcs of PH cubics and we present a method whvels @il four possible solutions.
We also discuss an appearance of a loop on interpolating arcs

The second theoretical part of the thesis deals with Bublilshpa as a new method for generating
an interpolationz"-surface from a quadrilateral mesh with normals. The methdxhsed on a lo-
cal construction which works uniformly for vertices of arary valency. For each quadrilateral we
construct a surface patch, represented by a bubble patsticina way that these patches are pieced
together withG™ continuity. The construction of a single patch is based ondGo-Coons inter-
polation. The obtained surface is piecewise rational wibiteary smoothness and interpolates the
vertices and normals. In the case@f, G* andG?-surface, the construction is described in detail.
The method can be generalized@8-surfaces for any. > 3. We also show different examples of
obtained continuity and verify the corresponding smoosisneith the help of reflection lines.

Keywords:

G'! Hermite interpolation, Pythagorean hodograph cubic, ifsbhusen cubia;'* Hermite interpo-
lation, Bézier curve G"-surface, Interpolating surface, Bubble patch, Quadri#dt@mesh, Gordon-
Coons interpolation.



Anotace

Diserta&ni prace se zajva specalnimi interpolanimi technikami rovingch (zadag body s ténymi
vektory) a prostoroych Etyflhelrikova st bodl s normalovymi vektory) geometricikch dat.

V prvni teoreticlé Casti pace se @nujeme Hermito® interpolaci rovinnou kubikou s Pythagore-
jskym hodografem (PH). Rice opravuje a r&fuje wsledky z¢lanku Waltona a Meeka (viz [80])
a popisuje Bechna vstugrHermitovska data, pro kter existuje PH kubick interpolant. Naic je
provedena an@iza pdtu a kvality (zda-li daf interpolant obsahuje samdpmik ¢i ne) feSeni pro
vstupri data. Vzhledem k tomuze libovolra G! Hermitova data nénmozné interpolovat pouze
jedrim PH interpolantem, je v pci dokazano, Ze libovolra vstupin G data je mdné vzdy in-
terpolovat deémi castmi PH kubiky aze €chto dvojic interpolaiit existuje pro daa vstupi data
nekon€&€né mnoho. [@le se pace zafva C'!' Hermitovou interpolaicPH kubikami a podob@jako u
G' interpolace, libovola C*! data je mdné interpolovat pomdalvou oblouKi PH kubiky. V zAavéru
prvni Casti je ukazn postup, jak nékzt \Sechnatyfi moznafeSen a je provedena diskuze ohlegn
kvality kazdeho interpolantu, tj. yskytu samoginiku.

Druha teoreticla Cast pace se zajva novouG” interpol&ni metodou — Bubble gtovari — na
Ctyfuhelrikovych dtich s asociovaymi normalovwmi vektory. Metoda je zafbena na lo&lni kon-
strukci a Ize ji podit pro vrcholy libovolré valence. Pro kaly CtyfUhelrik v siti je konstruoan
takow plat, Ze je se sousedmi platy napojen WG" spojitosti. Konstrukce kadeho dI€iho platu
je zal&zena na Gordon-Coons@interpolaci a ysledry plat ma racioralni popis. ProG?, G* a G?
plochy je konstrukce popsa detaildji a odpovdajici spojitost je o&fena pomottzv. metody “re-
flection lines”.

Klicova slova:

G! Hermitova interpolace, kubika s Pythagoréjsk hodografem, Tschirnhausenova kubik&,
Hermitova interpolace, &ierova kivka, G™ plocha, Interpoléni plocha, Bubble gt, CtyfUhelrik-
ova dt, Gordon-Coonsova interpolace.
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Introduction

Current CAD/CAM systems mostly rely on NURBS representation ofesiand surfaces, i.e., ob-
jects are represented by polynomial or rational paranzsteoins. A natural requirement is to have
also the derived objects, such as offset curves and surdacesvolution curves and surfaces repre-
sented by rational parameterizations. Unfortunatelyratienality of these objects is not generally
preserved. This problem motivated the study of speciakem®f objects with rational offsets. In
1990, Farouki and Sakkalis in [37] introduced an importabicéass of polynomial parametric curves
called Pythagorean Hodograph (PH) curves. The most signiffgroperties of these curves are that
their arc-length function is piecewise polynomial and tpegsess rational offset curves. The state
of art of Pythagorean hodograph curves and related topiestien down in Chapter 3. Moreover,
Chapter 2 is devoted to the historical overview of standapi@gches and techniques in Computer
Aided Geometric Design.

In the second part of the thesis (Chapters 4 and 5), we focuseosimplest non-trivial polyno-
mial PH curve, which is the only one PH cubic know as Tschiusiea cubic. Walton and Meek in
[80] studiedG* Hermite interpolation by arcs of Tschirnhausen cubic, hatresults in their paper
were not precise. This fact inspired us to describe for whiphit G* Hermite data an interpolating
arc of PH cubic exists (Proposition 6). Moreover, we dis@usamber of interpolating PH cubics for
given input data. Further, in Section 4.2, we analyze a tyualiPH cubic arc in the manner whether
it contains a loop or not. A discussion dealing with the gyadf PH interpolant is influenced by the
results from a paper written by Stone and DeRose (see [118),amalyzed a quality of a standard
Bézier cubic.

Since PH cubic interpolant does not exist for arbitraty Hermite data, we also investigate
a number of interpolants necessary to match any input dampite that anys! Hermite data
can be interpolated by at most two interpolating arcs of Pbiasu(Theorem 14). Although PH
cubic does not have enough flexibility in comparison to adaath cubic, it is always possible to
interpolate anyC'* Hermite data by a pair of PH cubic interpolants joined withcontinuity. This
surprising result is summarized in Theorem 17. Furtherptioef of Theorem 17 is considered as a
construction how to obtain desired four pairs of interptdan

The third part of the thesis, i.e., Chapter 6, is devoted tarttezpolation of quadrilateral mesh
given by points with associated normal vectors. We desigavatachnique for interpolation of such
data with arbitraryG™ smoothness. A constructed interpolation is called Bubbiehpand is mainly



based on Gordon—Coons interpolation. We present severahtatyes of the construction, e.g., the
Bubble patch construction possesses rational parameétnzatworks for the meshes of arbitrary
valency (this is not usual in standard approaches), therdeteng compatible twist vectors at the
vertices is given as a solution of the system of linear equatin Subsection 6.4 we study’, G'!
andG? smoothness in detail and in Subsection 6.6 we present olnoshein several examples and
we verify the desired smoothness by reflection lines.

Main results of the thesis can be summarized as follows:

e We precisely describe for which inpGt Hermite data an interpolating arc of PH cubic exists.
Moreover, we specify the quality of a PH cubic interpolarg,,iif it contains a loop or not.
These results have been already published in journal, $ee [9

e We show that at most two interpolating arcs of PH cubic araleddo interpolate any:!
Hermite data. Further, we formulate a criteria how to find ®vos of PH cubic matching
C' Hermite data and we show a construction how to obtain all pairs of interpolating PH
cubics joined withC'! smoothness.

e We design a new technique for interpolation of quadrildterash with associated normal
vectors. This approach is based on Gordon—Coons interpolatid has several advantages,
e.g., it possesses rational parametrization, it works feshmes with arbitrary valency.



Computer Aided Geometric Design

A development of geometry and related sciences is as old asarhbeing. The earliest beginnings
go back to ancient Mezopotamia and Egypt around 3000 BC. Thmejep was considered as
a collection of empirically discovered principles condgegnlengths, angles, areas, and volumes,
which were developed to meet some practical needs in sumyegonstruction, astronomy, and
various crafts. One of the branch which has been developeddh centuries is a shipbuilding.
The other were car and aeronautical industry, which hasermfter industrialization at the end of
nineteenth century and a big progress was noticed one gdatar. Usually, research in geometric
modelling have been motivated by technical needs in in@dligiroduction. This fact caused that
several today’s know descriptions have been discovereatatgby, because the companies kept them
in a secret.

The foundation of Computer Aided Geometric Design (CAGD) ddiack to 1974, when R.
Barnhill and R. Riesenfeld organized the first CAGD conferencedsearches from Europe and
U.S. Ten years later, CAGD journal was established by R. Bdraumi W. Boehm.

2.1 Historical Overview

The first use of curves is recorded in AD Roman times, wheresbeyed as a tool in shipbuilding.
The construction consists of ship’s ribs, which were wogalenks and which created a template for
ship construction. The advantage was that they could bedessveral times, but the disadvantage
was that they could not be recreated. In the Renaissancetidesmémproved ribs techniques in a
way that they defined ribs as tangent continuous circulanadcconsequently they got a ship hull
by changing the ribs’ shapes along the keel. The first memtidoday’s known spline is referred to
[24]. Another branch, where a spline appeared, was aengahahgineering. R. Liming, who was
working for North American Aviation, wrote in his bobkn approach how to use conics in building
aircrafts.

In 1963, a French mathematician Paul de Faget de Castelfaduirtied his algorithm in technical
report, see [11], for the car company C&ré, where he was employed since 1959. He used an

LAnalytical Geometry with Application to Aircraft
2Founded in 1919 by AnérGustave Citrén, Citr@én was the first mass-production car company outside of thle US



unusual idea to combine control polygon and Bernstein potyals® instead of defining a curve
through points on it. It was used to change a curve directly this concept of curves gave a
possibility to change or control a curve by its control palgg The Casteljau’s construction had
been already introduced by Blaschke in [6], but at that timkody saw a contribution of such
definition of a curve. Although the algorithm have been di&hbd by the author in sixties, it was
named after him in seventies when W. Boétstarted to use it.

Independently, Pierre@&ier in Renault realized the need for computer representationsreésu
and surfaces. His main idea was to represent a curve as #reaantion of two elliptic cylinders,
which were defined inside a parallelepiped and thereforeeaffansformation of a curve has been
allowed. With the help of polynomial representation he gawescription of a curve, which was
later rewritten using Bernstein polynomials by A. R. Forrest [42].

An important tool in geometrical modeling are B-splines, ethiere introduced by I. Schoen-
berg in 1946, see [106], where he investigated an equidistanicfwis considered as an offset in
nowadays CAGD). Since Schoenberg studied B-spline only dormiknots, it did not take so long
and H. Curry generalized them to nonuniform knots in 1947 ities, C. de Boor, who was work-
ing for General Motors, was using B-splines for geometry @spntation and derived a recursive
evaluation of B-splines (known as de Boor algorithm), whickgesses a good numerical stability
in evaluation.

To find the father of NURBS (Non-Uniform Rational B-Splines) dgsteon is not a simple task.
In 1968, A.R. Forrest wrote his Ph.D. thesis about the curmdssarfaces for CAGD, which deeply
inspired Coons research in rational curves. Consequently Lastudent K. Versprille first dealt
with NURBS description. Even though NURBS is a powerful tool in GA\@ has its disadvantages.
Recently, A. Bakenov gave a new technique based on NURBS, whadllesl T-spline, see [1]. A
main difference between T-Splines and NURBS is the existeh@epoints. A T-point is a vertex
where on one side, there is an isop&rand on the other side, there isn't. This allows lines to end
elegantly and also it simplifies the control meshes of a satfae., to reduce a number of control
points, see Fig. 2.1.

Although Liminig’s conic construction was used to designaaplane fuselage in US aircraft
company Boeing, a wing construction had used a different &frcirves developed by J. Ferguson
and D. Maclaren. They joined cubic spatial curves togetharéate curves which were overall
twice differentiable. The unassailable contribution afgl curves was to interpolate a set of points.
Ferguson applied piecewise monomial form and further hd aabic Hermite form defined by two
endpoints with associated tangent vectors.

One side of a coin is to find good representation of a curvelamdeécond is to focus on surfaces.
Several techniques or approaches suit for curves and adawelurfaces. But there are methods
only for surfaces. The most popular approach has becamertpreduct surface, which was first
introduced by C. de Boor by his bicubic spline interpolatiorl @62, see [19], and two years later
followed by J. Ferguson, who was working with an array of bicipatches interpolating a grid of
points. At the same year, Coons in his technical report stuaisimple formula how to fit a patch

and pioneered the modern concept of creating a sales aridesenetwork that complements the motor car.

3Polynomials in Bernstein form were first used by Sergei Natarh Bernstein in a constructive proof for the
Stone—Weierstrass approximation theorem. With the adeEnbmputer graphics, Bernstein polynomials, restricted
to the intervak € [0, 1], became important in the form oféBier curves.

4Barry W. Boehm (1935) is an American software engineer.

5A Romanian mathematician (1903-1990).

SLines on a NURBS surface connecting points of consiamt v coordinate values, and representing cross sections
of the NURBS surface in the or v directions.



Figure 2.1: A ship hull. Left: NURBS description by 72 contralipts; Rigth: T-spline description
by 42 control points. The pictures are undertaken from [115]

between any four arbitrary boundary curves. The Coons’ niethknown as the bilinearly blended
Coons patch and it was used by Ford, where Coons was a conalitesugh he was working at
MIT. A generalization was done by W. Gordon at General Motnr§969 and in 1974 J. Gregory
applied cubic boundary curves and cubic derivatives toinb&dional description.

Another method in CAGD are triangular patches, which are dasebarycentric coordinates
The first mention goes back to Finite Elements Metho@ihe simplest type is a linear element,
which was first mentioned in Ritz-Galerkin metfod'here are several well known techniques on
triangular patches which provide desired smoothness. Otie @opular is Clough and Tocher ele-
ment, which uses cubic polynomial and was originally desthfor FEM method. Such constructed
patches ensur€? continuity. Another patches introduced in 1977 by Powetl &abin are con-
structed by piecewise quadratic polynomials and ensurésbalg”! continuity, see [100]. A lot of
geometers and mathematicians paid attention to trianquédahes, e.g., &ier triangles, which were
constructed by an automotive researcher and which started tised in 1980’s. Other approaches
were developed by S. Coons, G. Farin, R. Barnhill. Today, thgitis still worth studying and is an
active research area.

Further technique is subdivision curves and surfaces,wihave been widely investigated. As
usual there is also not clear who first introduced this metiadl974 at the conference in Utah,
G. Chaikin first presented a new technique how to generateve elthough the similar algorithm
had been already done in the work of G. de Rham in 1947. Thisnu#&vated several scientists
in geometric modeling. In 1978, E. E. Catnifiland J. H. Clark! published subdivision scheme
based on bi-cubic uniform B-spline, which yiel@$ continuity except at extraordinary vertices, see
[10]. At the same year, D. Doo and M. Sabin came out with bidgatc uniform B-spline gener-
ating subdivision scheme, which is extended Chaikin’s aecogting method for curves to surfaces

’Barycentric coordinates are a form of homogeneous codrnalhe system was introduced (1827) by August
Ferdinand Mbius.

8The finite element method (FEM) is a numerical technique fatifig approximate solutions of partial differential
equations (PDE) as well as of integral equations. The dpwedmt of the finite element method began in the middle
1950s for airframe and structural analysis and gatheredavament at the University of Stuttgart through the work of
John Argyris and at Berkeley through the work of Ray W. Cloirgthe 1960s for use in civil engineering.

9Ritz-Galerkin methods are a class of methods for converingntinuous operator problem (such as a differential
equation) to a discrete problem.

10A computer scientist and current president of Walt Disneynfation Studios and Pixar Animation Studios

1A prolific entrepreneur and former computer scientist. Henfited several notable Silicon Valley technology com-
panies.



and which givesC'! continuity, cf. [23]. Both schemes work on quadrilateral hessand thus in
1987, C. T. Loop proposed subdivision scheme on triangulahe®which provide€' continu-
ity, see [75]. J.Peters and U. Reif developed mid-edge sidialivscheme working on quadrilateral
mesh, see [94]. This scheme was also independently estadbly Habib and Warren. The previous
subdivision schemes are approximation techniques. Apotation subdivision schemes have been
developed a little bit latter. The first interpolating subsiion approach was showen by Dyn, Levin
and Gregory in 1990. This scheme is constructed for triaargueshes and is known as butterfly
scheme. It was generalized for irregular triangulation loyiZz, Schbder and Schwelden in 1996.
Recently, L. Kobbelt introduced’3 subdivision scheme for triangular meshes and also suliofivis
scheme for quadrilateral meshes known as Kobelt methodn#&ltpolating subdivision techniques
possess at leaét! continuity. In 1998, Sederberg et al. in [109] introduceceavitechnique called
NURSS (Non Uniform Rational Subdivision Surface) based onad iisertion or recursive subdivi-
sion and used Catmull Clark or Doo Sabin subdivision technidbe idea of NURSS was improved
by T-splines to T-NURCC (Non Uniform Rational Catmull-Clark sg#s with T-junctions), which
gives more possibilities in geometric modeling, see [108].

During last two decades, a lot of effort was dedicated to thdysof objects with Pythagorean
hodograph property, which were first introduced by Farouki Sakkalis in [37]. The state of art of
this still worth studying topic is written down in the Chap8r



State of Art of Pythagorean Hodograph

“Geometry has two great treasures: one is the Theorem of
Pythagoras, and the other the division of a line into extrems
mean ratio; the first we may compare to a measure of gold, the
second we may name a precious jewel.”

Johannes Kepler

3.1 The theorema? + b? = 2

Theorem 1.

The sum of the squares of the lengths of the two other
sides of any right triangle will equal the square of the
length of the hypotenuse.

Proof. The theorem can be proved geometrically using four copiesright triangle with sides, b
andc, set inside a square with side The four triangles have the same aréd2 and the small

Figure 3.1: Proof of the theorent + b* = ¢?



square inside has an aréa— a)?. The area of the large square is therefore

(b—a)2+4%b:(b—a)2—|—2ab:a2+b2,

which is a square with sideand area?, and therefore
A =a?+ b2
O

Around 4000 years ago, the Chinese and the Babylonians were afvthe fact that a triangle
with the sides 0B, 4 and5 have to be a right triangle. Around 2500 BC, the Megalithic noants
in Egypt and Northern Europe comprised of right trianglethwimteger sides. During the reign
of Hammurabi the Great (1790 — 1750 BC), the Mesopotamiantt&tilapton consisted of many
entries closely related to Pythagorean triples. In theggefiom eighth to second century BC an
Indian book Baudhayana Sulba Sutra contains a list of Pytleagariples and several statements,
theorems and the geometrical proofs of the theorems foromeetes right triangle.

Pythagoras (569-475 BC), used algebraic methods to congtyticahgorean triples. Accord-
ing to Sir Thomas L. Heath, there was no ascription of therdgmcdfor nearly five centuries after
Pythagoras lived. However, authors like Plutarch and Ciedtributed the theorem to Pythagoras
in such a way that the attribution was widely known and acs#ptn 400 BC, Plato established a
method for finding Pythagorean triples which joined botlelalg and geometry. Around 300 BC, in
the Euclid’s Elements, the oldest existing axiomatic praicthe theorem is presented.

The Chinese text Chou Pei Suan Ching written between 500 BC andi2@0ntained the visual
proof of the Pythagorean theorem or “Gougu theorem” for #)¢,6) triangle. During the Han Dy-
nasty (202 BC — 220 AD), the Pythagorean triples appear in the @hapters on the Mathematical
Art together with the right triangles. The first recorded atéhe theorem was in China as “Gougu
theorem”, and in India as the “Bhaskara theorem”.

However, it is not yet confirmed whether Pythagoras was teegarson, who founded the rela-
tionship between the sides of the right triangles, as ne textten by him were found. Nevertheless,
the theorem has still got his name credited to it.

3.2 The use of Pythagorean Hodograph

In the middle of the last century, new engineering discgdimrose, which gave several fields of
interesting problems to the scientists. One of such fields the area of tool path and motion
planing, NG and CNC machining and branches close to them. These problavesbeen solved
using Minkowski surhand by theory of offsets. The Minkowski sum has been widelgisd and a
lot of efficient algorithms were introduced, see [26, 72].

Let us focus on an offsgtwhich is often called classical offset. The term offset waswn for
centuries as parallel curves and surfaces (first mentiopél bV. Leibnitz) or as an envelope curve

The birth of NC (numerical control) is generally creditedtn T. Parsons, a machinist and salesman at his father’s
machining company, Parsons Corp. In 1942, he was told thiabp&ers were going to be the "next big thing” by the
former head of Ford Trimotor production, Bill Stout.

2Minkowski sum was established by Hermann Minkowski in 1903.

3There are other branches where the word offset is used, einting, greenhouse gas emission (carbon offset),
computer science, electronic engineering (DC offset).



and surface (first studied in optics) or as a canal surfaceldssical differential geometry, e.g. in
[25]). In 1960s, an offset was introduced by M. Sabin in [1848l an analysis of offsets has started
by J. Hoschek in [52, 53] and was extended by R.T. Farouki ify 8. Chen and B. Ravani in [12].
An offset was defined to be a curve or a surface (for these easean shortly use hypersurfaces)
given by following expression
n

pO:p+dm, deR, (3.1)
wherep is a parametric expression of an input hypersurfaceams a normal vector field of a
generating hypersurfage In this way, we can construct an offset at arbitrary distahclhe disad-
vantage of such description is that for a polynomially ororlly described hypersurface we do not
obtain polynomial or rational expression of an offset ingrah Therefore, all techniques concern-
ing offset computation mentioned in [12, 30, 52, 53] are Haseapproximation or interpolation of
offsets.

Because all CAD (Computer Aided Design) and CAM (Computer Aideaiacture) systems
use NURBS (Non-Uniform Rational B-Spline) description, whislaistandard form how to keep or
represent curves, surfaces and solid objects, the mativaias to identify such curves and surfaces
which possess an offset with rational parametrization. pi2est looks like an effortless task the
scientists have spent twenty years solving this topic.

In [37], Farouki and Sakkalis came out with a quite simpleid@nly one term, i.e|n| in the ex-
pression (3.1), influences the rationality of an offset patization. They investigated polynomial
curves and arrived at the condition

2?(t) +y*(t) = o*(1), (3.2)

where(x(t),y(t))",t € T C R, describes a polynomial parametric curve ard) € R[t]. Conse-
quently, according to theorem for polynomial triples (58@]], they derived the functions(t), v'(¢)
fulfilling the condition (3.2), namely

2'(t) = wt)[u’(t) — v ()],
y'(t) = 2w(t)ult)(t), (3.3)

wherew(t), u(t),v(t) are polynomials. Since the condition (3.2) is identicalvitiie Pythagorean
theorem, it also gave to rise to the naRghagorean Hodograplt (or abbreviated to PH) curves.

This interesting and useful property started a deep irgatstin of PH curves. They do not only
possess a rational description of offsets but also a polyalcmnc-length function, which is useful
in mechanical engineering, e.g., an easier way how to choitecspeed of the cutting tool in CNC
machining.

In [37], it has been also shown that the simplest polynomithtBrves are cubics (except lines).
Moreover, it has been proved that PH cubic is only one (Tablainsen cubic). Unfortunately, it does
not have enough flexibility in a practical use in comparisathwa standard cubic. This PH cubic
behavior has started the investigation of PH curves of ligbgrees, especially five, seven and nine.
In [13, 29, 36, 40, 58, 80, 81, 83, 85, 112, 113] several tephes of PH splines construction can
be found, typically withG!, C! or C? continuity. Recently, a quartic Pythagorean Hodograph were
derived from control polygon and were used @ Hermite interpolation, see [116]. In [55], Jakli

4The word Hodograph means a curve of which the radius vecpresents the velocity of a moving particle, from
Greek hodos is a way.
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et al. studied Lagrange interpolation and they formulatedrgecture that PH curve of degree
can, under some natural restrictions on data points, iol&gup ton + 1 points.

It did not take so long and an idea to investigate rationavesipossessing rational offsets ap-
peared. Pottmann in [98] studied such curves and gave a Imghconstruction in a dual form and
arrived at the expression

x(t) = 2ab(a’b—abt)fg—5(a* —0")(f'g— fd),
y(t) = (a> =0*)(ad'b—al)fg+abla®+V*)(f'g — fd),
w(t) = (a®>+b?)(a’b— ab)g?,

where a plane curve is expressed in the fourt) /w(t), y(t) /w(t)) " and thea(t), b(t) andf(t), g(t)
are prime polynomials. Recentf§ir et al. in [111] shown that all hypocycloids and epicyckydeld
rational offset.

Although the polynomial and rational PH curves have ratiafisets, they differ significantly
in their arc-length function. The integration of the polymal speed-(¢) yields a polynomial arc
length function for polynomial PH curves, but for rationdHl Rurves, integration of the rational
function o(¢) needs partial fraction expansion and an arc length funatantains transcendental
and rational term in general.

In [89], Peternell and Pottmann gave an interpretationtferadonstruction of the rational curves
with rational offsets using Laguerre geometry, where dedrines and circles in plane are basis
elements. The orientation of each element is fixed by assogia field of normal vectors with it.
Points are treated as circles with zero radius.

In [38], Farouki and Sakkalis have introduced the spatiatBHes. Although the generalization
of standard curves from a plane to a space is not a big deddiftap PH curves to a space is not so
easy. Similar task was solved, i.e., we need to find polynbseiations of the spatial Pythagorean
hodograph condition

22(1) + () + (1) = 0(0),

where (z(t),y(t),2(t))", t € I C R describes spatial polynomial parametric curve atit) is
polynomial.

The spatial PH curves are distinguished from plane PH curygactical use. The offset of a
spatial curve is meant as a canal surface (or pipe or tubutéace), which can be described as an
envelope of spheres. Peternell and Pottmann in [90] shdwatdhhy rational spine curuét) and a
rational radius functior(t) possesses rational parametrization of a canal surfaceislesnphasize
that to get a real envelope surface, the derivative of theespurve and radius function have to
satisfy the conditionr’(¢)|> > d%(t) and moreover the non-negative functi@h(¢)|> — d’*(¢) has
to be possible to rewrite as a sum of squares, which PetandlPottmann proved in [90]. This
decomposition can be determined exactly only for PH curves.

Another significant property of the spatial PH curves is thay are automatically equipped with
the rational frames, which have been widely studied in [14 33, 35, 79, 117, 118]. Therefore, the
spatial PH curves are used for construction of PH splineesjras in planar case. There are similar
approaches as for plane PH curves, i.e., they are investigatthe manner of control polygon.
The simplest nontrivial spatial PH curves are PH cubics &egl admit characterization directly in
the term of the geometry of their&ier control polygons. This is consequence of speciahsitr
geometry of spatial PH cubics, i.e., they are all helicavear
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In [38], there is further mentioned how the first derivatibiase to look like to fulfill the Pythagorean-
hodograph condition, i.e.

d'(t) = h(t)u?(t) —
y'(t) = 2h(t)u(t)v(?), (3.4)
At = 2hu(tyw(t),

for polynomialsh(t), u(t), v(t), w(t). However, the condition (3.4) is a sufficient but not a neanss
condition for a spatial hodogragh’(t), v/ (t), 2/(t)) to satisfy the Pythagorean condition. For exam-
ple, the hodograph given by(t) = (1 — t)?,y/(t) = t2, 2/(t) = 1 vanishes Pythagorean-hodograph
condition, i.e.o(t) = v/2(t> — t + 1) but it can not be written by above introduced equations (3.4)
The reason is that it is invariant under rotation aboutitlais, but not about the remainingandz
axes, or axes of arbitrary orientation in space.

Dietz et al. in [22] gave a characterization of Pythagorearddion in the form

P(E) = () 0¥(1) — (1) - (1)
v() = 2u(b)at) +o(Op(t) 5)
2(1) = 2ot)a(t) ~ u(vp(t)] |
olt) = w0) 4020+ 20 + 1)

for prime real polynomials:(t), v(t), p(t), q(t). This result can be reformulated using quaterrions
with basis elements j, k, which multiplication is determined by the set of rules

P=j=k>=ijk=—
with noncommutative multiplication

ij=—ji=k, jk=-kj=1i, ki=—ik=}j.
The hodograph of a curve is obtained as

(@), y'(1),2'(1)" = ADIA*(t) = [u*(t) +0*(t) — p*(t) — ()i
+2[u(t)q(t) + t
+2[v(t)q

(3.6)

whereA = u(t) + v(t)i+ p(t)j + q(t)k and A* = u(t) — v(t)i — p(t)j — ¢(t)k is conjugated.

Recent investigation of spatial Pythagorean curves gawttatbidouble Pythagorean hodograph
(shortly DPH) introduced by Beltran and Monterde in [4]. TheHDcurves are such spatial curves
r(t) with the property thajr'(¢)| and|r'(¢) x r”(¢)| are both polynomial in parameter Farouki et
al. in [32] and [33] have studied spatial DPH curves usingteumion and Hogf map. They have
found out that all helical PH curves are DPH curves, whicloemgass all PH cubics and all helical
PH quintics, although non-helical DPH curves of higher oegdast.

SQuaternion algebra was introduced by Irish mathematicia@liam Rowan Hamilton in 1843 and is a four
dimensional extension of complex numbers. Important pes to this work included Euler’s four-square identity
(1748) and Olinde Rodrigues’ parameterization of the gametation by four parameters (1840), but neither of these
authors treated the four-parameter rotations as an algébnzss had also discovered quaternions in 1819, but this wor
was only published in 1900

6In the mathematical field of topology, the Hopf fibration alsrown as the Hopf bundle or Hopf map) describes
a 3-sphere (a hypersphere in four-dimensional space)nmstef circles and an ordinary sphere. Discovered by Heinz
Hopfin 1931, it is an influential early example of a fiber busdl
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As in a plane where polynomial PH curves were generalizedtiorral PH curves, it has been
done also for spatial PH curves. Recently, Farouki Simdn [41] have introduced rational spatial
PH curves as an edge of regression of envelope of osculdang.p

Rotation Minimizing Frame (abbreviated to RMF) is anothelicaphere spatial PH curves are
used. RMF was introduced in [61] and commonly used in comprigphics, sweep surface, tube
surface etc. The idea is to investigate an adapted frame tfitei framee;, e, e3, wheree; is the
tangent of the curve anel - e; = 1 ande; - e; = 0) such that the rotation rate ef ande; along
the curve is minimal. The computation of the RMF means to saitverdinary differential equation
(for more information see [5] and [59]), which is solvabletive case of PH curves, i.e., we obtain
the result as rational or transcendental function.

Choi and Han in [14] have used Euler-Rodriques parameterssitrile frame of PH curve by
rational function and using quaternion calculus they haviged at

A(t)iA*(t) A(t) jA*(t) A(t) k A*(t)
“O="pp Y Taee YT T laer
Further, in [79], it has been noted the existence of ratitnaathe on spatial PH curves. Unlike the
Frenet frame, the Euler-Rodrigues frame (for brevity ERF,civhs described by Euler-Rodrigues
parameters) is uniquely defined at each point of regulaiagiti curve, including inflection and
varies smoothly along the curve.

Moreover, Choi and Han in [14] have characterized the ang@hrcity of the ERF relative to
RMF for spatial cubic and quintic curves. They have also shfawriPH cubic that among Frenet
frame and ERF the constant angle occurs, and the ERF coincite®MF if and only if the PH
cubic is planar. They proved that no RMF exists on spatial Pbiosuand the simplest non-planar
PH curves with ERF that can be RMF is thus of degree five.

The interesting branch in RMF topic is to focus on the ratityaf RMF. Han in [48] has proved
that there are no rational RMF on cubic curves. Recently, kaedial. in [31] have studied quintic
spatial curves which provide Rational RMF (abbreviated to RRMte) Farouki and Sakkalis in [39]
have studied polynomial spatial curves, which possess RRMF.

The Minkowski Pythagorean Hodograph curves, or MPH curgebffevity, was first introduced
by Moon in [82]. Their distinctive feature is that Pythagamecondition is treated under metric of
the Minkowski spac®?*!. The MPH curves are such curves which allow the medial aaissforni
(abbreviated to MAT) of a planar domain to be specified in smah that the boundary of the domain
is exactly expressable by rational curves.

The Pythagorean Hodograph condition is modified in the Miveéa space to the condition

2?(t) +y?(t) — 12 (t) = o*(1), (3.8)

for a polynomial curvex(t), y(t),r(t))", o(t) € R[t], and is satisfied if and only if'(¢), v/ (¢), r'(t)
can be written in the form

3.7)

R A A R

y't = u(t)p(t )],

110 = 2fu(0(r) - p(0gl0) 39)
olt) = 1) - o0) +22(0) - (1),

"The Medial Axis of an object is the set of all points having mtitan one closest point on the object’s boundary.
Originally referred to as the topological skeleton, it wagaduced by Blum, see [7], as a tool for biological shape
recognition. In mathematics, the closure of the medial axisrown as the cut locus. The Medial Axis together with
the associated radius function of the maximally inscribisdglis called the Medial Axis Transform. The Medial Axis
Transform is a complete shape descriptor, meaning thatibeaused to reconstruct the shape of the original domain.
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whereuw(t), v(t), p(t), q(t) are polynomials as in previous discussion. The computatfanedial
axis can be found in [15, 62, 63, 66]. Recently, Kosinka aagitka in [65] generalized polyno-
mial class of Minkowski Pythagorean hodograph curves tomat. They showed that any rational
Minkowski Pythagorean hodograph curve can be obtainedms®f its associated planar rational
Pythagorean hodograph curve and an additional rationatifum

Not only PH curves have been generalized to spatial PH canwésalso MPH curves. Choi et
al. in [16] have investigated MPH curves using Cliffdalgebra and they have widely studied their
behavior in Minkowski spaci?!.

If we return to the formula of an offset, it is obvious to seattthe normal consists of the terms of
velocity of a given curve in in the planar case. This propggye the name Pythagorean Hodograph.
Looking for the surfaces which possess rational offsets mieeaat the similar condition as (3.1),
ie.,

n(u,v)-n(u,v) = o*(u,v), (u,v) € R?, (3.10)

wheren(u,v) is normal of a surface(u,v) ando(u,v) € R(u,v). Such class of surfaces which
fulfill the condition (3.10) is called surfaces wiBythagorean Normal(shortly PN) and it has been
first studied by Pottman in [98]. Further, this class of stefawas widely investigated and used for
interpolating and approximating techniques, for moreitlsée [77, 67, 68] and [70].

Like PH curves have been generalized to PN surfaces, thelsarmedeen done for MPH curves.
In [64], Kosinka and uttler have established MOS (Medial surface transform twibeys the
Sum-of-square-condition) surfaces. The Medial Surfaea3fiorm (MST) of a volume is the set of
surface patches (or curves segment) in four dimensionakdiski spacéR*!. Every point of MST
represents the center and the radius of a maximal sphembeddnto the domain. The advantage
of MOS surfaces is analogous to MPH curves. If MST of volumgescribed by MOS surface then
associated envelope and all offsets admit exact ratiomahpetrization. Recently, Peternell et al. in
[87] have proved that quadratic triangulagBer surfaces ifk*! are MOS surfaces. Further, several
techniques concerning Minkowski metric have been develppee [86, 88].

In 1992, Brechner introduced a general offset, which was amgdination of a classical offset,
see [8]. The motivation was in 3-axis milling in comparisoithab-axis milling, which was crucial
for classical offset. General offset can be expressed imidmener of convolution. The convolution
hypersurfacec = a x b is defined ax = {A + B|A € a,B € b and a(A)||3(B)}, where
a(A), 5(B) are tangent hyperplanes of smooth hypersurfacbsat the pointA € a, B € b.

According to the definition of convolution the classicalsaff can be treated as a convolution of a
circle or sphere with arbitrary curve or surface. The geradfset can be considered as a convolution
of two curves or surfaces (generally hypersurfaces), wheesof them often describes the shape of
a cutting tool. Also in this point of view, we can ask whetheraitput object (convolution object or
general offset) is polynomial or rational. In general, ib true that convolution of polynomial or
rational hypersurface with polynomial or rational one iaiagational. This problem opened several
questions, e.g., for which polynomial or rational hypeface we obtain rational convolution with
arbitrary polynomial or rational hypersurface. Sampolaktin [105] have introduced a subclass
of PN class called surfaces with Linear Normal (abbreviateldN). The computational advantage
is that LN surfaces possess always rational convolutioh arbitrary rational surfaces. Inspired by

8Clifford algebras are a type of associative algebra. Theybeathought of as one of the possible generalizations
of the complex numbers and quaternions. The theory of Gtifldgebras is intimately connected with the theory of
guadratic forms and orthogonal transformations. Cliffalgebras have important applications in a variety of fields
including geometry and theoretical physics. They are naafied the English geometer William Kingdon Clifford.
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convolution approach and with the help ofdBner basis avicka and Bastl in [71] classified the sur-
faces with respect to the rationality of the convolution.e¥hdentified classes of parametrizations
of hypersurfaces which yield always rational convolutioithvarbitrary rational parametrization of
hypersurfaces (General Rational Convolution — GRC) and paremaigbdn of hypersurfaces, which
possess rational convolution in special cases (Speciavf@tConvolution — SRC). Moreover, they
have proved that the convolution surfaces of non-develepgimdratic Bzier surfaces and an arbi-
trary rational surface are always rational.
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G' Hermite interpolation

In this chapter we focus 06! Hermite interpolation by PH cubic. We extend some resulta-me
tioned in the paper of Walton and Meek, see [80], especiaydigcuss for which input data the
interpolating arc of PH cubic exists. Further, we deal wite guality of PH cubic interpolant, i.e.,
whether it contains a loop or not.

4.1 Hermite interpolation by Tschirnhausen cubic

In this section we want to describe all initial data &&r Hermite interpolation problem for which an
interpolating arc of the Tschirnhausen cubic exists. Wesosee basic facts from [37, 80] and [56].
First, we recall some basic notation about PH curves.

Definition 2. A polynomial parametric curve(t) = (z(t),y(t))",t € I C R is called aPythago-
rean Hodograph curv@r PH curvg if there exists a polynomial(t) € R[¢] such that

¥ (1) +y ()" =o(t)".

It follows from the definition that coordinates of hodograpi PH curves and(¢) form Pytha-
gorean triples. K. K. Kubota proved in [69] the following:

Theorem 3 (Kubota) Three real polynomials(t),b(t) and ¢(t), wheremax|deg(a), deg(b)] =
deg(c) > 0, satisfy the Pythagorean conditiar(¢) + b*(t) = c*(¢) if and only if they can be
expressed in terms of real polynomial®), v(¢) andw(t) in the form

a(t) = w(t)[u?(t) —v*(t)],
b(t) = 2w(t)u(t)(t),
c(t) = wt)[u?(t) +v*(t)].
This theorem directly implies the following lemma.
Lemma 4. The polynomial curve corresponding to the Pythagorean baajuh is of degreer =
A+ 2u + 1, wherel = deg[w(t)] and . = max|deg[u(t)], deg[v(t)]].
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Proof. Can be found in [37]. [

According to Lemma 4 the simplest nontrivial PH curves areicsi Hence, we consider two
linear polynomials.(t), v(¢) given in Bernstein-Bzier form as

u(t) = wu(l—1t)+ ust,

o(t) = vo(l—1t)+uvit, teR, (4.1)

where we assume that the ratiag : u; andvy : v, are unequal. We call the equation (4.1) as
preimageof PH cubic.

As initial data we consider two boundary poiftg, P5; with two associated unit tangent vectors
to, t3. Moreover, we denote angles

0o = Z(to, P3s — Py), 03 = ZL(P3 — Py, t3).
If we fix the anglef, to be in the interval—m, 0], which is always possible, then

P; — Py )

00 — — arccos (to : W
37— 10

(4.2)

The computation of the correspondifg € [0, 27) depends on the orientation of the initial system
which is determined by the signs of the plane cross products

Wy = to X (P3 — Po), W3 = (P5 — Po) X t3 (43)
Namely,
P; - P, ) ( P; - P, )
03 = arccos | t3 - ———— or 03 =2m —arccos |ty ——— |, 4.4
: Ca= : * P — Pl @4

if the signs ofw, andws are equal (i.e.wows > 0) or not equal (i.e.wows < 0), respectively.
The special caseyws = 0 will be discussed below. In the following text, whenever vemsider
anglest, 05 to be the initial data for a Hermite interpolation problenge always mean that they
were obtained using (4.2) and (4.4).

Definition 5. Let Py, P5 be distinct points inR?, t,, t; two unit tangent vectors associated to
these points and,, 65 the corresponding angles computed us{d¢?) and (4.4). Then an arc of
Tschirnhausen cubic interpolating the§é Hermite interpolation data is calle@iC-interpolant

Moreover, the set of all pair§y, 03) € [—m,0] x [0,27) taken together witP,, P3 as initial
data for G' Hermite interpolation problem for which TC-interpolant exiss called thedomain of
definition of TC-interpolant

Farouki and Sakkalis in [37] described conditions on cdmioints P, P+, P, P3, lengths of the
control polygon leg¥; ;11 = ||P;+1—P;||, ¢ = 0,1,2, and theirangle§, = Z(P,_,—P;, P11 —P,),
¢ = 1,2, which ensure that the correspondingzier cubic has a Pythagorean hodograph, see Fig.
4.1. Namely, it has to hold that

01 = 02 and d()ldgg = d%2
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Figure 4.1:G* Hermite data and interpolatingéRier cubic with its control pointP,, . . ., P53, con-
trol polygon, angle$,, . . ., 65 and control polygon legé&y., di2, dos.

Using these results, Meek and Walton in [80] derived a metimd to compute the lengths,,
do3 for given initial Hermite data such that these conditioresfalfilled. Assuming that the control
pointsP, andPj lie on the real axis and = /d,3/do1, we denote byD. (0, 63) the roots of

sin(fy) + D sin (90 il 93) + D?sin(63) = 0. (4.5)
Then we get
IP5 — Po||
do1(6p,03) = —————+ 4.6
01( 0 3) Gi(e(),gg) ’ ( )
where

o + 03

G+ (0o, 03) = cos(by) + D4 (6y,05) cos ( ) + D3 (6o, 03) cos(6s).

Before we start to investigate the domain of definition of T@iipolant we have to discuss some
special cases. Firstly, (0, 03) = («, 3) wherea € {—x,0} andg € {0, 7}, then the corresponding
TC-interpolant degenerates to a line segment and we exdhede tases from our considerations.

Concerning other special cases, the equation (4.5) dedesécathe linear one #i; € {0, 7}.
Moreover, ifwgws = 0, we are not able to decide about the orientation of the Irsiiatem — this
happens when the vectarg P; — P orts, P; — P, are collinear, i.e§, € {—m,0} orf; € {0, 7},
respectively. The existence of TC-interpolants for theseigh cases is summarized in Table 4.1.

Further, we want to cover all initial Hermite data which cartar and discuss the existence of
TC-interpolants for these data. It is enough to consideiairgingles(d,, f3) from the domain™ =
(—m,0) x (0,27), as the existence of TC-interpolants {ég, 63) on the boundary of is described
in Table 4.1. We look for such pai(g,, 63) € I fulfilling G (6y,65) > 0 or G_(6y,65) > 0. The
situation is influenced by the fact that the discriminantob] is not non-negative for alt,, 65) € T'.
We obtain that the domain whe¢€e, (6y, 03) > 0 is bounded by the curves (see Fig. 4.2 (left))

O3 = fi(6o) = 0o + 3m, 0Oy € (=7, —5m),

0 —fg(@()):@o—i‘%ﬂ', 906(-%71’,—% ), (47)
03 = f3(0) = 0o + a1 (6o), b € (—%7‘(‘,0), '
= f4(90) = 90 + a_(Hg), ‘90 € (—g’ﬁ, O),
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Table 4.1: Existence of TC-interpolants f@k, 65) on the boundary of'.

| | D \ G | TC-interpolant exists fof
03 =0 —2cos (%0) 1+2cos(y) | 6y € (_2” 0)
05 = —2sin (%0) -1+ 2COS(90) Oy € (—, 0)
6y =0 —26081%3) 1~ 5oy | B3 € (0,Z) U (%, 2n)
90 -7 25in1(973) -1 T 4sin21<073) 93 = (O’ %) U (57T’27T)

where

ax(by) = 4arctan( 7cot (%) + 4v/3/cot (9?0)2+

—I—\/CSC (70) <49 + 48 cos(f) £ 28v/34/ cot (£) ) sin(00)> .

Thus,G (6, 63) > 0 if and only if (6, ;) € T, wherel'?* is of the fornt

it =1Tn (((— ™, —=5) % (0, f1)) U ((—=gm, —3m) x (f3, f2)) U
O (=270 x (0, 12)) U ((=27,0) x (f5,27)))
Similarly, the domain wher&_(6y,65) > 0 is bounded by the same curvés = f,(6y), ...,
05 = f4(6o) (cf. (4.7), only the domain of definition is changed in this€pand one new curve
03 = f5(00) = 0o + 37,00 € (—37,0) (see Fig. 4.2 (middle)). Thu&_(y,05) > 0 if and only if
(6o, 05) € TPH, where

'’ = T n (((—71',—%71’) X (f2,27r)) U ((—%71’,0) X (f3,27r)) U
U ((_671—70) X (f17f4)) U ((_§W70) X (O, 5) )

Finally, we can formulate

—

Proposition 6. For given Hermite interpolation dat®,, Ps, tq, t3, whereP, and P3 are distinct
points on the real axis ané, = Z(to, P; — Py) € (—m,0), 83 = Z(P3 — Py, t3) € (0,27) such
that

(60,03) € TP =TEH U TH
there exists at least one TC-interpolant that matches thengivitial Hermite data. The domain”™

describesll possible initial Hermite datbor which at least one TC-interpolant fulfilling these data
exists.

Remark 7. Let us point out that

1. if we consider?,03) € (—m,0) x (0,7), a TC -interpolant exists i#-6, + ;3 < 3 holds
— this result was also proved in [56] where it describes the donod anglesf,, 05 for TC-

interpolant without a loop,

2. if—0y+05 < §7r, then there exist two TC-interpolants fulfilling the giveriialiHermite data
— one without and one with a loop.

For the sake of simplicity, we use a notation b) x (f, g) for the description of the domaif(z,y) € R? : a <
x<bA f(x) <y < g(x)} between curveg = f(x) andy = g(z) restricted on the intervdh, b).
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Figure 4.2: Left:Tt"; Middle: I'"™; Right: T"". All domains (light blue) are in thé,f;-plane and
are bounded by the curvgs (dashed)f; (dot-dashed)f; (dotted), f, (thin solid), f5 (thick solid).

4.2 TC-interpolant with and without a loop

In this section, we want to analyze the number of TC-intemisiaatisfying given initial data and
their quality, i.e., if they contain a loop or not.

The discussion of inflections, cusps, arches and loops @rgecubic Bzier curves with respect
to a control polygon was done by Stone and DeRose in [110]. M@wvant to summarize results
of a general approach used in [110] which we will adapt to @secof TC-interpolants in the next
subsections.

Let us consider the control polygon of a cubiéZer curve given by the poinQ,, Q:, Q2, Q3,
where the first three points are fixed@ = (0,0)",Q;, = (0,1)",Q, = (1,1)". By moving the
point Q; = (z,y)" the control polygon is changed and consequently the cubiieB curve. As
usual, we deal with standardéBier curves (cf. e.g. [95]) defined for a parameter in theriat
[0,1]. The domains where cusps, inflection points, loops or aroleesr are bounded by conic
sections. Our interest is focused on the domain where a lesgsa This domain is described by the
inequalities

2

3
2 =3x+3y>0 A %+§—y+1>0 A 24 yi4ay—32x>0 A <1, (4.8)

see Fig 4.3.

4.2.1 TC-interpolants containing a loop

Now, we want to describe such initial Hermite data for whibke torresponding TC-interpolant
contains a loop. We use a well-known expressions of the abptints of a cubic PH Bzier curve
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Figure 4.3: Three point&, = (0,0)",Q; = (0,1)",Q, = (1,1)" and moving pointQ;. A
lightblue color shows a domain where a loop occurs. Boundinges from the equation (4.8) are
drawn in solid, dashed, dotted and dotdashed curves.

(see [37])
P,=Py+3 (ué — v, 2UOUO)T ;
P P1 + 3 (U()Ul — VoV1, UQU1 + U1U0)T s (49)

P3 = P2 + 3 3 ( - ’U%, 2U11}1)T,

whereP, corresponds to translation. Without loss of generality ae icdentify pointsP,, Q, and
P.,Q,,i.e.,Py=(0,0)",P, = (0,1)". SinceP, depends only on two parameters v, (cf. (4.9))
we can solve

1
P1 = PO + g (U% - Ug, 2U0U0)T = (O, 1)T

with respect tau, vo. We obtain two solutions

(ug,ve) = (v/3/2,4/3 and  (ul,v3) = (—/3/2,—/3

Since both these solutions prowde two domains symmetmnﬁi respect to the origin we will
consider only the first solution in the remainder of the sectiSubstitutings}, v§ into Py, P3 (cf.
(4.9)) we obtain the remaining control points as

P2 = (\/Lg(ul—vl),l—i-%g(ul—kvl))T
Py = (L(ur —02)(V6 + 2u; +201), 2(6 + vVBuy + us (V6 + 40y))) .
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Transformation from the zy-plane to thew,v;-plane

In general, affine transformations do not preserve the PHlition. Nevertheless, we need only
to find out, if the TC-interpolant contains a loop or not and gioperty is preserved under affine
transformations. Using the affine transformation which rtiegopointsP, P, P; to Qq, Q1, Q2 we
can map als®; to a new poinQ’,, i.e.,

I = m\éévl 0
Q 3 _ui1+vi 1

u1—v1

1 1 s o)
-Ps = <%(\/6+2u1+201),§(3—u1—vl)) . (4.10)

The inequalities (4.8) describe the domain whé&ghas to lie in order to get a cubicéRier
curve with a loop. We can use the andy-coordinates ofQ’; given by (4.10) to transform the
xy-plane into thas; v,-plane, i.e., we can substitute

r = \/Lé(\/é—i- 2uy + 2v),

y = 33—ui—0})

into (4.8). After some simplifications we obtain a semialgebset:, defined as a union of two sets
3, andX, where
Y1 = {(ug,v) € R?*:
(uy —v1)? > 0 A uy (V6 + up) + v (V6 + 1) < 3+ dugvi A (4.11)
3+\/6U1+\/6U1 SO},

Yo = {(u,v1) € R?:

9+ (V6 — 2up)uy + (V6 — 2v1)vy > 3\/9 + 2601 — 2(—v/6uy + u? + 2uiv; + VA
Alur —v1)? >0 A =3 < V6(us +v1) <0}

(4.12)

If we choose parametefs;, v;) € ¥ (see Fig. 4.4 (left)) and substitute these parametekR; tf.
(4.9)), we get a control polygon providing TC-interpolanttwa loop.

Moreover, since both pairs of parametéus, v;) and (vy, u;) provide the same poiri?;, the
domainX is symmetrical with respect to the ling = v; and we can use only one half of this
domain in the remaining text.

Transformation from the u;v;-plane to thef,0s-plane

In this section we focus on the last transformation fromhe -plane to thedy0s-plane, i.e., we
want to be able to determine whether the TC-interpolant aasialoop directly from angle, 0;.

As it was mentioned at the beginning of Section 4.1, the agleds can be computed using
(4.2) and (4.4). The computation 6f depends on signs af, andws given by (4.3). Thus, we can
divide theu,v;-plane into two domains with respect to the signsigfws and also the computation
of the corresponding anglég, 65 — the domains are (see Fig. 4.4 (middle)):

O = {(u,v1) € R? - wg(wr, v1)ws(u, v1) > 0},
QQ = {(Ul,’Ul) € Rz : wo(ul,vl)wg(ul,vl) < 0}
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Chapter 4. G' Hermite interpolation

Vi

up S— -2 0 2 uj ’ —4 -2 0 2 uj

—4 -2

0

Figure 4.4: Left:3; (yellow), 2, (blue); Middle: ©2; (pink), 2, (light gray); Right: A; (blue), A,
(green),A; (red),A4 (light yellow), A5 (orange)Ag (brown). All domains are in the;v,-plane.

The domaing?,, ), are bounded by the three implicit curves

d1(U17 Ul)
dQ(Ub Ul)
d3(U1> Ul)

ul—vlz(),
2u; + 2v; + 6 = 0,
U1 (\/Eul—i—ﬁ) + v (\/6?]1+6) =0.

Intersecting the domair{®; and(2, with the domain: (only one half of it, according to the symme-
try, cf. (4.11) and (4.12)) we get three new domains

A1 = Qlﬂzlﬂ{(ul,vl) €R2 DUy <U1},
AQ = QN3N {(ul,vl) eR?: u < Ul}, (413)
A3 QgﬂElﬂ{(ul,vl) e R? DU <’Ul},

which differ by a computation of, andf; and which represent subdomains of the;-plane pro-
viding TC-interpolant(s) with a loop. The domains, i = 1,2, 3, are shown in Fig. 4.4 (right).

Further, we can define mappings

O Q) — R(90>93) : (U17U1) — (eﬂ(ulavl)a93(ul>vl))a
®, Qy — R(90>93) : (UhUl) = (‘90('“17”1)763(“17'01))7

which differ by a computation of;(u;,v;) (cf. (4.4)). Using®, and ®, we can transform the
domainsh;, i = 1,2, 3 (cf. (4.13)) to thedyds-plane in order to obtain a subdomainidf! providing
TC-interpolants with a loop. The general approach for thesfia@mation ofA; to thef,65-plane
consists of two steps:

1. finding the parametric description of the domainusing rational Bzier surfaces (see e.g.
[95] for more details), we obtain a parameterization of thvef (i, (s, t), 01(s, 1)),

2. transformation of\; using®; (or ®,).

To demonstrate these steps in more detail, we transfgrasing®, into thed,03-plane. The cor-
responding control net (the third coordinate represemsvight of the control point) is described
by the control points

.
3 3
R? = (—TQ,—\é;,l) ,R2=1(0,0,1)",
T T
_ V3 _ V3
R2 = <—32+¢§37%‘/6_3\/§’1> ,R3 = (—% 2+ /3, 2%3773> .
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Computing a rational Bzier surface for this control net we arrive at the parametescription of
the domainA, in the form

— T
(@3(s, 1), 87 (s,1)) = o(3v2-2y/5(24V5)0) +vR(34VE) 1) o (vB-8)1(21-8)-8) - (vB-8) u-D2t-1)
18 25 P1As 4(V/3-2) (s—1)(t—1)t-+4 d 2v2((V3-2)(s—1)(t-1)t+1) ’

where(s,t) € (0,1) x (0,1). Then
Uy = ¢2<a%(3at>7@%(5?t))

represents the subdomainIdf!! corresponding ta\, (see Fig. 4.5 (left)).
Similarly, we can find parametric descriptiofig (s, t), 91 (s,t)) " and(a3(s, t), 3(s,t)) " of the
domainsA; andAs, respectively. Then

U, = @1(@%(8,2&),@%(8,7&)) and V3= @2(71:15(87t),f)?(8,t))
represent subdomains Bf™ corresponding td\; andAs;, respectively (see Fig. 4.5 (left)).

Proposition 8. For given Hermite interpolation dat®,, Ps, t, t3, whereP, and P; are distinct
points on the real axis anf, = Z(to,P; — Py) € (—,0), 03 = Z(P3 — Py, t3) € (0,27) such
that

(907 63) S \111 U \112 U \1137
there exists at least one TC-interpolant with a loop that masaffiven initial Hermite data.

Remark 9. It can be seen from Fig. 4.5 (left) that some partsigfand ¥ ; are “folded”. According
to Section 4.1, there exist two TC-interpolants for suchahldermite data. Moreover, initial data
taken from ¥, and W3 always produce TC-interpolants with a loop. This implies tln#ré exist
exactly two TC-interpolants with a loop for such initial data.

4.2.2 TC-interpolants without a loop

To analyze the number of TC-interpolants, it is necessarydp atso the remaining subdomains of
intersection of); and(2, with X where a loop does not occur. Similarly to Section 4.2.1, waiab
three domains (see Fig. 4.4 (right))

A4 = QlﬂE’lﬂ{(ul,vl) e R? UL <Ul},
A5 = QgﬂE&ﬂZém{(ul,Ul) ERQ LUy <U1/\d2(u1,v1) <O},
A6 QQHE’lﬂE’Qﬂ{(ul,Ul) ERQ T Uq <U1/\d2(U1,U1) >O},

whereX! = R?\ %, i = 1,2. Further, we find parametric descriptiofig (s, t), %] (s,t))" of the
domainsjj, j = 4,5,6. Then

Uy = O, (0)(s, 1), 01 (s,1))  and U, = Oy(d (s, ), 0](s,1)), j = 5,6,

represent subdomains Bf" corresponding ta\;, j = 4,5, 6 (see Fig. 4.5 (middle)).
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Chapter 4. G' Hermite interpolation

Figure 4.5: Left: U; (blue), ¥, (green),¥; (red); Middle: ¥, (light yellow), ¥5 (orange),¥q
(brown); Right: Subdomains df*® where exactly one without a loop (yellow), one with and one
without a loop (cyan), two without a loop (magenta) and twthva loop (gray) TC-interpolant(s)
exist. All domains are in thé,0;-plane.

Proposition 10. For given Hermite interpolation dat®, P3, tg, t3, whereP, andP3 are distinct
points on the real axis ané, = Z(to, P; — Py) € (—m,0), 63 = Z(P3 — Py, t3) € (0,27) such
that

(607 (93) e v, UWsU W,
there exists at least one TC-interpolant without a loop thatamas given initial Hermite data.

Remark 11. It can be seen from Fig. 4.5 (middle) that some part@gfand ¥ are again “folded”.
According to Section 4.1, there exist two TC-interpolantssfaeh initial Hermite data. Moreover,
initial data taken fromU; and ¥4 always produce TC-interpolants without a loop. This impliex th
there exist exactly two TC-interpolants without a loop for sunitial data.

Remark 12. Let us summarize some consequences of Propositions 8 and 10:

1. If (6,03) € (I, UV, U W3) N (P, U W5 U W), then there exist one TC-interpolant without a
loop and one TC-interpolant with a loop.

2. If the angle9),, 05 fulfil
2 4 8
§7T§—90+93<§7T or —90+(93>§7T,

then there exists exactly one TC-interpolant without a loop.
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Remark 13. It remains to study the number and the quality of TC-interptdaon the boundary of
the domairt’, i.e., ford, € {—=,0} or #3 = 0. According to the discussion of these special cases at
the beginning of Section 4.1 and with respect to Proposit®asd 10, we can write that

e for 63 = 0, there exists only one TC-interpolant féyy € (—27/3,0) with a loop,
e for 6, = 0, there exists only one TC-interpolant foy € (0,27 /3) U (47/3, 27) with a loop,

e for 6, = —m, there exists only one TC-interpolant féy € (0,7/3) U (57/3, 27) without a
loop.

4.3 Examples

In this section we show several examples which demonstnatexistence of TC-interpolant(s) for
given Hermite data.

Example 1. Let us find TC-interpolant(s) for the following Hermite data

T T
Po=(0,1)7, Ps=(6,1)", to= (5 —) - ts= (i 35)
We can easily check that, and w; have the same signs. Using (4.2) and (4.4) we compute
0o = —7m/4 andfh; = w/4. Since—6, + 63 < 27 /3, we expect two qualitatively different so-
lutions according to Propositions 8 and 10. Further, usth@)(we can computé,; and also the
correspondingly; from D = | /da3/dy; in the form
+ _ _6 _ _ 6 + _ g+ _ _6 - _ - _ _ 6
dgy = 12 dyy = 120 dyy = dyy Dy = 1+v2’ Aoy = dyy D = YR
Finally, we determine the control points oEBier curves providing TC-interpolants to obtain their
parameterizations

ro(t) = _ <3t(3\/§ — 3(F2+ V2)t + 2(F2 + V2)£?), £1 + V2 — 9V2t + 9\/§1t2>T ,

+1+2
t € [0,1], with PH conditionz’(¢)? + 3/(t)? = 162(17 F 12v/2)(£2 + v2 £ 2(—1 + t)t)%. The
TC-interpolants are shown in Fig. 4.6 (left). ¢

Example 2. Let us consider the Hermite data
T T
Po=(0,1)7, Py = (6,1)7, to= (Y208 v200) g, = (- 1o 1f_5> _

In this casefy = —n/12 andf; = 137/10. According to Proposition 10, we expect two TC-
interpolants without a loop, which we can find analogousli£xample 1. The TC-interpolants are
shown in Fig. 4.6 (right). ¢

Example 3. Let us consider Hermite data

T T
Po= (7 Py= ()7 to= (—F,-1) = (58 47)

For these Hermite data we g&t= —57/6 andf; = 237/12. Since—0, + 03 > 87 /3, we expect
exactly one TC-interpolant without a loop according to Rermiétkwhich we can find analogously
to Example 1. This TC-interpolant is shown in Fig. 4.7. ¢
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Chapter 4. G' Hermite interpolation

Figure 4.6: TC-interpolants with their control polygons amit tangent vectors. Left: Example 1;
Right: Example 2.

Figure 4.7: Example 3: TC-interpolant with is control polygand unit tangent vectors.
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Hermite interpolation by two PH cubics

In this chapter we cover all possible initial Hermite dateliiding data which is impossible to inter-
polate by only one TC-interpolant. Moreover, we show thatdlexist at most two TC-interpolants
which match such data. In the first section, we stadyHermite interpolation where the proof is
done and in second section we focus@hHermite interpolation by two TC-interpolants. At the
end of this chapter we set several statements how to get goadtérpolants approximating a given
curve.

5.1 G' Hermite interpolation

First, we formulate the theorem describing the number of M€rpolants matching ar§y' Hermite
data.

Theorem 14. AnyG* Hermite dataP, Ps, to, t; can be interpolated by at masto TC-interpolants
joined withG* continuity.

Proof. (of Theorem 14) Let us suppose connecting pdniying on the line segmenP, P with
associated tangent vectr We denotéd = Z(t, P, — P3). We have to emphasize that we do not
care about the orientation! The main idea is to show fhiés in the intervalZ, which is always
nonempty.

Let us consider any poirty, 6;) € T'*™. Since we knowd, € (—x,0) andfs; € (0,27) then
the point(6,, 0;) determines two line segments in the doméinr, 0) x (0, 27) parallel with the
axis. Such two line segments intersect the domain of defmif TC-interpolant in horizontal line
segment, and the second one is vertical line segniBntwhich can be described as follows

Zo = (0,a1) U (ag,a3), Zz=(0,b) U (bo,b3),
N——
for 93>5(,T7r

wherea; andb; are values lying on boundary of the domain of definition of T@&ftpolant and
according to its symmetry we arrive at nonempty intersecfio= Z, U Z3. Since the interval
7 is nonempty, it means that the input data can be interpolayeuhfinitely many pairs of TC-
interpolants. ]
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Now, let us discuss all the cases in detail. The discussiarbeaconsidered as an outline how
to construct a pair of TC-interpolants. Let us emphasizewmatlo not preserve the sign éf, 65
in all the outline, but we keep the orientation, which givies tirection of the tangent vector and
consequently the sign of the correspondent angles. If we kapt the sign we did not get an
nonempty intervals.

We split up the outline into two parts. We consider that onlitheesegmenP P lies such point
P with unit tangent vectot which connects arbitrarg* Hermite data. The choice of the polRtcan
be done in different way but we do this for simplification df@ntruction, i.e.f = Z(t, P5 — Py).

1. (90783) g FPH AN 93 S ™
This condition can be rewritten asfy + 03 > 47/3 A 03 < 7.

(1a) We have to find first TC-interpolant, which matcisandP and which is determined

(1b)

by the angleg,, ;. We get all angle$; such as
53 I~ Tg = (0,471'/3 -+ 90),

which describe the family of TC-interpolants.

According to the orientation of the systemy( w; from the equation (4.3)) and according
to the assumption of; we know that for the second TC-interpolant the anglé;is=

2w — 03 > m. Now we have to find all, which create second TC-interpolant. All angles
0, are

g T = (—fi'(65),0), 03 (77/6,57/3)
0==0 (=47 /3 +65,0), 65 € (r,7n/6),

wheref;i is inverse function to the functiofi, from equation (4.7). The interval of
the anglg is described as

ge—j—oﬂjgz—j—o?é@,

see Fig. 5.1 (left) and appropriate TC-interpolants arealized in Fig. 5.3. Let us
notice that the smallest interval 5= (0, f, '(57/3)). It means if we choose arbitrary
value from this interval we can always create two TC-integipts for such data.

Let us discuss the remaining area for the afiglehich is expressed as

5, € 7, — | B87/3 = 00.2m), by € (~m,~57/6)
(f51(60),2m), 6o € (—57/6,—27/3).

Knowing the value of the a_ng?lg > 7, we do not computé; for second TC-interpolant
and we are able to computg directly. We arrive at

50 c 70 = (—477'/3 + 93,0)
and consequently to the angle

§—-T,nT. =T,
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Chapter 5. Hermite interpolation by two PH cubics

whereZ, is

3 =

=5 _ [ (0.21/3 = 0y), 0o € (—m, —57/6)
(0,27 — f51(60)), 6y € (—=5m/6,—27/3).

The described construction is shown in Fig. 5.1 (right) and pair of possible TC-
interpolants are shown in Fig. 5.3.

Similarly, we know the smallest intervai, = (0, 27 — f; (—x/3)), from which we can
always choose the valude

- - - = —_q - - - 7
- —— -
/’— ”’
7~ 1 ~
2
vl | 4 [
y ‘

e - =

wIx

Figure 5.1: A point(dy, 63) (black) and pointf,, #5) (red). Green line segment is an intergland
blue line segment describes an intefgl Left: Situation in item (1a); Right: Situation in item (1b).

2. (00,03) g e A 03 >
This case is very similar to the first case of the construchiott we also subdivide the ideas
into two subitems:

(2a) The angle rang®; can be written as

_ = (0,471’/3—1-00), 90 € (_777 _71-/6>
03 €13 = { (O7f471<90))7 0o € (—7/6,0).
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Since the anglé; > 7 and according to the orientation of the system we have to atenp
the angle’; = 27 — 5 < 7. Using this value we are able to compéteas

%eﬂ:{gmm+@m,%GWﬂﬂ
(—,0), 05 € (0,7/3).

Finally, the interval for anglé, i.e. 7 = —Z, N Z5 is not empty. The situation is shown
in Fig. 5.2 (left) and one pair of TC-interpolants is visuatizin Fig. 5.4.

(2b) Now, let us use the remaining part of the domain of deédinibf TC-interpolant. The
angleds is in the interval

0; €5 = (87/3 = b9, 2m), b € (=7, =57/6)
(f3(00),2m), 0o € (—57/6,0).

According to the orientation of the system, we can compuiet@nval of the angld, as

(=m, = f31(03) U (= f'(65),0), 05 € (117/6,2r),
7 (=, =87/3+03) U (= f'(65),0), 65 € (57/3,117/6),
0 €I 1

(—fi (63),0), 05 € (Tm/6,57/3),

(MB 05,0), 0 € (m, 77 /6).

Analogously, we arrive at the final interval range of the arfglwhich is written as an
intersection oflz and—Z, and is always nonempty. The construction is shown in Fig. 5.2
(right) and TC-interpolants in Fig. 5.4.

In every item we have showed that an inter¥ak not empty and therefore there exist at most two
TC-interpolants matching give@@' Hermite data, which do not belong to the domain of definition
of TC-interpolant.

Example 4. Let us conside;! Hermite data not lying in'*!, e.g.,

11 3
_ T _ T = -2
P() == (0,0) ,P3 == (6, 1) s 90 = 127T, 6)3 57'('.
On the line segmeri?, P; we suppose the poil® with associatedgngl@,@o. We seek such two
TC-interpolants, where the first one is determined by thetpdty, P and by the angle&,, 6; and
the second one is given by the poiftsP3; and by the angle&,, 0.
Sinced; < 7 we obtain the interval
4 11

I _
=037 =357),
—_—

5
127

from which we can pick up the value of the angleand therefore it determines all possible TC-
interpolants matching the poink,, P.
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7 7/
7/

|

Figure 5.2: A point(t, f3) (black) and a pointt, 05) (red). Green line segment is an interda|
and blue line segment describes inter@gl Left: Situation in item (2a); Right: Situation in item
(2b).

v

27
6

|
Wiy

-7

From the first TC-interpolant we get all tangent vectbmhich have the same orientation like
t3. Knowing this fact we have to considéy = 27 — 03 = 77 /5 L and consequently we arrive to the
interval determining anglé,

To=(—f* (gw),o).

Finally we have the interval = —7, N Z3,? which can be rewritten as

— s
Choosing the valué = 7/19 we get two TC-interpolants, see Fig. 5.3.
Moreover, the first TC-interpolant is defined for thgelying in the interval

= 8 11
Iy= (§7T — §W,27r)
—_—

T

=1

1The upper left index means symmetrical value with respect to the Bge= 7. We will do the similar with the
interval, i.e. for the interval = (a,b) we obtainZ® = (2r — b, 27 — a).
2By the interval—Z we mean the symmetrical interval to the inter¥ak (a,b), i.e. - = (—b, —a).
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1.5¢

0 3
0.5r

Figure 5.3: Two pairs of TC-interpolants. Green-black curgastructed using the item (1a) and
red-blue curve is done according to the item (1b).

which implies the interval, as follows

— 4 3
I() = (—gﬂ' + 37'(',0).
———

11
171'

Because we keep the same orientation we have to transfornarige of the interval ; to T; =
(0,7/4) and the final interval = —Z, N Z, = (0,7/4). Using the valué = 7/7 we get two
TC-interpolants, see Fig. 5.3.
It remains to show the construction f6f Hermite data havings; > =, for example
7 28
0 (0,0) , '3 (6, ) y 90 107T, 93 157T

We apply similar approach as for previous data, except tlaagd of orientation. Therefore, we
arrive at the intervals

_ 4 7 _
Ig = (0, g’/T — 1—O7T), Io = (—W,O),
———

19
07

which give usZ = (0,197/30) and two TC-interpolants for specific valde= /7 are shown in
Fig. 5.4. The first TC-interpolants are also defined for thdeafigin the interval

— _ 7
7= (5 (57 20
N———
~4n
23
which figures out the interval

Zo=om-fit (B ) vt (B )0

. J/

-~

~— 23
R—sgT 3

|2

(=}

and the final interval i€ = —Z, N Z, = (0, 7/80). For the random valué = 7 /85 we get a pair of
appropriate TC-interpolants, see Fig. 5.4. ¢
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0 u = — \ x

0.5

Figure 5.4: Two pairs of TC-interpolants. Green-black cuwwastructed using the item (2a) and
red-blue curve is done according to the item (2b).

5.2 C'interpolation

In this section we describ@' Hermite interpolation by TC-interpolants. We prove that astrtwo
TC-interpolants are always necessary to match this data.

Theorem 15. Let us consider two TC-interpolantst) andr(¢), ¢ € [0, 1] which are determined by
the control pointsP,, P,, P,, P; and Py, P, Py, P5. Such two TC-interpolants a@' connected
if and only if

Uy :ﬂo AN :EO VAN P3 :Fo. (51)

Proof. We want to prove that the control poink,, P; (= P,) andP; are collinear and that the
distancegP, — P3| and|P; — P,/ hold.

According to the expression of the control points of TC-iptdant, see equation (4.9), we can
rewrite the collinearity condition as

P;—P; = a(P, - ) &Y 7é 0, B
Py + :(ul —vf,2u10)" — Py = o(Po+ ( — v, 2ulvl)T —Py), a #0,
s(uf — 0}, 2u00)"T = ai(Td T, 2uovo) , a#0.

If a = 1, the statement of the theorem follows.
O

Corollary 16. If two TC-interpolants ar&”! connected then their preimages &€ connected, but
opposite statement does not hold, see Fig. 5.5.

In Chapter 4 we have found out for whi¢Ht Hermite data there exists one TC-interpolant. Now,
we want to derive for whicl®’! Hermite data there exist two TC-interpoladts connected. We can
formulate the following theorem.

Theorem 17. For anyC' Hermite data there always exist four pairs@f joined TC-interpolants.
Proof. For the sake of simplicity we can consider
A =(0,0" and B=(b0)" (5.2)

with their tangent vectors, andtg. Further, the tangent vectors determine the control pahts
the control polygon of TC-interpolants, i.&.s givesP; = (pi.,p1,)" andtg determinesP, =

(pows P2y) " -
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U1

T . \ U

Figure 5.5: Situation describing the statement in Coroll&ywhereC? continuity of preimages of
TC-interpolants do not giv€! continuity of TC-interpolants.

First, we have to solve the system of equations

1,2 .2
P = (U ), (5.3)
Py = §u0U07

for unknownsug, vo. We get four solutions

m \/_ply

Uu =
0 (-1 \/( 1 \/plz-kply Pl (5.4)
Vo = \/>\/ plm +p1y Piz, {m7n} < {172}7

where two pairs are real and two pairs are complex solutiea Esg. 5.8, where the equations (5.3)
can be seen as an intersection of two hyperbolas). Itis itapbto emphasize that if we sat, = 0

we get zero denominator in the expressiom@fSuch situation we have to solve in a different way.
Since we sep,,, = 0 then the equatioéuovo = 0 describes two lines, = 0 andvy, = 0 and the
solution, i.e., the intersection of the hyperbola with ke, is in the form

Uy = £/3p1z, vo =0, and wuy= +i\/3piz, vo =0, (5.5)

where the real ones are exactly the vertices of the hyperbolarther text we assumg, # 0. If
we substitute (5.4) to (4.9) we get poif®s, P; dependent only on parameters v, .
Next, we have to solve the system of equations

b_pr

w2 — 72),
e = 56
y )
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We solve this system for unknowis, 7;, and we obtain the solution

Ul = (—1)m \/gpr
VDn/(p20— 043, 42 b 5.7)

B I s 07 b fmnk e (1,2}

where as in the equation (5.4) we have two real and two congakrions and we also have to pay
attention what happens if we g, = 0. Analogous to the setting,, = 0 we arrive to

Uy = £/3(b —pa), v =0, and wug= £i\/3(b— pas), vo=0. (5.8)

Using the expression of the control points of the TC-inteapblve rewrite the poinP, as
£5) D 1—2 2 | = — — = 5= — — — —\T
PO = P2 — g(uo — Uy + UpU1p — VU1, 2UOU0 + UpV1 + Ulvo) .

If we substitute fofi;, v, from the equation (5.7) we get a polR} dependent on the variables, 7
and it can be written aBy = (g, g,) ", where

_ _9 _92 _ _
92(To, Vo) = c11 Uy + c22 Ty + €13l + CaszTp + €33, ¢ij € R (5.9)
A
and
gy (o, To) = 12 ToUo + q13To + q23T0 + ¢33, ¢ij € R. (5.10)

2

3

Let us emphasize that the poiRt depends on the parameters v, i.e.,
1 2 2 T
P3 = P1 + g(ul — U + uguy — VU1, 2u11)1 + ugvy + Ul’Uo) s

wherew, andv, are obtained from equation (5.4). Consequently, the finaltpzsn be written as
Ps = (f., f,) 7, wheref,, f, have the forms

fo(ur,v1) = hiy uf 4 hoo v + hagur + hogvr + has, (5.11)
fy(ur,v1) = ko wivr + kizug + kogvr + kis. (5.12)

2

3
Using condition from the equation (5.1) we arrive at the esgion
P:F = T T = T T:> z Jx - TZO’OT‘
3 0 (g gy) (f fy) (g Je> Gy fy) (0,0)

Wy Wy
If we substituteu; = g, v; = 7y we obtain two quadratic surfaces

_ 2 2
W (uy, v1) = Mg Uy + Mag V7 + Mgty + Magvy + M3,

+2 F2
3 3 (5.13)
wy(u1,v1) = N1z u1v1 + Nizuy + Nazvr + Nas,
2
+3
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with the coefficientsn,;; = c¢;; — hi;,nij = ¢i; — kij, mij,n;; € R. Looking for the zero set, we
obtain two conic sections

wy(ur,v1) =0 and  wy(uy,v1) =0

with the same centéS = (s,, s,)". If we want to decide about the type of conic section, we have
to focus on two invarianfs

11 daiz2 A3

a a
A(&) = | Q12 Q922 93 ,5(@) = H 12

aiz2 a2

(5.14)

a3 Qa3 Gs3

of the arbitrary conic section
a(x,y) = ana® + 2a10y + anr® + 2a137 + a3y + ass = 0.

By the computing of the invariants (5.14) of the conic sedion, w, we get

2 2
5(%):‘13 0 ' 4 ’ 0 =+

0 w2 |7 00w =] s

[SV1] )

and, moreover,

Aw,) # 0, Aluw,) # 0,

which imply that the conic sections, andw, are hyperbolas. Only for the valug = 0 orv; = 0
(see equation (5.5), (5.8)) we obtain two intersectingdig@ngular conic section).
Let us solve the system of equation

Wy (ug,v1) =0 A wy(ug,v1) = 0. (5.15)

Knowing that both functionv,,, w, are of degree 2 and usingeBout theorem we obtain four solu-
tions. We are interested only in real solutions which do r@weto exist for two arbitrary hyperbolas.
Now, we have to use the properties of the axes and asymptiotiesse two conic sections, i.e., the
conic sectionu, has axes;; = s, andv; = s, and conic sectiow, has asymptotes, = s, and
v = sy, Which implies that these two curves have always two reatsgctions, see Fig. 5.8.

We have found the intersection of two conic section whictegithe value of joining point. This
point always exists and therefore we can interpolate ayitdermite data witt©'! smoothness. [J

5.2.1 Aloop on TC-interpolatns

In this section we discuss the quality of TC-interpolant mitg C'! Hermite data, i.e., whether
it contains a loop or not. Let us assume that PH cubic has mdr@nexpression(t) which is
dependent on parameters vy, u, v, See Equation (4.9). If we want to determine a selfintersecti
we have to solve the following system of equations

r(tt)=r(t™) A tT £t

3Using the expression of the center of the hyperbola we cackahat the hyperbolas described above have the same
values of the center.

4In general, there are two invariants, the first one is deteantiof the conic section and the second one is determinant
of quadratic terms of conic section. The notation of theseitwariants can be different depending on a source.
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U1

......
......
- S
Qe ~

Figure 5.6: Left: Behavior of the poirtu;,v;)" where we fix(ug,v9)"; Right: Corresponding
TC-interpolants.

for unknownst™, ¢t~. We obtain following expressions

2 2
t+ _Up + Uy — UpU1 — Vo¥q + \/g(ulvo — UOU1>

(uo — u1)? + (vg — v1)? ’ (5.16)

B uZ 4 v2 — uguy — vov; — V3(urvy — ugvy)
n (uo — u1)? + (v — v1)?

The PH cubic as a&ier curve is given for the parameter in the domnjéin], and therefore we can
easily check the domain, where the self intersection is, i.e

-

(5.17)

T={0<t"<1A0<t <1}

This domain is bounded by the curves obtained from the pusvéguations, which can be rewritten
as

u2 4+ v2 — uguy — vovy £ V3(urvp — upvy) = 0,

5.18
ud + v — uguy — vovy + \/§(U1U0 —upvy) — ((ug — u1)* + (vo — v1)?) = 0. ( )

For each TC-interpolant we fix eitheg, vy or u;, v; and then the equations (5.18) describe two lines
and two circles which bound the domain, eith&u;,v;) = Y1 or Y(uy,v9) = Yo, Where a loop
appears, see Fig. 5.6.

To decide if a computed pair of TC-interpolants contains ajege only evaluate Equations (5.16)
and (5.17), because we know all the valugsvg, u1, v;.

5.2.2 Rational curves on Blaschke cylinder

We describe some properties of PH curves in dual space. ®htept was first introduced in works
of W. BlaschkeFurther, Pottmann and Peternell inspired by Laguerre g&graet several statement
about the PH curves, c.f. [89], [96], [97], [98]. Let us memtithe theorem describing PH curve on
Blaschke cylinder.
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Chapter 5. Hermite interpolation by two PH cubics

Theorem 18. The image of any plane PH curve on Blaschke cylinder is a alpatiional curve.
Proof. Can be found in [89]. m

The aim is to describe the behavior of two TC-interpolantsneated inG*' or C'* smoothness.
We can formulate the following theorem.

Theorem 19. Images of any two TC-interpolants joined with or G* continuity areG* connected
on Blaschke cylinder.

Proof. The TC-interpolant given by the control points
Py = (az,a,)", Py = (by,b,)" Py = (csyc,) ", Ps = (dy, dy) " (5.19)
has a parametric expression
r(t) = (a,(1—)3+3b, (1—)2t4+3c, (1 — 1)t +d,t®, a, (1—1)3+3b, (1—1)*t+3c, (1—t)t*+d,t*) T,
wheret € [0, 1]. Then the first derivative has an expression

r'(t) = (3(—ag + by + 2(az — 2by + o)t + (—ag + 3by — 3¢, + dy)t?),
3(—ay + b, +2(a, — 2b, + ¢,)t + (—ay, + 3b, — 3¢, + d,)t?)) ",

with PH property, i.e(r'(t),r'(t)) = o(t)?, o € R[t]. The tangent line is written as
<1’l(t)7X>+$3:07 X = (xlaxQ)Ty

wheren(t) = (n,(t),n,(t))" is unit normal vector and; = —(n(t),r(t)). Since the PH cubic is
of degree 3, its curve on Blaschke cylinder is of degree 5, uscéhe third coordinate; is a dot
product ofn (degree 2) and(¢) (degree 3). The curwe(t) on Blaschke cylinder is written as

C(t) = (nér(t)v ny(t)’ l‘3(t))—r7
where

23(t) = (—ay(t — 1)*(by + 2(cp + o)t + (by — 2¢, + dy)t%)+
az(t —1)(by +2(c, — by)t + (b, — 2¢, + d,)t*)+
2 ((cody + cydy)t? — by(t — 1) (e, (t — 1) — 2d,t)+
by(t —1)(3c,(t — 1) — 2d,t)))/o(t).

Computing the first derivative of the cureé¢) and evaluating it for the valugs= 0,¢ = 1 we arrive
at

c'(0) = ap(az — by, ay — by, az(by — az) +ay,(b, —a,)) ",

where
g — becy — bycy + ay(c, +by) + axgby —¢y)
((az = bs)* + (ay — by)?)?/?
and
(1) = ay(cy — dy, ey — dy, dp(dy — ¢) +dy(d, — c,)) T, (5.20)
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where

dy — cydy + by(dy — cz) + by(cy — dy)
((ez — dz)? + (cy — dy)2)3/2

Cx
061:2

Let us focus on two TC-interpolants and their connection. \Aehtwo curves:(¢) and¢(t) on
Blaschke cylinder, the first TC-interpolant is determinedhmsy ¢ontrol points (5.19) and the second
TC-interpolant is given by the points

?0 = (5507534)—'—’ ﬁ1 = (l_)xagy)Ta P2 = (ExaEy)T ?5 = (axaay)—r'

By the investigation of the first derivatives at the end points getc’(1), see equation (5.20) and
the first derivative

c(0) = @y(a@y — by, @, — by, ax(by — @) +a,(b, —a,))".

If two TC-interpolants ar&; or C'! connected, they have common polPy = P, and the corre-
sponding tangent vectors have to be collinear, or similarly

| Ps—Py, |=) PPy |, A€R,
——— ——
(dzicﬂhd’yfcy)—r (Ez*azygyfay)—r

where) = 1 yieldsC* continuity.

Let us focus on the vectot$(1) andc’(0) and we want to decide whether they are also collinear.
It is obvious that the first two parts are collinear and themefwe investigate only the third part,
where we substitut®, = P;

2

de(de — ¢;) + dy(dy — ¢,) = dw(Bx —d,) + dy(gy —dy,), BER,
2 ty Bta Bty
where the equality holds, because the paRysP;(= P,) andP; are collinear. The remaining part
is to find whether the first two parts are also multipliedhy.e.,
:L'_d(E7 _d T: dz_l;:md _B T?
(c Cy y) ( o dy —by)

—ta —ty — Btz —Bty
which gives the desired continuity on Blaschke cylinder. ]

Corollary 20. It is obvious that the previous theorem holds not only for RiBics but also for
arbitrary Bézier cubics joined ir7! or C'! continuity, although they do not possess rational curve
on Blaschke cylinder.

Moreover from the Blaschke cylinder we cannot distinguishtiagrethe curves ar€! or G*
connected.

In Fig. 5.7 TC-interpolantg;! andC" connected are shown and there is visualized the corre-
spondence on Blaschke cylinder, where appropriate TC-iol@nps are shown.
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Figure 5.7: Left: Rational curves on Blaschke cylinder which @' connected. RightG! con-
nected (green and black) antt connected (green and gray) TC-interpolants drawn with thair
trol polygons.

5.3 Example

In this section we show'! Hermite interpolation on one example.

Example 5. For C!' Hermite data
A=(0,0", B=(50)", ta=(6,6)", tg = (6,3)"

find all TC-interpolants and decide whether they contain @.loo

Knowing the tangent vector we can directly express the obptintsP; = (2,2)" andP, =
(3,—1)T and obviouslyP, = (0,0), P35 = (5,0) .

By solving the system of equations (5.3) for unknownv; we obtain four solutions which are
described by (5.4). We get

(g, vd)" = (—=2.691,—1.114) T, (uB,vd)T = (2.691,1.114)T

(uG,v8) " = (04 1.1144,0 — 2.6914) T, (ud,vd)" = (0 — 1.1144,0 + 2.6917) "
and we pick up only the real solutioria3, v3) ", (ub,v0) T, which are moreover symmetrical with
respect to the origin0, 0) '. The solution of the system of equations (5.3) can be alsoa®é find
the intersection of two hyperbolas, see Fig. 5.8.

If we substitute(ud, v3)T, (ud,vg)T to the expression of the control poiRt we obtainP; =

(fe(ur,v1), fy(u1,v1))", wheref,, f, are gained from the equation (5.11) and (5.12). These func-
tions have formulas

S22+ 2 (uf —of — 2.691uy + 1.1140y),
f2: 24 3(2uyvy — 1.114uy — 2.69101),  where  (uy,v1) € R?
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Chapter 5. Hermite interpolation by two PH cubics

Figure 5.8: The solution of the system of equation (5.3) dieed as an intersection of two hyper-
bolas. Gray hyperbola &vy/3 — 2 = 0 and black hyperbola i€ + v2)/3 — 2 = 0. The points
(ud, vd) T, (ud,v3) " are drawn in red and green color, respectively.

and

[P 2+ 2(ud — v} + 2.691u; — 1.1140y),
f;’ D24+ %(2u1v1 + 1.114u; + 2.691v;), where (uy,v;) € R?,

which are shown in Fig. 5.9.
Now, let us focus on the equations (5.6). According to theaéiqus (5.7), (5.9) and (5.10) we
arrive at four solutions, where first two are real and other &ne complex, i.e.,

@3, v3) " = (—2.52,-0.595)", (@, )" = (2.52,0.595)",
@, v$) " = (0.595i, —2.520) ", (@d, 7)) T = (—0.595i 2522)

By substituting the real valugs?, 72), (u?, 7°) to the expression of the poilt, we obtain

92 3— (uj —vg — 2.52u0 + 0.5957),
g; c—1-— —(2UOU0 — 0595U0 — 2.521)0 s

)
)
921 3 — (u) — 03 + 2.52uy — 0.5957),
gg D=1 —(2uovo + 0.595%¢ + 2.527),
where(tuy, 7y) € R.
The next step is to compute the functiang, w, from the equation (5.13). In general, we have
four values forw,, and four values fot, in the form

wit =gl — fy
wi* =gl —fr, j.ke{ab},
namely
whi = =14 1.737uy + 2uf F 0.569v; — 20}, j € {a b},
wht = —1 £ 0.056u; + 2u1 F 01730, — vf, Jk e{abyAj#Fk,

wl? =3 £ 1.737v; F 0.569u; + 22uyvy, j € {a b},
wl¥ =3 +0.0560; T 0.173uy + 2§u1v1, J,ke{ab}Aj#Ek.

(5.21)
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Chapter 5. Hermite interpolation by two PH cubics

Figure 5.9: Left: Functiong? (cyan) andf® (yellow) with their zero sets. Right: Functionf§
(cyan) andf;’ (yellow) with their zero sets.

Figure 5.10: Left: Functiong? (magenta) ang? (orange) with their zero sets. Right: Functiq;js
(magenta) angg (orange) with their zero sets.
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Figure 5.11: Zero sets of function,,w, and their intersection (colored points). Left? = 0
(gray), w?® = 0 (black dashed) an@2® = 0 (black), w®* = 0 (gray dashed). nghtfwba =0
(gray),w bb = 0 (black dashed) armlzba = 0 (black), wbb = 0 (gray dashed).

Their zero sets, i.e., conic sections, are plotted in FiglL 5.

By finding the intersection points of conic sections we obthéwvalues:,, v;, which we get as a
solution of the system of equations (5.15), which are shasweoéored points in Fig. 5.11. We arrive
at eight points (we knowu{”,, v{") = (@)%, 54" )

(uig, v} T = (3.245,—0.443)7, (uph, vph)T = (—3.245,0.443)7,
(u ?g,vlz)T (— 0.639,1.298)T, <u5’g 5’5)T (0.639, —1.298) T,
(u ?1, 11)T (—1.719,1.403)T, (u22 oP3)T = (1.719, —1.403)7, (5.22)
(5, 020)T = (1.805, —1.143)7, (B3, 0P8 = (—1. 805,1.143)T,

where for valuegu’"! U J) hold
(uygory) " = —(uy,05)", for je{1,2}, k1€ {ab},

(Wfh opE) T = — (b o), for g e {1,2},k,1 € {ab},

i.e., they are symmetrical with respect to the oriffin0) ", see Fig. 5.12.

If we substitute (5.22) to the corresponding formula (5,24¢ get only four distinct points
P; = P,. For the coefficientsn;s, mq3 andn,s, neg of the formulaw, andw,, see equation (5.13),
hold

k.l Ik kk 1l k,l Lk kk

Finally, we arrive at the four pairs of TC-interpolants (a-Interpolants have the same control
pointsP,, P, P, andP3).

1. The first two TC-interpolants are determined by the contoohts

P5% = (—1.076,1.192) ", P33 = (2.369,0.231)" = Pyy, Py, = (5.815,-0.729)"
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Chapter 5. Hermite interpolation by two PH cubics

Figure 5.12: All solution of the system of equation (5 15heBame colored points are symmetrical
with respect to the origin. Symmetrical points;, v77)" (blue), (uf5, v73)" (red), (ull,v??)

(green),(uf3, vi5) T (yellow).
and parametric expressions have the following formulae

r&%(t) = (6t — 15.23t% + 11.59¢3, 6t — 8.423t? + 2.654t3) T,
ro8(t) = (2.369 + 10.338¢ — 18.784¢2 + 11.076t3,0.231 — 2.882t + 2.069¢> + 0.581¢%) T,

wheret € [0, 1]. The TC-interpolants are shown in Fig. 5.13 (top left).
2. The second TC-interpolants have the control points
P55 = (3.056,1.072) ", P33 = (2.63,0.518)" = Py,, Py = (2.204, -0.035)"
and parametric expressions

ry?(t) = (6t — 2.83t% — 0.539¢3, 6t — 8.782t% + 3.301¢%) "
ro%(t) = (2.631 — 1.277t + 3.663t> — 0.016t3,0.518 — 1.662t — 1.231¢% + 2.374t3) T,

see Fig. 5.13 (top right).
3. The third TC-interpolants have the control points
P30 — (4.064,1.38)7, P2 — (4.393,-0.228)" = Py, Pry = (4.723, —1.838)
and parametric expressions

r22(t) = (6t + 0.193t% — 1.799¢3, 6t — 7.859t% + 1.63t3) 7,
T0(t) = (4.393 + 0.988 — 6.159¢% + 5.776t%, —0.228 — 4.827t + 7.341t2 — 2.285t3) 7,

see Fig. 5.13 (bottom left).
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Figure 5.13: The four pairs of TC-interpolants matching gi¢¢ Hermite data

4. The fourth TC-interpolants have the control points
P35 = (—0.044,2.355)T, P25 = (0.606,0.978)T = Pys, P}y = (1.256,—0.397)
and parametric expressions

r3(t) = (6t — 12.132t% + 6.738t3, 6t — 4.93412 — 0.0861%) T
t22(t) = (0.606 + 1.951¢ + 3.279¢2 — 0.836%,0.978 — 4.128t + 2.32% + 0.829¢3) T,

see Fig. 5.13 (bottom right).

The remaining step is to decide about the quality of the T€rpulants, i.e., whether they contain
aloop or not. Knowing all the valueg), vy, u1, v; anduyg, vy, u1, 01, Which describe control points of
TC-interpolants we obtain the equations from the expreq&id8), which bound the domain where

a loop arises.

1. Substituting the values eithénd, v3)" or (w?,72)" to the equations (5.18) we get two lines
and two circles, see Fig. 5.14 (left).

To decide about the quality of TC- interpolants (containingap) we have to discuss where
the points(u7{,v7]) " = (w51, v57) " and(uts, vi5) " = (ugs,vg3) " lie, or, from a computa-
tional point of view, we have to check the valuetéfandt— see equations (5.16), (5.17).
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The point(uff,v7]) " = (w51, v57)" = (3.245,—0.443)" lies in both domains, i.e., iffy N
T, which implies that both TC-interpolants contain a loop, see b.14 (left), or by the
computing the parameter values we get for the first TC-intargo

+=0.235,t" =0.702 = t*,t” €[0,1]
and for the second TC-interpolant
+=0.719,t" = 0401 = t* ¢~ €[0,1].
The point(u$5,v75) " = (ugs. vg3) " = (—0.639,1.298)" does not lie either i, or in T,

and therefore TC- interpolants are without a loop, see Figl Beft) or analogously we arrive
to

T =0.092,t" =1.545 = tT € 0,1],t~¢[0,1]
for the first TC-interpolant and

t = _0.711,t7 = 1.064 = t*,t"¢[0,1]
for the second TC-interpolant.

. In the second case we use the valug v3)" again, but insteadu?, 72)" we use(@®, v°)T.
This value create new domaify, bounded by lines and circles see Fig. 5.14 (right).

Checking where the points3}, v¥0) T = (@3}, 757) " and(ulh, of9) T = (55, 555) " lie, we
decide about a loop on TC- mterpolants

The point(u3}, v})T = (@55, 5307 = (~1.719,1.403)7 lies only in the domairir, and
therefore second TC-interpolant has a loop. Or by the sulistitto the equations (5.16) and
(5.17) we obtain parameter values of the first TC-interpolant

T =2098,t7 = —0.609 = t t¢[0,1]
and values
T =0.876,t7 =0.028 = tt t” € [0,1],

which belong to the second TC-interpolant.

Finally, the point(u5,v{5)T = (@35, 735)" = (1.805,—1.143)" does not lie neither in
domainsY; or Ty which causes no loop on both TC-interpolants. This we carfyvés
checking the parameter values of the first TC-interpolant

t=0.161,t =1.033 = t* €0,1],¢t€[0,1]
and the second TC-interpolant

T = 1742, =2.136 = tT ¢t ¢[0,1]. ¢

Remark 21. It is obvious that we can discuss only a local self-intersexti.e. loop. Otherwise for
global self-intersection we have to use some techniqueg2E€g@07], where several approaches
are introduced.
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V1, Vg V1, Vo
A

- . ” > Uy, Ug > o i > Uy, U

Figure 5.14: The domain¥, (orange) andl, (cyan) and the preimages of the first (orange line
segment) and the second (cyan line segment) TC-interpolaeifts Points(u'ﬁ, vy a7 (blue point)

and(u}3,v75)" (red point); Right: (u1 UL 20T (green point) andu®’ 2, U] 2) (yellow point).

5.4 C'TC-spline

In this section, we conclude Chapter 5 by setting a criterianiial data to obtain a “nice” interpo-
lation or, equivalently, to achieve good approximationesrdrirst, we deal only with Hermite data,
where we show the criteria, how to get good TC-interpolantstHer, we extend the observation for
any data and creaté' TC-spline.

Conjecture 22. Let us suppos€'* Hermite dataA, B with associated tangent vectarg, tg. If the
data fulfill the condition

V3 V3
tal < 7|B — Al A tg| < 7|B —A| (5.23)

we obtain at least one pair of TC-interpolants without a locadl ghobal self-intersections.

The condition (5.23) is estimated from several observatibich have been done and we men-
tion only the lower bound for which good TC-interpolants uabitedly exist. The criterium (5.23)
depends on the initial data, especially on the orientatf@ssociated tangent vectors, see Fig. 5.15.

Let us point out the difficulties of the 'proof’ of Conjectur@.2In Section 5.2 the construc-
tion of C!' TC-interpolants was done, but we do not discuss which dataggssa local (or a
global) self-intersection. From the equation (5.16), {3.We obtain a subdomain where a point
(u1,v1)" = (U, Dp) " has to lie to get TC-interpolants without local self-intetsens. The problem
occur when we want to describe the pofnt,v,)" = (o, 7o) ", which is the intersection of two
hyperbolas. Expressing the formula of intersection of twpedrbolas described in Equation (5.13)
is a computational problem. Itis impossible to decide dyaehich input data offer TC-interpolants
without loops, since we do not know almost anything abouirtersection of hyperbolas.

Let us suppose a sequence of poats. .., P,,n € N, and tangent vectors at the first and last
points, i.e.,ty, t,. Using previous observation (5.23) we derive two importstatements how to
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Figure 5.15: All TC-interpolants for the same d&a= (0,0)",P;,, = (3,0)" where only tangent
vectorst;, t;,; are changed. Also plotted Ferguson cubic (green) for giaa.dTop left:t; =
(—3,3)/v2,ti11 = (3,3)/v2; Topright: t; = (—9,9)/v2,tis1 = (9,9)/V/2; Bottom left: t; =
(—3,3)/v2,ti11 = (—2,—4)/v/2; Bottom right: t; = (—5,5)/v/2,t;11 = (—4, —6)/V/2

obtain a good interpolation by TC-interpolants. The first mt® compute the directions of tangent
vectorst;,7 = 1,...,n — 1 at corresponding poiniB; as follows

P,—P; P —P;

ti = : (5.24)
[[P; = Pial|  |[Pir1 — Pil|
The second one is to control a lengthtf
3 3
|ti| = min {\/7_|P1 — Pl %’P’L - Pi1|} : (5.25)

Remark 23. To find only the direction of tangent vectdrsve can use different approaches, e.g. to
use cubic spline with its tangent vectors. Then we have to usditmm (5.25)for a length, which
ensure a good pair of TC-interpolant.
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Figure 5.16: Left: Bzier curve of degree 7. Right: Approximation 6§ TC-interpolants using
only end points with associated tangent vectors.

There are two branches, where the construction of TC-inten® suits. The first one was
described in previous section, i.€! Hermite interpolation. The second one is to approximate
given curve.

In general, when we want to approximate given curvelByTC-interpolants then we have to
subdividé a curve to several segments, which we approximate separ&ath segment is deter-
mined by points (which are computed from given curve) andéan vectors, which direction and
length should be suitable. The direction of tangent veatarsbe computed either according to the
formula (5.24) or taking the same direction of tangent veofdhe given curve. Let us emphasize
that for small number of segments the direction of tangentorediffers significantly, but by the
increasing of the number of segments both approaches givessimilar directions. Finally, using
the statement in equation (5.25) we obtain acceptable tangetors.

To compute approximation order we recall Hausdorff distamehich is defined as

dy(X,Y) = max{sup inf d(z,y),sup inf d(z,y)},

rxeX yGY er zeX

whereX Y are subsets of a metric space aifd-) is classical Euclidean distance. The distance can
be estimated via sampling points on the curves and evafu#igir distances, which is not easy in
general, since the distance depends on the number of sanpalint. In Figures 5.16, 5.17, 5.18 are
shown up to sixteen approximating pairs.

SWe can subdivide the curve differently, but we use the nurobparts from the formul@™, n € N.
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S N

Figure 5.17: Approximation of given&ier curve (green) bg'* TC-interpolants. Left: Two pairs
of C! TC-interpolants; Right: Four pairs 6f! TC-interpolants.

o N

Figure 5.18: Approximation of given&ier curve (green) bg'! TC-interpolants. Left: Eight pairs
of C! TC-interpolants; Right: Sixteen pairs 6f TC-interpolants.

52



Part Il

SURFACES

53



Interpolating Bubble patches on quadrilateral meshes

The idea of this chapter is to introduce brand new technigualéta interpolation. We consider
guadrilateral mesh with unit normals at each vertex. Sudh dee usually called PNPfint and
Normal) data.

6.1 Motivation

The construction of smooth surfaces from given data, su¢hagular or quadrilateral meshes, is
an important problem in Computer Aided Geometric Design [T, 54]) and it is of substantial
interest in the design process of geometric objects in imdlipplications. In the literature, a
large number of different methods for generating paramespresentations of smooth surfaces can
be found. Two main approaches for constructtrsurfaces are the manifold construction and
the multi-patch scheme. Many related references for the@eedesign methods can be found in
[47,120].

The fundamental idea of the manifold approach is to definestiface with the help of over-
lapping charts and transition functions, which possessdnee order of smoothness as the desired
surface. A first constructive manifold construction wasegivoy Grimm and Hughes in [45]. In
[120], Ying and Zorin presented a method for creating madisorrfaces from quadrilateral meshes,
which was based on the manifold approach from [45]. Furtkamples of manifold-type construc-
tions can be found in [17, 20, 21, 43, 44, 121].

In the multi-patch approach, surfaces with the appropgatametric continuity are built by join-
ing several polynomial or rational surface patches togethesurvey of this concept can be found
in [92]. In general, multi-patch schemes generate smoafaaes of relatively low degree, but typ-
ically require some additional consideration at extramady points. For instance, a construction
method for curvature continuous free-form surfaces of ele(s, 5) is explained in [91]. It can be
generalized to &"-construction of degreg: + 1,d + 2n — 2), whered is a flexibility parameter
at extraordinary points. In [47], @ interpolation scheme for quadrilateral meshes with vestiaf
arbitrary valency is presented, where the resulting sadace piecewise bicubic. The same tech-
nique is used for triangular meshes in [46]. Further exampfemulti-patch methods can be found
in [60, 74, 76, 101, 102, 103].
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Adapted from the multi-patch approach, several methodsdastructing smooth surfaces, in-
terpolating a given rectangular curve mesh, have beenaael(cf. [49, 73, 93, 119]). In [73, 93],
there are described different design schemes for conistuiaterpolatingGt-surfaces. In [49] and
[119], local construction methods for generati#tysurfaces are explained, which interpolate a mesh
of given quintic curves. The construction in [49] is based3yegory patches, whereas the method
in [119] uses standard polynomial surfaces patches whied teefulfill certain compatibility condi-
tions. In general, networks of curves have to satisfy spealfjebraic conditions to be suitable for
G! andG*-interpolation (cf. [50, 51]).

We describe a new multi-patch scheme for generatidg' aurface, interpolating the vertices
and normals of a quadrilateral mesh. For representing tigdessurface patches, we introduce a
new concept, called bubble patches. In addition, our logastruction scheme is based on Gordon-
Coons interpolation (cf. [27, 54]) and each surface patchmstucted in such a way that the several
patches are connected witk-continuity. In the case ofi°, G' andG?-surfaces our algorithm is
explained in detail.

The advantages of our method are numerous. Our construadgorworks for irregular quadri-
lateral meshes, i.e. meshes with vertices of arbitrarynegleand provides a uniform approach to all
valencies. The resulting patches are rational surfacdsaniiitrary smoothness, which are joined
together withG"-continuity. We can use low degree polynomial approxinregito reduce the ob-
tained degree of the rational surfaces. Furthermore, thstagction is local and simple. We have
only to solve small system of linear equations.

6.2 Bubble patches

We consider a quadrilateral medH given by verticesV € V and edgee = (V, W) € £ with
V, W € V, whereV is the vertex set andl is the edge set of the mesh. For a veéx V we have
an associated implicitly defined algebraic surface

Py ={ZeR’: fv(Z) =0}
of degreemn, given by its truncated Taylor expansion

V(Z)=g(V)T - (Z—-V)+ %(Z ~V)T-H(V)-(Z—-V) +... (6.1)

whereg(V) is the gradient andi(V) is the Hessian matrix of the functiofs, at the vertexV.
Conceptually, we considefi; to be the Taylor expansion of a globally implicitly definededraic
surface about the verteX. Therefore we can refer tg(V) andH(V) as local gradient and local
Hessian matrix aV, respectively.

Remark 24. A typical input is a mesh, where each verdéxhas an associated normak,. In this
situation, the functiorfy, can be estimated as follows. We generatefipia function of degreen

fV(xv Y, Z) = Z Cr,s,txryszta Crsit eR
r,s,t€Ng: r+s5+t<m
satisfying
fv(V)=0 (6.2)
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Figure 6.1: Left: A quadrilateral with given vertices andmals with the pointl(u, vo)
and the normah(ug, vy); Right: The boundary curves and two additional parameteslin
of a bubble patch on a quadrilateral with the poidts,, vo) andb(ug, v9) and the normal

n(ug, vy).
and
(VA)(V)=g(V)=ny. (6.3)
Now we compute the unknown coefficients by solving the minimization problem
min Y ww(fv(W)* +[[(VA)(W) = nwl) (6.4)
" Weai(v)

subject to the constraints (6.2) and (6.3), wh&X¢V) is thei-ring neighborhood of vertices &f
andwyy is the weight for the verteW in thei-ring neighborhood?(W).

Definition 25. Let Q be a quadrilateral ofM with the verticesv, W, X, Y € V, connected by the
edges V, W), (X,Y), (V,X),(W,Y) € &, and the corresponding normaégg V), g(W), g(X),
g(Y), see Fig. 6.1 (left). On the quadrilaterdl, we define a surface : [0, 1]> — R? as follows

b(ua U) = d(ua U) + ]’L(U, U)n(uv U)u (u7 U) € [07 1]27 (65)
whered andn are bilinear interpolants, given by
d(u,v) = (1—=v)((1 —w)V+uW)+v((1 —u)X +uY)
and
n(u,v) = (1 -0)((1 —w)g(V) + ug(W)) + v((1 — u)g(X) + ug(Y)),
andh is a scalar function. Moreover, we require thiat0,0) = V, b(1,0) = W, b(0,1) = X
andb(1,1) = Y which implies that.(0,0) = h(1,0) = h(0,1) = h(1,1) = 0. The functiorb is
referred to as @ubble patcland the functiorh is called thebubble function
An example of a bubble patch on a quadrilateral is present&ture 6.1 (right).
For later reference, let € Ny, & € {0,1} andj € {0,...n}, then we denote by7."*' the
classical Hermite polynomials of degree + 1, i.e.
HEZH :[0,1] = R
with
ai 2n+1
S (0 |,y = 80
forj € {0,...,n}andl € {0,1}.
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6.3 Construction of G"-surfaces

We describe a method for constructing-a-surface, consisting of bubble patches, that interpolates
the vertices and normals of a quadrilateral mesh with n@miabr each quadrilateral we generate
a surface, which is described by the bubble patch introducésl5), in such a way that the surface
patches are pieced together witfi-continuity. The main idea is to construct the bubble fumcti

with the help of Gordon-Coons interpolation by using bougdtata forh which provide the desired
continuity between the patches. Our construction consfdtse following two steps.

Step 1 We make a compatible mesh Gf*-surface strips between the vertices of the quadrilateral
mesh.M which are connected by edges.(A-surface strip can be seen as an equivalence class of
all surfaces through a curve between two vertices havingacowof ordern along this curve. The
G"-surface strips fon < 2 can be described as follows.

e A G'-surface strip is simply the boundary curve between twdsestwhich are connected by
an edge. The corresponding boundary curves have to meet atthices.

e A G'-surface strip is the boundary curve with the associatedetainplanes between two
vertices which are connected by an edge. It can be seen asi@aleqce class of all surfaces
through the boundary curve which have the same tangentpldarg the boundary curve.

e A G*?-surface strip is the boundary curve with the associategetainplanes and normal curva-
tures between two vertices which are connected by an edgan lbe seen as an equivalence
class of all surfaces through the boundary curve which hagesame tangent planes and the
same normal curvatures along the boundary curve.

In Figure 6.2, th&Z°, G' andG?-surface strips between two vertices of a quadrilateralistelized.
The construction of thé&™-surface strip for. € {0, 1,2} is explained in detail in Section 6.4.

Step 2 We generate the bubble functions by using Gordon-Coonspiolgtion. Given a quadri-
lateral Q@ on the meshM with the associated:™ surface strip, we evaluate the boundary values
and the cross boundary derivatives of the bubble functiam.tiis we use the fact that the desired
bubble patch need to have a contact of ordevith the G"-surface strip along the boundary curve.
Furthermore the obtained boundary data of the bubble fmdias to satisfy the so-called twist
compatibility condition (6.25) at the vertices of the patafhich is fulfilled by our choice of thé&-
surface strip. Then we can use Gordon-Coons interpolatieoretruct a suitable bubble function.
This step is explained in more detail in Section 6.5.

6.4 (G"-surface strips

We explain the construction of @ -surface strip. For this we consider two verticéswW < V
which are connected by an edge. At first we construct a boyrmlawvep : [0, 1] — R3, given by

p(t) = (1 =)V +tW + h(t)((1 — t)g(V) + tg(W)), (6.6)

wherel is the restriction of the bubble functidnon the boundary between the verticésand W.
Then we generate a family of implicitly defined algebraidaces

Fo={Z € R': fo(Z) = 0}
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G-surface strip

G'-surface strip

G?-surface strip

Figure 6.2: The5?, G andG?-surface strips between two vertices of a quadrilateral.
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along the boundary curye. For a pointQ on the boundary curve, the functigq is given by

fa®) =gQ (Z-Q+,(Z-Q HQ) (Z-Q+... (6.7)
only forn>1 only?grnEQ -

whereg(Q) is the local gradient anH (Q) is the local Hessian matrix of the functigg at the point
Q. At the vertices on the boundary curpethe implicitly defined algebraic surfaces introduced in
(6.1) and (6.7) agree up to the term of degred he family of implicitly defined algebraic surfaces
F, along the boundary curve describes the compatiblé™-surface strip between the vertic®s
andW. In the following subsections we explain the constructibthe boundary curves and of the
implicitly defined algebraic surfaces for different valudsthe smoothness parameter The G-
surface strips have to be generated in such a way that thelapumalues and the cross boundary
derivatives of the bubble functidi evaluated in Section 6.5, fulfill the so-called twist cortilpiéity
condition (6.25) at the vertices of the patch. This is nesgs®r applying Gordon-Coons interpola-
tion to obtain the bubble functioh, see Section 6.5, and will be achieved by having a higherrorde
contact of the"-surface strips with the implicitly defined algebraic seda at the vertices.

6.4.1 G'-surface strip

This case is trivial.k is any function withi(0) = i(1) = 0 and we simply choosé = 0. The
family of implicitly defined algebraic surfaces is not regad (formally fq = 0).

6.4.2 G'-surface strip

We explain the generation of@' -surface strip which will be used in Section 6.5 to consthudible
patches which are joined together witH-continuity. This will be achieved by generating bubble
patches with a first order contact with thé-surface strip along the boundary. In this subsection we
explain the construction of a compatilile-surface strip which is given by the functiofig, defined
up to linear terms, along the boundary cupze

The first step is the construction of the functibrspecifying the boundary curye It is chosen
as a quintic polynomial in BernsteinéBier representation, i.e.

At) =Y _aBl(1), (6.8)

whereB? are the Bernstein polynomials of degfeandc; € R. To get the functiorh, we compute a

boundary curve which has a contact of second order with the implicitly dedia&ebraic surfaces
Fy and Fyy at the verticeV and W, respectively. That means the boundary cysvgas to satisfy

the following conditions

o' o'
(v (PD) |,y = 0and( fw(p(®)) |,_, = 0 (6.9)
fori € {0,1,2}. These conditions are a system of linear equations for tefficientsc; of the
function h. The second order contact of the boundary curve with theiamtlgl defined algebraic
surfaces at the vertices ensures that the twist compatibdndition (6.25) is fulfilled, see Lemma 29
below.
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The second step is the generation of a family of implicitlyimed algebraic surface, along
the boundary curve, for which the functionsf, are needed to be defined up to linear terms. For
this we have to construct local gradiegtg) which are compatible with the boundary curve. This
compatibility condition is described in the following lenam

Lemma 26. Let p be the boundary curve in (6.8) anf} be the functions in (6.7), defined up to
linear terms. Then the local gradienggp) are compatible with the boundary curyef

g(p() - 5p() =0 6.10)

Proof. To get a well-defined>*-surface strip, the boundary curgeneeds to have a first order
contact with the functiong,, along the boundary, i.e.

(o)) |, =0

for ¢t € [0, 1], which is equivalent to equation (6.10) and provides us trepatibility condition for
g(p). O

We construct the local gradienggp) as follows. At first we consider the vector field$p)
along the boundary curye which are obtained from

1
g(p(t) = > Hi & + H &y (6.11)
7=0
where
50— 2 orew) | andgl, = 2 (v fw) )
gv—athV P . gw—athW P t:17

for j € {0,1}. In particular we have

gy = g(V) andgly = g(W).

The resulting vector fieldg(p) ensure that the twist compatibility condition (6.25) isisi&d, see
Lemma 29.

In general, the vector fieldg(p) do not satisfy Lemma 26. Therefore we construct suitable
gradientsz(p) by solving the minimization problem

8(p(t)) = arg min||g — g(p@)))? (6.12)

subject to the constraint (6.10). Its solution is given by

. gp®)" - gp(t) 0
g(p(t)) = &(p(t)) - 7 (1)) %p(t)(a(p(t)))- (6.13)

This possesses a simple geometric interpretation. Théemtag (p) are obtained as the projections
of the gradientg(p) into the normal plane of the curye In addition, the projection preserves the
twist compatibility condition (6.25).
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6.4.3 G?-surface strip

We explain the construction of @-surface strip, which is given by the functiorig, defined up
to quadratic terms, along the boundary cupeeln Section 6.5, we will use this strip to generate
bubble patches which have a second order contact with tipetstget G*-continuity between the
neighboring patches.

We start with the construction of the functiénfor which we choose a polynomial in Bernstein-
Bézier representation of degreei.e.

where BY are the Bernstein polynomials of degré@ndc; € R. The coefficients are obtained
by computing a boundary curyewhich possesses a contact of ordexith the implicitly defined
algebraic surfacéy, and Fy at the vertice/ andW ,respectively, i.e.

(S E0) |,y = 0and(fw(p() |, = 0 (6.14)
fori € {0,...,4}. These conditions lead to a system of linear equations #ocdtefficients;. The
contact of orded of the boundary curve with the implicitly defined algebraicfaces at the vertices
guarantees that the twist compatibility condition (6.25fulfilled, see Lemma 30 below.

Next we generate a family of implicitly defined algebraicfanes/}, along the boundary curve
p, for which the functionsf,, are needed to be defined up to quadratic terms. That means we
construct local gradients(p) and local Hessian matricd$(p) which have to be compatible with
the boundary curve. The following lemma describes this compatibility conaiiti

Lemma 27. Let p be the boundary curve in (6.8) anfj be the functions in (6.7), defined up to
quadratic terms. Then the local gradierg§p) and the local Hessian matricé$(p) are compatible
with the boundary curve if condition (6.10) and the condition

= (p(0) = H(p(t)) - 5p(1) 615

are satisfied.

Proof. The boundary curve needs to have a first and second order contact with the funsctjp
along the boundary, i.e.

( foto(p(s)) |, = 0 (6.16)
and
82
(52 Fe(P(5))) |, =0 (6.17)

for t € [0, 1], respectively. In the proof of Lemma 26 we have seen that ¢helitions (6.10) and
(6.16) are equivalent. In addition we obtain by differetitig. condition (6.10) the equation

g(p(t)" - %p(t) +% (p(t) " -% (t) =0.
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Since condition (6.17) is equivalent to

&(p() - (1) + 2-p(t) H(p(1) - (1) =

we obtain the compatibility condition (6.15). O

The construction of the local gradierggp) is similar to the case ofi'-surface strips. The
only difference is that we use interpolants of degrder the vector fieldg(p), instead of cubic
interpolants, i.e.

3
g(p(t) = Z Hg,jg{f + Hf,jg{’w

=0
where
s, = Loy | andgy = 2w fwom)
gv—atjvv p —o gW_atjvw p t:17
for j € {0,...,3}. In particular we obtain

gy = g(V) andgyy = g(W).

These interpolants of higher degree ensure that the twispatbility condition (6.25) is satisfied
for G2-surfaces, which will be presented in Lemma 30.

The local gradientg(p) are again the solution (6.13) of the minimization problem 2§ subject
to the constraint (6.10) and still preserve the twist combday condition (6.25).

The next step is the construction of the local Hessian nestiit{p). For this we start with
the computation of matricdd(p) which are quintic interpolants of the Hessian matritgs) and
H(W), i.e.

2
H(p(t)) = Y Hy HY, + H} T, (6.18)

J=0

where

7

andIt,, = %Hesﬂw)(p(t)) )
t=1

i, = 2 Hess /v (p(1)

t=0

for j € {0, 1,2} and where Hegs) is the Hessian matrix. In particular we have
HY = H(V) andHY, = H(W).

The matriceﬂﬁ(p) ensure that the twist compatibilty condition (6.25) is Sfatid, see Lemma 30.
But in general, condition (6.15) in Lemma 27 is not fulfiledhéfefore we generate suitable
Hessian matriceBl(p) by solving the minimization problem

H(p(t)) = arg min [[TT — H(p()I (6.19)
subject to the constraint (6.15).
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Lemma 28. The construction of the Hessian matriddép) is invariant with respect to the choice
of a coordinate system.

Proof. Let p be the boundary curve in (6.8) arfg be the functions in (6.7), defined up to quadratic
terms. LetU € SQ(3), then we denote bp the curve

p=U""p

and by, the function
f5(2) = fo(U - Z).

The gradieng(p) and the Hessian matrid(p) of ff, are given by
g(p) = U - g(p) andH(p) = U - H(p) - U,

whereg(p) andH(p) are the gradient and the Hessian matrixfpf respectively. In addition, let
H(p) be the solution of the minimization problem (6.19) subjedie constraint (6.15) and let

Ho(p) =U-H(p) - U".
Now we have to show thdf(p) is the solution of the minimization problem

arg min |[H(p(t)) — Ho(p(t))|”
fi(p(1)

subject to the constraint

0 . = 0 .

Eg(f)(t)) = H(p(t)) - Ep(t)-

Let|| - || be the Frobenius norm and{rbe the trace of a matrix. We have
[E(p) — Ho(D)|I* =

tr((U - (H(p) — H(p)) - UT) - (U - (H(p) — H(p)) - UN)T) =
tr(U - (H(p) — H(p)) - (H(p) — H(p)) - UT) =
tr((H(p) — H(p)) - (H(p) — H(p))) =
[H(p) — H(p)||*.
In addition, it is easy to show that
0 0

5;&B(1) = H(p(1)) - 7-p(t)
is equivalent to

9 a(p(1)) = H(p(1)) - =-p(1)
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6.4.4 (G"-surface strip

Finally we give a short overview of the general constructidra G"-surface strip. At first we
construct a functiorh which is given as a polynomial in BernsteireBer representation of de-
greedn + 1. The coefficients of the functiol are obtained by computing a boundary cupweith a
contact of orden with the implicitly defined algebraic surfacé§, and Fy at the verticevV and
W, respectively.

Then we generate a family of implicitly defined algebraicfacesF},, defined up to terms of
degreen, such that the functiong, are compatible with the boundary functipn For this purpose,
compatibility conditions can be formulated, which are gaheations of Lemma 27 with additional
conditions.

6.5 Construction of bubble functions

We explain the construction of the bubble functiofor a bubble patch (6.5) by using Gordon-Coons
interpolation. This method is a well-known tool for constiing a bivariate function, in our case
which interpolates given boundary data (cf. [27, 54]). Astfwe describe the generation of this
boundary data, which will be used for Gordon-Coons intetjpmaand has to be chosen in such a
way thatG"-continuity between the surface patches is guaranteedthiopurpose we construct
a bubble patch which has a contact of ordewith the G"-surface strips along the corresponding
boundary curves to obtain the desired boundary data. Themsw&ordon-Coons interpolation to
construct the bubble functiain

6.5.1 Evaluation of boundary values and cross boundary derivatives

We consider the bubble pat¢hin (6.5) with the verticesv, W, X, Y and the corresponding”-
surface strip with the boundary curyefor the edgg'V, W), constructed in Section 6.4. Now we
use this surface strip to generate the boundary funétien0) and the cross boundary derivatives

o
((%i

fori € {1,...,n}, which are needed for Gordon-Coons interpolation in theofalhg subsection.
We explain the generation of these functions in detail ferdase: < 2. The idea can be generalized
to anyn > 3.

For the generation of the boundary data, we use the facthbdiubble patch needs to have
a contact of order. with the G™-surface strip along the boundary cugve Having this contact of
ordern along the boundary curye, we guarantee that the bubble patchnd its beighboring patch
are connected witlx"-continuity. Since the bubble pat¢hhas a parametric representation and the
G"-surface strip is given implicit, the contact of ordecan be described by the simple contact order

h(u,v)) | _, (6.20)

88

(5o

for s € {0,...,n}. Depending on the order of contact, the conditions (6.2&)used to get the
several functions as follows.

fp(u)(b(u7 U))) "U:O =0 (621)
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Chapter 6. Interpolating Bubble patches on quadrilateral meshes

Contact of ordef: We have
o (b(u,0)) = 0,
which implies
b(u,0) = p(u).
Therefore we get
h(u,0) = h(u)
whereh is the function in (6.6).

Contact of ordeil: The condition

(o Tt (B, 0) |,y = 0
has to be fulfilled, which is equivalent to

g(p(u)T - by(u,0) = 0, (6.22)
Since the first partial derivativie,(u, 0) is given by

b,(u,0) = d,(u,0) + hy,(u,0)n(u, 0) + h(u, 0)n,(u,0),
we obtain the first partial derivative

g(P(w)" - du(u,0) + h(u, 0)g(p(w)) " - ny(u,0)

hy(u,0) = — g(p(u))T - n(u,0)

Contact of ordeR: We have to satisfy the following condition

(%fp(u)(b(u,’l}>>> |, =0

which is equivalent to

g(p(u))" - byy(u,0) +by(u,0)" - H(p(u)) - by(u,0) = 0.
Since the second partial derivatike, (u, 0) is given by

byy(u, 0) = hyy (u, 0)n(u, 0) + 2k, (u, 0)n,(u, 0),
we get the second partial derivatikg,(u, 0) as follows:

bv(ua O)T i H(p(u)) ) bv(u’ O) + 2hv(u’ O)g(p(u))T ) HU(U, 0) '

ol 0= () (. 0)
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e Contact of ordes > 3: We construct the partial derivatie’h(u, v)) ‘U:O with the help of
the condition

(2 () |,y =0

and the already computed functio(rb%i—ih(u,v)) ‘v:O fori € {0,...,s — 1}.

Analogously, we can compute for {0, ..., n} the functions
(8vih(u’ U)) ‘v:l ) (%h(uv U)) ‘uzg and(%h(u, U)) ‘u:l (623)

with the help of the&"-surface strips for the remaining eddé§, Y), (V, X) and(W,Y), respec-
tively.
For applying Gordon-Coons interpolation we need the follmpadditional values

ot
(Garger M ) Lw=e (6.24)
for k,1 € {0,1} andi,j € {1,...,n}. These values, which are callédist values are deter-

mined by the cross boundary derivatives (6.20) and (6.28)aaa obtained by differentiating the
corresponding derivatives. Another possibility for cortipg the values (6.24) is to solve the linear
equations

oI
(@ulaiﬂ fb(k,l) (b(uv U))) ’ (u,v):(k,l)

for k,1 € {0,1} andi,j € {1,...,n}, where the values (6.24) are the unknowns. Because of our
choice of theG"-surface strips and hence of the cross boundary derivai:26) and (6.23), we
garante that

iti iti

(8ui8vﬂ' A, v)) |(117”J)=(lv,l) - (avjauih(“’v>> |(u,v):(k,l)a (6.25)

for k,1 € {0,1} andi,j € {1,...,n}. The fulfillment of condition (6.25), which is calletist
compatibility conditionis described fot:!-surfaces® = 1) and forG2-surfaces in Lemma 29 and
Lemma 30, respectively.

Lemma 29. Our construction of the boundary functions

h(u,0), h(u,1),h(0,v),h(1,v) (6.26)
and the first cross boundary derivatives

Py (1, 0), hy(u, 1), hy (0, 0), hy (1, 0). (6.27)
ensures that the twist compatibility condition

haw(k 1) = (k1) (6.28)
for k,1 € {0, 1} is fulfilled.
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Chapter 6. Interpolating Bubble patches on quadrilateral meshes

Proof. We will only prove the twist compatibility condition at thesexV, i.e.
ha(0,0) = hyu(0,0),

because at the other vertices the proof can be done analggeasthis purpose we first show that
by (0,0) = by, (0,0).

Since the first cross boundary derivatides(u,0) and b, (0, v) satisfy the corresponding condi-
tion (6.22), i.e.

g(b(u,0))" -b,(u,0) = 0, (6.29)
g(b(0,0))" - by(0,v) = 0, (6.30)

we get by differentiating equation (6.29) with respect @nd by differentiating equation (6.30) with
respect ta the following two equations for the vertéX:

(%g(b(u’ O))T ‘u:()) ’ bv(oa O) + g(b(ov 0))T ’ bvu(oa 0) = 07 (631)

(L gb(0.0)7 |,_) bu(0.0) + &(b(0,0))7 byu(0.0) = 0 632)
With the help of the fact that

) )

5,8(b(u,0)) o = 5. (Vfv)(b(u,0)) o (6.33)
and

0 )

5,8(0(0,0)) [,y = 5-(VV)(b(0,0)) |, (6.34)

which is a consequence of (6.11), it is easy to verify that

0 0
(ag(b(ua O>>T ‘u:(]) ’ bv(07 O) = (%g<b<07 'U))T ’v:O) ’ bu<07 O)
Therefore we have that

g(b(0,0))" - by (0,0) = g(b(0,0)) " - by, (0,0).

Since
by (0,0) = dyu(0,0) + Ay, (0,0)1(0,0) + £y (0,0)n,,(0,0) +
h.(0,0)1,(0,0) 4 (0, 0)n,, (0, 0)
and
by (0,0) = duu(0,0) + huo(0,0)0(0,0) + Ay (0,0)n,(0,0) +
h(0,0)1,(0,0) 4 A(0,0)n,,(0,0),
we get

hvu(0,0)g(0,0)n(0,0) = huw(0,0)g(0,0)n(0,0),
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which implies that
hpu(0,0) = hyy(0,0).

It remains to show that the derivatives (6.33) and (6.34)hef gradient are compatible with the
boundary curveb(u,0) andb(0, v) at the vertexV, i.e.

L g(b(w,0)) |,_, = (Hes$ fy)(b(0,0))) - b, (0.0)
and

T gb(0,0)) |,_, = (Hes$ fv)(b(0,0))) b, (0.0),

respectively. But this is a consequence of the second ordeacoof the two boundary curves
b(u,0) andb(0, v) with the functionfy at the vertexV, given in (6.9). O

Lemma 30. Our construction of the boundary functions (6.26), the finstss boundary deriva-
tives (6.27) and the second cross boundary derivatives

P (1, 0) 5 Py (1, 1), s (0, ), B (1, 0) (6.35)
ensures that the twist compatibility conditions (6.28) and
P (B, 1) = hyuu(k, 1) (6.36)
huvv(kal> = hvvu(kal)a (637)
huuvv(ka l) - hvvuu(ka l)y (638)

for k,1 € {0, 1} are fulfilled.

Proof. The proof works similar like in Lemma 29. For the sake of biyewie only give a short
overview. At first we show step by step that

buv(oy 0) = bvu(07 O), buuv(07 0) - bvuu(oa 0)7 bum;(oa 0) - bvvu(07 0)
and
buvv<07 O) = bvvu(oa 0)7

which provides us the twist compatibility conditions (6)2td (6.36) - (6.38). Finally we show
the compatibility of the used derivatives of the gradiemtd af the used derivatives of the Hessian
matrices with the boundary curvegu, 0) andb(0, v) at the vertexV. O

6.5.2 Applying Gordon-Coons interpolation

The bubble functiork is obtained by applying Gordon-Coons interpolation to thenkiee boundary
data, which has been computed in the last subsection. Rorgydte desired-"-continuity between
the surface patches we have to choose the Gordon-Coonsaiatissp of degree2n + 1, which
requires Hermite boundary data given by the cross boundaiyadives (6.20) and (6.23). In addi-
tion these cross boundary derivatives have to fulfill thestwbompatibility condition (6.25), which
is shown in Lemma 29 forn = 1 and in Lemma 30 for, = 2. For more detail of Gordon-Coons
interpolation we refer to [27, 54].
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6.6 Implementation details and examples

In this section we describe the implementation details oinoethod and present it on several exam-
ples for constructing=?, G' andG?-surfaces. We demonstrate the smoothness by using refiectio
lines which is a well-known tool for verifying the resultimgometric continuity (cf. [114]).

6.6.1 Implementation details

We have implemented our algorithms for generatiifgsurfaces for. < 2 in Mathematica and used
Povray for visualizing the surfaces with reflection linesnc® the resultingz! and G?-surfaces
are rational surfaces of relatively high degree, we use Isifgw degree approximations to rep-
resent the single surface patches. In detail, we approgitet first and second cross boundary
derivatives (6.20) and (6.23), which are responsible ferrttionality of the resulting surfaces, by
polynomial functions of degreg. This leads to surface patches of degfe® 13) for G* and of
degreg(15, 15) for G2.

For some examples (see Fig. 6.3-6.6), we generate addiyi@meauxiliary mesh from the orig-
inal one. This new mesh has the same number of patches asghmbone and is generated in the
following way. We apply two steps of the standard Catmull-Elubdivision algorithm (cf. [94])
to the original mesh with normals to obtain a finer mesh witlv wertices and normals. Now we
do not keep all new obtained vertices and normals, only thoké&h are related to the old ones.
These vertices and normals provide the auxiliary mesh wisicised instead of the original mesh.
By using the new mesh we generate an approximating surfate afrtginal mesh which possesses
a better shape than an interpolating one.

6.6.2 Examples

We show different surfaces that were generated by our method

Example 6. In Fig. 6.3-6.6, several meshes and the correspondingiayheshes with associated
normals of different objects are visualized. By applying awthod to the original or auxiliary
meshes we construct' andG?-surfaces which are interpolating or approximating theizes and
normals of the original meshes, respectively. The refladtites verify that we have generatéd
andG*-surfaces. In the case 6f' andG?, all reflection lines of the resulting surfaces are at least
G° andG*, respectively. In most of the examples we can also obseatdttk reflection lines of the
G'-surfaces are onlg® and notG*. In most of the examples we can also observe that the reffectio
lines of theG*-surfaces are onlg® and notG". ¢

Example 7. In Fig. 6.6, we have shown the mesh with associated normalsoottle, given byr2
quadrilaterals. We have used the mesh to genératé’' andG?-surfaces. The resulting surfaces
are presented with reflection lines to demonstrate the sporeding smoothness. ¢

Example 8. In Figure 6.7, we have presented the mesh of the implicitfindd algebraic sur-
face F = {(z,y,2)"|z = 2® — 3xy?} (monkey saddle) with a vertex of valenéyin the saddle
point (0,0,0)" in two different views (side and top view). The mesh consigt82 patches with
vertices of different valencies$(4, 5 and6) and associated normals. For better visibility of the
mesh in Figure 6.7, we have not displayed the associatedat®(obtained from the implicitly de-
fined algebraic surfacg in the vertices). We have used the mesh to constilicind G*-surfaces
by applying our design method. The resulting smoothnesseo$tirfaces is again verified by using
reflection lines. ¢
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Chapter 6. Interpolating Bubble patches on quadrilateral meshes

Mesh of a simple object Mesh with auxiliary mesh

interpolatingG?-surface approximating?-surface

Figure 6.3: The mesh and the auxiliary mesh (blue) with aasedt normals of a simple
object (cube-like object), described byuadrilaterals, and the resulting interpolating and
approximatingz* andG?-surfaces with reflection lines.
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Chapter 6. Interpolating Bubble patches on quadrilateral meshes

Y )

Mesh of a tube Mesh with auxiliary mesh

interpolatingG!-surface approximating*-surface

interpolatingG2-surface approximating?-surface

Figure 6.4: The mesh and the auxiliary mesh (blue) with aasedt normals of a tube,
described byi2 quadrilaterals, and the resulting interpolating and axiprating G* and
G?-surfaces with reflection lines.
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Chapter 6. Interpolating Bubble patches on quadrilateral meshes

-

— 5

Mesh of a rotated horse shoe Mesh with auxiliary mesh

. ‘O i ‘.
interpolatingG!-surface approximating*-surface
. (’i ‘.

interpolatingG2-surface approximating?-surface

Figure 6.5: The mesh and the auxiliary mesh (blue) with aatstt normals of a rotated horse shoe,
described b0 quadrilaterals, and the resulting interpolating and axipratingG* andG?-surfaces
with reflection lines.
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Chapter 6. Interpolating Bubble patches on quadrilateral meshes

Mesh of a bottle GY-surface

A\

G'-surface G?-surface

Figure 6.6: The mesh with associated normals of a bottleribesi by72 quadrilaterals,
and the resulting:’, G* andG?-surfaces with reflection lines.
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Chapter 6. Interpolating Bubble patches on quadrilateral meshes

&
@

Mesh (side view) Mesh (top view)

G'-surface G'-surface

G?-surface G?-surface

Figure 6.7: The mesh of the implicitly defined algebraic acefF’ = {(z,y,2)" |z = 2* — 3zy?}
(monkey saddle) with a vertex of valenéyn the saddle point0,0,0) " in two different views and
the resultingz' andG?-surfaces with reflection lines.
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Part IV

SUMMARY
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Conclusion

This doctoral thesis dealt with data interpolation, whiglstill active research area in CAGD. In the
first part of the thesis, we served historical overview of CA&RI we focused on a state of art of
Pythagorean hodograph curves and related topics.

Chapters 4 and 5 are devoted to the study of PH curves. In Chgpterinvestigated* Hermite
interpolation by PH cubic, where we described for which ingata an interpolating PH cubic arc
exists. These results are extension of the results in [8@Iciwwere moreover not precise. Further,
we discussed the quality and a number of PH cubic interpd@aninput data. We described for
which data only one, two qualitatively (if it contain a loop wot) different or two qualitatively
same interpolants exist. These results have been alredodigheed in the journal Computer Aided
Geometric Design, see [9].

Since interpolating PH cubic does not exist for arbitrafyHermite data, in Chapter 5 we an-
alyzed how many PH cubics are needed to interpolateC&niermite data. Moreover, we demon-
strated that PH cubic is also suitable 6t Hermite interpolation, although it has not so much
flexibility like standard cubic. We proved that any Hermite data can be fitted by a pair of PH
cubic joined inC! continuity. In the thesis is also presented a technique logatn all four so-
lutions, which matchC! Hermite interpolation. In the Section 5.4, we construafédTC-spline
and used it for a curve approximation. Since the lengthsrafeat vectors influence a lot the shape
of TC-spline curve, and it is not desirable to obtain a curvihselfintersections, we formulated a
conjecture about the length of tangent vectors, which ygelod TC-splines. Further research in this
topic could be to analyze the direction of tangent vectorunve approximation. We computed the
direction from a curve, which was approximated and theréliasjuestion whether a better choice
exists.

In Chapter 6 we developed a new technique for interpolatiaquafdrilateral meshes with asso-
ciated normals. The approach is called Bubble patch and edb@s Gordon-Coons interpolation.
Our construction possessed a rational parametrizatiomanelover the computation of arbitra@
continuity between neighboring patches was presentededtidh 6.4 we showed how to construct
G°, G' andG?-surfaces in detail. Further, we presented the advantdges method. One of them
was computing compatible twist values at the vertices, whie got as a solution of linear system of
equations. Another one is that the computation was notéuirily the valency of quadrilateral mesh.
The reason is that the approach was based on local propefrties mesh. At the end of Chapter 6
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we verified the desired smoothness by the reflection linegweeral examples.

Although the Bubble patch method was constructed for quetdril mesh with associated nor-
mal vectors, there is a challenge to generalize it for tnidaagmeshes with normal vectors (which
are not needed, since they can be computed from the behdwioe given mesh). The advantage

of the generalization from quadrilateral mesh to triangatauld be significant because a lot of solid
object is represented by triangular meshes.
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