
Master’s Thesis

A system for editing triangle mesh
sequences with time-varying
connectivity

Zuzana Káčereková

PILSEN, CZECH REPUBLIC 2023

Master’s Thesis

A system for editing triangle mesh
sequences with time-varying
connectivity

Bc. Zuzana Káčereková

Thesis advisor
Doc. Ing. Libor Váša, Ph.D.

PILSEN, CZECH REPUBLIC 2023

© 2023 Zuzana Káčereková.

All rights reserved. No part of this document may be reproduced or transmitted in

any form by any means, electronic or mechanical including photocopying, record-

ing or by any information storage and retrieval system, without permission from

the copyright holder(s) in writing.

Citation in the bibliography/reference list:
KÁČEREKOVÁ,Zuzana.A system for editing triangle mesh sequences with time-varying
connectivity. Pilsen, Czech Republic, 2023. Master’s Thesis. University of West Bo-

hemia, Faculty of Applied Sciences, Department of Computer Science and Engineer-

ing. Thesis advisor Doc. Ing. Libor Váša, Ph.D.

ZÁPADOČESKÁ UNIVERZITA V PLZNI
Fakulta aplikovaných věd

Akademický rok: 2022/2023

ZADÁNÍ DIPLOMOVÉ PRÁCE
(projektu, uměleckého díla, uměleckého výkonu)

Jméno a příjmení: Bc. Zuzana KÁČEREKOVÁ
Osobní číslo: A20N0059P
Studijní program: N3902 Inženýrská informatika
Studijní obor: Počítačová grafika
Téma práce: Systém pro editaci sekvencí trojúhelníkových sítí s časově proměnli-

vou konektivitou
Zadávající katedra: Katedra informatiky a výpočetní techniky

Zásady pro vypracování

1. Seznamte se se systémem pro sledování objemových elementů vyvíjeným na KIV ZČU.
2. Implementujte na základě vytvořených dat o sledování systém pro editaci sekvencí trojúhelníkových

sítí založený na následujících technikách:

— uživatelský vstup pohybu sledovaného objemového centra (efektoru) v GUI v libovolném
snímku

— distribuce pohybu na další centra v daném snímku podle Gaussovského rozložení v okolí
efektoru

— distribuce pohybu do dalších snímků přenesením lokálního souřadného systému do dalších
snímků nalezením optimální afinní transformace efektoru a jemu blízkých center

— deformace povrchu ve všech snímcích sekvence distribucí translačních vektorů dle vzdálenosti
k nejbližším centrům

3. Analyzujte vlastnosti vytvořeného postupu a navrhněte zlepšení jednotlivých kroků tak, aby bylo
dosaženo přirozenějších výsledků editace.

4. Práci důkladně otestujte a zdokumentujte.

Rozsah diplomové práce: doporuč. 50 s. původního textu
Rozsah grafických prací: dle potřeby
Forma zpracování diplomové práce: tištěná/elektronická
Jazyk zpracování: Angličtina

Seznam doporučené literatury:

dodá vedoucí diplomové práce

Vedoucí diplomové práce: Doc. Ing. Libor Váša, Ph.D.
Katedra informatiky a výpočetní techniky

Datum zadání diplomové práce: 9. září 2022
Termín odevzdání diplomové práce: 18. května 2023

Doc. Ing. Miloš Železný, Ph.D.
děkan

L.S.

Doc. Ing. Přemysl Brada, MSc., Ph.D.
vedoucí katedry

V Plzni dne 11. října 2022

Declaration

I hereby declare that this Master’s Thesis is completely my own work and that I

used only the cited sources, literature, and other resources. This thesis has not been

used to obtain another or the same academic degree.

I acknowledge that my thesis is subject to the rights and obligations arising from

Act No. 121/2000 Coll., the Copyright Act as amended, in particular the fact that

the University of West Bohemia has the right to conclude a licence agreement for

the use of this thesis as a school work pursuant to Section 60(1) of the Copyright Act.

In Pilsen, on 18 May 2023

. .

Zuzana Káčereková

The names of products, technologies, services, applications, companies, etc. used in

the text may be trademarks or registered trademarks of their respective owners.

(i)

Abstract

Time-varying mesh (TVM) sequences are a common product of modern 3D scan-

ning methods, which are used to represent animated 3D models. Processing TVM

sequences can be challenging due to a lack of temporal correspondence between

consecutive frames, which is required by many algorithms.

Using an existing system for tracking volume elements, a method for editing

TVM sequences was designed and implemented as an interactive application using

virtual reality.

In this work, the theoretical background required to develop the editing sys-

tem is presented and its properties are analyzed. Based on this analysis, future im-

provements to the editing algorithm are proposed. Technical documentation of the

implementation is also provided.

Abstrakt

Časově proměnné sekvence trojúhelníkových sítí (TVM sekvence) jsou častým pro-

duktemmetod pro 3D skenování, které jsou využívány k reprezentování animovaných

3D modelů. Zpracování TVM sekvencí může být obtížné vzhledem k chybějící

časové korespondenci mezi jejich snímky, kterou mnohé algoritmy vyžadují.

S použitím existujícího systému pro sledování objemových prvků byla navržena

metoda pro editování TVM sekvencí a implementována v interaktivní aplikaci

využívající virtuální realitu.

V rámci této práce jsou představeny teoretické podklady potřebné pro vyvinutí

editačního systému a jeho vlastnosti jsou analyzovány. Na základě analýzy jsou

pak navržena možná zlepšení použitého editačního algoritmu. Je poskytnuta také

technická dokumentace implementace.

Keywords

mesh editing • time-varying mesh sequences • mesh processing • virtual reality

(ii)

Acknowledgement

I would like to sincerely thank my supervisor, doc. Ing. Libor Váša, Ph.D., for his

support and guidance provided throughout the course of this work. Additionally,

I want to acknowledge Ing. Jan Dvořák and Ing. Filip Hácha, who provided the

tracking data used in the experiments.

(iii)

Contents

1 Introduction 3

2 An introduction to mesh editing 5
2.1 Representing 3D models . 5

2.1.1 Triangle meshes . 7

2.1.2 Mesh sequences . 9

2.2 Mesh editing . 10

2.2.1 Space deformation . 12

2.2.2 Surface deformation . 13

2.2.3 Editing methods . 13

2.3 Editing TVM sequences . 17

3 Volume tracking for TVM sequences 23
3.1 Overview . 23

3.2 Algorithm . 24

3.2.1 Voxelization . 24

3.2.2 Uniform volume sampling 26

3.2.3 Optimization . 27

3.2.4 Updating center affinity 29

4 Proposed method 31
4.1 Introducing motion . 32

4.2 Distributing motion to other centers 32

4.3 Distributing motion to other frames 33

4.4 Deforming the surface . 35

5 Implementation 37
5.1 Scene structure . 39

5.2 Method implementation . 41

5.2.1 The Kabsch algorithm . 47

5.2.2 Kd-tree . 49

1

6 Testing and analysis 51
6.1 Input data . 51

6.1.1 Input data format . 51

6.2 Experiments . 52

6.2.1 Sequence: samba . 52

6.2.2 Sequence: squat2 . 53

6.2.3 Sequence: handstand . 56

6.3 Analysis . 60

6.4 Proposed improvements . 63

7 Conclusion 67

A User documentation 69

B Programmer documentation 73

C Readme.txt 77

Bibliography 79

List of Figures 83

List of Tables 85

List of Listings 87

2

Introduction 1
Representing and manipulating 3D scenes has been a central focus of computer

graphics since its beginning. In the early years of representing 3D models with

triangle meshes, the models had to be compact and minimalistic. As computing

power grew, so increased the capability of hardware to render and process increasing

numbers of triangles, and with it the demand for realism.

Over time, creating realistic 3D models and animations has become extremely

time-consuming, requiring trained experts who have dedicated thousands of hours

to learning modeling and animation tools. This has made the possibility of captur-

ing real-world objects along with their motion and textures attractive, due to the

promise of an accelerated creative pipeline in both 3D modeling and 3D animation.

This process is also called 3D scanning.

Typically, 3D models are designed as a polygon mesh, which is then deformed

in order to represent motion. This produces mesh sequences with a connectivity

that does not change between frames, called dynamic mesh sequences. Most ex-

isting methods for processing mesh sequences rely on this temporal connectivity

correspondence property.

3D scanning, however, cannot produce such data, as in each frame the captured

surface may be represented with a different number of vertices that do not corre-

spond to vertices in the previous frames in any obvious way. As a result, 3D scanned

sequence data is typically also immense in size. Since editing each frame of such

data manually is not feasible and would defeat the original purpose of speeding

up the creative pipeline, and existing mesh sequence editing methods typically rely

on temporal correspondence, there is a demand for new TVM sequence editing

methods.

In this thesis, I present the theoretical background to a recently developed

method for volume element tracking, which was developed at the University of

West Bohemia. Based on this method and its output, I design and develop a method

for editing TVM sequences and implement an interactive editing application. Fur-

thermore, I evaluate the properties of this implementation, suggest modifications

that would improve the editing process, and document the work.

3

An introduction to
mesh editing 2
This chapter introduces the reader to concepts in computer graphics regarding dig-

itized representations of shapes as 3D models and the methods used to manipulate

them. The text is based on information found in lecture notes on mesh processing

[Váš20] and computer animation [Roh21].

Various types of 3D model representations are used across many areas with dif-

ferences in demands, such as engineering, medicine, or entertainment. This chapter

introduces the properties of the representations and existing editingmethods. Based

on these properties, the use case scenarios for the editing system are identified.

Further chapters then use the introduced concepts to describe the editing pipeline

in detail, including necessary considerations regarding input data. Methods used in

other areas of mesh editing are also used to achieve the desired properties of the

editing system.

2.1 Representing 3D models
In order to understand the capabilities and limitations of the designed method, one

must first understand how applications represent 3D models and the applications’

demands for the information stored and provided by these models.

Ideally, we would like to represent all shapes with infinite precision. For most

shapes, this is impossible. While we cannot definitively determine whether reality is

discrete or continuous, real-life objects appear continuous up to a greater precision

than we can usually afford to represent in a computer model.

Close to precise representation can be achieved by using mathematical formu-

lations of shapes and operations on these shapes, such as boolean operations. This

is a common representation in constructive solid geometry (CSG), which is typi-

cally used in engineering applications, such as component manufacturing. The exact

precision is then determined by whether a finite representation of floating point

numbers is used in both the model itself and subsequent mathematical operations.

An example model is shown in fig. 2.1.

5

2. An introduction to mesh editing

Figure 2.1: An example of an object modeled with constructive solid geometry. The

object is created using two union operations, an intersection operation and a sub-

traction. The figure depicts a CSG tree, which is processed in a post-order traversal.

Source: [Zot]

Depending on the application, a mathematical formulation of the 3D model

is not always possible or even desirable. Applications that rely on capturing real-

world data capture data points up to a certain precision, with the values between

the captured data points remaining undefined. In such a case, it would be difficult to

obtain a mathematical formulation and even then, it could only be an interpolation

or approximation of the data.

While interpolations and approximations of measured data points are also used,

calculating them is resource intensive. For example, using radial basis functions
(RBFs) leads to a time complexity of O(𝑛3). RBFs are commonly used to interpolate

and approximate scattered data such as data produced by 3D scanning, which is

characterized by having no natural ordering.

Captured data points by themselves form a point cloud. However, since the
points in a point cloud are not connected in any way, rendering the surface of the

model is not possible without further processing. The points can be connected to

form a surface by tessellation. Tessellations form polygon meshes, which will be

described in more detail in section 2.1.1.

Applications can also be differentiated by whether they use information about

the internal structure of the represented object, or whether they use a surface repre-

sentation. Applications that use the internal structure of objects can use regular or

adaptive grids to store models. Computed tomography (CT) scans, which capture

the internal structure of the body, are an example of a 3D model that stores data in

a regular grid. Slices of the grid are typically viewed as grayscale images.

Other applications, however, may not care about the internal structure of the

model. This includes 3Dmodels created for visualization, for example in advertising,

6

2.1.1. Triangle meshes

architectural rendering, or entertainment. These applications use surface models

to which textures and materials are applied to achieve realistic or stylized visual-

izations. In all of these cases, motion is either added separately by an animator,

determined by a physics system or a procedural algorithm, captured in a motion

capture setup that transfers real-world movement to virtual models, or captured

along with the model by 3D scanning.

In applications where realism is a goal, the process of simulating motion could

benefit from having data about the internal structure of objects, especially while

using physics-based motion. However, it is usually difficult or impossible to obtain

such data, and if it were available, using itwould require additional processing power.

Since some of these applications simulate motion at runtime, rendering speed may

outweigh the benefits of simulating the motion more accurately.

Capturingmotion by 3D scanning bypasses concerns aboutmotion realism since

the surface is captured already in motion with high accuracy. This is done at the cost

of a loss of customizability, as there is no single canonical variant of the captured

scenes and models that could be further edited or animated.

There are several approaches to representing surfaces:

• implicit

• parametric

• piecewise parametric

Signed distance functions (SDFs) are an example of an implicit surface repre-

sentation, as seen in fig. 2.3 in a two-dimensional case, in which the zero level set of

the SDF is a curve. SDFs define distance from the surface, which is negative while

inside the object and positive while outside of it. In general, an implicit surface is

given by the mapping 𝑓 (𝑥) : R𝑚 → R.
Parametric surfaces are mappings 𝑠 : R𝑛 → R𝑚. A special case of a parametric

surface is a polygon mesh, which is piecewise parametric. Polygon meshes (fig. 2.4a)

approximate the shape of the represented object using connected polygons.

A special case of a polygonmesh is a triangle mesh (fig. 2.4b), which is a common

3Dmodel representation used in most 3D graphics software, including the software

and algorithms described in this thesis.

2.1.1 Triangle meshes
Similarly to polygon meshes, triangle meshes consist of vertices connected with

edges, which form the faces of the mesh. While polygon meshes allow any number

of vertices and edges to form a face, triangle meshes only allow triangular faces.

7

2. An introduction to mesh editing

-0.20

1.00

1.00

0.20

z 0.60

0.75

0.75

1.00

0.50

y

1.40

0.50

x

0.25
0.25

0.00 0.00

Figure 2.2: An RBF interpolated surface. Due to intentionally suboptimal parameter

selection, the shape of the radial kernel functions is visible in the interpolation.

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

-2

0

2

4

Figure 2.3: An example where distance given by the signed distance function is

mapped to color. The curve represents the zero level defined by the SDF. When

extended to three dimensions, SDFs can represent surfaces.

8

2.1.2. Mesh sequences

In a finite precision representation, triangular faces have the advantage of always

being planar, since three different points always form a plane. When more vertices

with coordinates specified with finite precision are added, they are almost certain

to lie above or below the plane, making the outcome of mathematical operations

potentially inconsistent.

Manifold triangle meshes are a subset of meshes in which the neighborhood of

each point of the surface is isomorphic to a disc or a half-disc. This condition means

that vertices are allowed to be incident with only one fan of triangles and edges are

allowed to be incident with exactly two faces. Examples of meshes that do not fulfill

these conditions are illustrated in fig. 2.5. A non-manifold vertex is shown in fig.

2.5a and a non-manifold edge in fig. 2.5b. The volume tracking algorithm requires

meshes to be manifold.

By allowing half-disc neighborhoods, meshes with a boundary become admissi-

ble. A boundary (fig. 2.6) is formed by a closed loop of edges in which each edge is

incident with only one triangle. In watertight meshes, all edges are incident with

two triangles.

While watertightness is easy to achieve with meshes modeled by hand, for

meshes obtained by 3D scanning, being watertight is a strong demand, especially

since some parts of surfaces are likely to be obstructed at any given moment. How-

ever, an algorithm for tracking the volume occupied by a model must be able to

decide whether any given point lies inside or outside of the volume. This issue is re-

solved in the used volume tracking software by using a generalized winding number

calculation. Ideally, the input data also shouldn’t contain self-intersections, which

indicate scanning artifacts.

2.1.2 Mesh sequences

A mesh sequence is an ordered sequence of meshes that captures an object’s motion

over time. Each mesh in the sequence can be referred to as a frame of the sequence.
An important parameter of the sequence is its framerate, which defines the time

interval between two frames.

Mesh sequences can either be dynamic, in which the vertices of the mesh change

positionwith time but the connectivity remains constant, or time-varying, in which
the number of vertices can change between frames and the connectivity is typically

different in each frame.

Mesh sequences can also be differentiated by themethod of their creation.While

TVM sequences are usually obtained by 3D scanning, dynamic mesh sequences are

easy to create by deforming a canonical mesh of the represented object in a rest

pose.

9

2. An introduction to mesh editing

When this deformation is defined procedurally, for example by a set of rules and

a physics system or using skinning, frames can be obtained at arbitrary intervals.

Even in dynamic mesh sequences defined frame-by-frame, intermediate frames can

be generated by interpolation. This is not possible for TVM sequences, since the

frames have been captured at a set framerate in real-time and the lack of a temporal

connectivity correspondence makes interpolating between successive frames non-

trivial.

Notably, representingmotion as a deformation of a rest posemesh leads tomuch

lower storage space requirements than when motion is represented by a sequence

of static meshes. Mesh sequences can be compressed efficiently, but deformations

typically require even less storage space.

In each case, additional processing is required at runtime, either decoding the

compressedmesh sequence or deforming the rest posemesh.While the deformation

process can be too slow for real-time applications, it is the preferable approach to

storing mesh animation, especially since it can be edited further.

2.2 Mesh editing
Mesh editing typically refers to actions that deform the vertices of the mesh, but

maintain the same connectivity. Animating a rest pose mesh can be referred to as

mesh editing.

Techniques falling under mesh editing aim to modify an animation by

• modifying the animated shape over time,

• adjusting a given frame

• or modifying the rest pose.

Modifying the animated shape over time means adding a motion which extends

throughout multiple frames. Adjusting a given frame then means making changes

to a specific frame that make no impact on other frames of the already existing

animation. Lastly, modifying the rest pose means deforming it in a way that propa-

gates the deformations into the entire already animated sequence without making

it necessary to create the animation again.

An additional demand on mesh editing techniques is that they should be easy

for an animator to use, while providing results that they would intuitively expect.

Editing should also preserve the details of the mesh while allowing large areas to be

deformed in one action.

One way to implement an intuitive editing operation is to define effectors that
are parts of the mesh, which should be moved to the position specified by the an-

10

2.2. Mesh editing

(a) A quad mesh. (b) A triangle mesh.

Figure 2.4: A quad mesh and a triangle mesh, each with one face highlighted.

(a) A vertex with two

incident triangle fans.

(b) An edge with more than

two incident faces.

Figure 2.5: Examples of non-manifold geometries.

Figure 2.6: A mesh with a visible boundary. The outside of the mesh is colored blue.

The inside is colored red. Model source: [TL]

11

2. An introduction to mesh editing

imator, and constraints, which are parts of the mesh that shouldn’t be affected by

the operation.

Any other parts of the mesh should move reasonably, in a way that is intuitive to

the animator and preserves the details of the mesh. Enforcing additional conditions

for the movement of the remaining parts of the mesh can create a variety of editing

tools for the animator.

2.2.1 Space deformation
Editing operations can deform vertex positions either by deforming the space in

which the mesh is embedded, or the surface of the model itself. The vertices of a

mesh can also be referred to as the geometry of the mesh.

One example of a space deforming operation is free-form deformation (FFD).

By enclosing all vertices of the mesh in a grid structure and deforming the grid, a

transformation can be applied to all of the vertices simultaneously, as demonstrated

in fig. 2.7. A similar approach is cage-based deformation.
Alternatively, all vertices could be pulled towards a single point, or away from

it, inflating or deflating space in a given area. A falloff function can also be applied

to the transformation, causing nearby vertices to be pulled stronger than far away

ones, making the editing operation more localized. This operation intentionally

changes the volume of the edited object. If the goal is to maintain model volume, the

shape can instead be deformed by a divergence-free vector field. In fact, all space

deformations can be modeled using vector fields.

Space deformations can be applied to most model representations, since they

do not require a surface to exist, allowing point clouds to be edited without prior

tessellation and volume data to be edited without surface extraction.

Figure 2.7: An example of free-form deformation created with Blender, which uses

a 3D lattice.

12

2.2.2. Surface deformation

2.2.2 Surface deformation
Surface based deformations simulate the behavior of elastic surfaces. The deforma-

tion is usually formulated as an optimization problem, which uses an energy func-

tion to find an optimal state of the surface (at a minimum or a maximum energy,

depending on the application). Unlike space deformations, they can be formulated

in a way that respects existing properties of the surface, such as its curvature.

2.2.3 Editing methods
2.2.3.1 Laplacian editing

One of the many approaches to surface deformation is Laplacian editing [Sor+04;
Lip+04], which uses the coordinate Laplacian to build a system of linear equations

using the constrained vertices and the existing details of the mesh.

The Laplace operator is a differential operator defined in eq. 2.1 as the diver-

gence of the gradient of a function 𝑓 : R3 → R.

Δ𝑓 = 𝑑𝑖𝑣∇𝑓 = 𝜕2𝑓

𝜕𝑥6
+ 𝜕2𝑓

𝜕𝑦6
+ 𝜕2𝑓

𝜕𝑧6
(2.1)

Specifically when used with manifolds, the Laplace-Beltrami operator is used
as per eq. 2.2, where 𝑓 : 𝑀 → R and Δ𝑓 : 𝑀 → R.

Δ𝑀𝑓 = 𝑑𝑖𝑣𝑀∇𝑀𝑓 (2.2)

If the vector function p returns the Cartesian coordinates, then eq. 2.3 applies,

where 𝐻 is the mean curvature and n is the normal vector.

Δ𝑀p = 𝑑𝑖𝑣𝑀∇𝑀p = −2𝐻n (2.3)

In a discrete environment such as triangle meshes, the Laplacian of the coordi-

nate function p can be approximated by eq. 2.4, where 𝑁 (𝑖) represents the neigh-
borhood of the vertex x𝑖.

Δp(x𝑖) =
1

∥𝑁 (𝑖)∥
©­«

∑︁
𝑗∈𝑁 (𝑖)

x𝑗
ª®¬ − x𝑖 (2.4)

In Laplacian editing, a detail vector describes the deviation of a vertex from

the centroid of its neighboring vertices. The constrained vertices, which should not

move, as well as the constraints given by the final positions of the effector vertices,

are used along with the original mesh details to determine the new positions for the

remaining vertices. Fig. 2.8 shows an example of an edited mesh.

13

2. An introduction to mesh editing

Figure 2.8: An example of Laplacian editing createdwith Blender. The effectormove-

ment is indicated by dashed lines.

As per eq. 2.5 and 2.6, the algorithm first calculates the details d of the original

matrix using a Laplacian matrix L of the original mesh and the vertex positions

x. Then, it subtracts the constrained vertex positions c from the detail matrix and

solves the system to obtain the new positions x̂.

d = Lx (2.5)

Lx̂ = d − c (2.6)

The elements of matrix L are given by the following schema 2.7:

L𝑖,𝑗 =


−1 𝑖 = 𝑗

1

∥𝑁 (𝑖)∥ 𝑗 ∈ 𝑁 (𝑖)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.7)

This approach struggles with preserving details of the surface under large ro-

tations, since it attempts to preserve the global direction of normals. The authors

of Differential coordinates for interactive mesh editing [Lip+04] mitigate this issue by

estimating local rotations and rotating the differential coordinates prior to solving

the system. A better approach may be to instead preserve the Euclidean distance

between the vertices of the surface. Transformations which preserve this distance

are called rigid.

2.2.3.2 ARAP

As Rigid As Possible (ARAP) [SA07] is a method which attempts to preserve lo-

cal rigidity of transformations during deformation. While complete rigidity is not

14

2.2.3.3. Mesh skinning

possible, since the surface does have to deform to meet the constraints, the overall

non-rigidity for each vertex and its neighborhood can be minimized by this method.

The energy to be minimized by the algorithm is formulated in eq. 2.8, where

𝑁 (𝑖)∪ 𝑖 is the neighborhood of vertex 𝑖, including the 𝑖-th vertex itself, x𝑗 is position

of the 𝑗-th vertex in the original mesh, R𝑖 is the optimal transformation of the 𝑖-th

neighborhood and x𝑗 is the transformed position of the 𝑗-th vertex. The optimal

transformation R𝑖 is composed of only translation and rotation with no shear or

scaling. Such a transformation can be obtained using the Kabsch algorithm, which

is further discussed in section 5.2.1.

𝐸 =
∑︁
𝑖

∑︁
𝑗∈𝑁 (𝑖)∪𝑖

∥x̂𝑗 − R𝑖x𝑗∥2

(2.8)

ARAP is an iterative method which first estimates rigid transformations at a

local level, transforms the local details and then solves the Laplacian linear equation

system for a global solution, which becomes the input to the next iteration.

While the algorithm can converge slowly for larger meshes, the results become

viable after only a few iterations. The results do however depend on the mesh tes-

sellation, achieving suitable deformation easier in more densely tessellated areas.

2.2.3.3 Mesh skinning

Humanoid and animal models are a very common type of models to be animated,

and their motion can be approximated by the motion of their bone structure. As it

turns out, introducing the concept of virtual bones even to the process of animating

inanimate objects can efficiently describe the transformations they undergo as well.

The concept of a bone simply represents a coordinate system which can be

rotated and translated along with the vertices assigned to it. In nature, skeletons are

hierarchical structures - if the femur is rotated in the hip, the lower leg will follow

the motion of the thigh automatically. This hierarchical structure is used in skeletal

animation, allowing for easy and intuitive motion design.

The animator usually designs the skeleton manually, although automated meth-

ods for common skeletal structures exist [Au+08; Che+11]. This process is called

rigging. Since rotation and translation can be represented by matrix multiplica-

tion, which is fast and highly optimized, the approach can be used in real-time

applications. The use of rigged 3D models is widespread, most notably in game

development.

The skeleton is typically designed for the rest pose mesh. The vertices of the

mesh are then assigned to the bones by weight painting. Each vertex of a mesh is

assigned a weight for each bone of the skeleton. The weights represent the extent

to which each bone should affect the position of a given vertex. A vertex can be

15

2. An introduction to mesh editing

influenced by multiple bones, especially in joint areas which should only deform

partially. Each bone represents one separate transformation.

The application of these transformations is called skinning. The transformations

are executed in hierarchical order given by the order of the bones in the skeleton.

However, for vertices in areas affected by multiple bones, a blending method for the

transformations is required.

A simple blending method is linear blend skinning, which simply applies all of

the transformations as a weighed sum, as per eq. 2.9, where w𝑖 refers to the weight

assigned to bone 𝑖 and M𝑖 to the transformation matrix of the bone 𝑖. The point x
is from the rest pose, while x̂ is the transformed point. Unfortunately, the resulting

matrix is not a rotationmatrix in itself, and artifacts are introduced to the animation.

This is called the candywrapper effect, which can cause animated joints to twist and

contract.

x̂ =

(∑︁
𝑖

𝑤𝑖M𝑖

)
x (2.9)

The effect can be avoided by using dual quaternion skinning [Kav+07], which
represents all transformations using dual quaternions, which can be blended more

easily.

2.2.3.4 Embedded deformations

Embedded deformations [SSP07] is a method similar to skinning, in that it uses a rest

pose mesh to which it applies transformations that change in every frame. However,

unlike skinning, it doesn’t use a bone structure. Instead, transformations influence

nearby vertices. As a type of space deformation, embedded deformations can be

applied to many types of model representations.

The method introduces the idea of deformation graphs, which are formed by a

subset of themesh vertices. This subset can contain a fraction of the original vertices

- one in twenty or even one in every hundred vertices, depending on the tessellation.

The vertices are chosen at regular intervals, avoiding selecting vertices too close to

each other.

The model is manipulated using the deformation graph’s vertices as effectors.

Using the edited positions of the effectors, the method determines the transforma-

tion of the rest of the deformation graph by optimization, which minimizes the

deviation of the graph’s transformation from a rotation. Rotation is desirable, since

it preserves detail, unlike shearing and stretching.

Each vertex in the graph associated with a matrix R and translation t which
affects the surrounding areas of the mesh, with the transformation centered at the

vertex. Areas in which influence of nearby deformation graph vertices overlaps

16

2.3. Editing TVM sequences

are connected with edges and their transformations are blended linearly. This can

theoretically lead to artifacts, but since nearby transformations are similar, they are

typically not noticeable.

The weights are assigned based on distance. For each vertex of the mesh, 𝑘

nearest deformation graph vertices are found, and the weights are assigned as per

eq. 2.10, where𝑤𝑖 and 𝑑𝑖 are theweight and the distance of deformation graph vertex.

The distance of the farthest neighboring deformation graph vertex is denoted 𝑑𝑘. The

weights must be normalized in an additional step as per eq. 2.11, so that

∑
𝑖 𝑤̄𝑖 = 1.

𝑤𝑖 = 1 − 𝑑𝑖/𝑑𝑘 (2.10)

𝑤̄𝑖 =
𝑤𝑖∑
𝑖 𝑤𝑖

(2.11)

The method can produce undesirable deformation in overlapping areas of in-

fluence, such as when moving the arm of a humanoid model and deforming the

torso as well. Ideally, geodesic distance should be used to assign nearby areas to

the deformation graph vertices, however, it can be complicated to calculate. The

authors instead suggest to implement tools for the user to remove undesirable areas

of influence from the editing action.

2.3 Editing TVM sequences
The mesh editing methods which have been presented in this chapter can be used

to define the criteria that a mesh editing system should fulfill. In this section, the

criteria are summarized and used to set design goals.

From the user’s point of view, the system must primarily be easy and intuitive

to use. The methods achieve this by establishing some form of effectors, which act

as handles, enabling easy manipulation of the mesh. By transforming the effectors,

typically by specifying a translation to a new location, larger areas of themesh should

be affected at once, streamlining the editing process. In terms of implementation, the

main requirement is that the editing operations preserve detail locally, preferentially

composing transformations using translations and rotations and avoiding stretching

and shearing.

All of the methods above are typically applied to a single rest pose mesh, which

is deformed to produce frames of the sequence at arbitrary framerates. For example,

when using skinning to animate a model, the user would specify a final position

of a bone and the time at which the bone should reach that position. The motion

would then be executed at a framerate also given by the user. Frames in which

transformations are explicitly given rather than interpolated are called keyframes.

Modern software, such as Blender, also allows the user to choose whether to

interpolate between the initial and final transformation linearly or using an easing

17

2. An introduction to mesh editing

function. Easing functions allow the movement to speed up or slow down between

keyframes, which contributes to the look-and-feel of the animation, making it ap-

pear more natural.

Dynamic mesh sequences have additional processing requirements, seeing as

that instead of a single rest pose mesh with associated deformations, they are com-

posed of a sequence of meshes. However, the same methods can still be successfully

applied to dynamic mesh sequences.

For example, a skeletal structure can be extracted from dynamicmesh sequences.

This is explored in Smooth skinning decomposition with rigid bones [Le12]. Thismethod

uses a provided set of example poses, a rest pose and a number of bones to find a

non-hierarchical set of bones (called proxy bones by the authors), a bone-weight
map which assigns weights per bone to each vertex, and a set of transformations. In

the case of dynamic mesh sequences, the first frame can be used as a rest pose while

keyframes of the animation can be used as example poses. The number of bones is

somewhat arbitrary and could be determined by trial and error as the least number

of bones which provides visually satisfactory results. The problem is formulated

as a constrained least-squares optimization. Other methods for extracting skele-

tons from dynamic mesh sequences include Fast and Efficient Skinning of Animated
Meshes [KSO10] or Skinning Mesh Animations [JT05].

In contrast to dynamic mesh sequences, time-varying mesh sequences present a

challenge. Throughout the sequence, the vertex counts and vertex positions change.

Necessarily, this means that the connectivity also changes from frame to frame. Due

to this lack of temporal correspondence between the frames, it is difficult to track

the path of points on the surface throughout the animation.

These properties make processing and storing TVM sequences difficult. In the

case of animation by mesh deformation, it is sufficient to store a single rest pose

mesh along with the deformations that describe the motion. In the case of dynamic

meshes, the first mesh and a series of vertex position differences could be stored

efficiently. TVM sequences change completely in each frame, so each frame must

be stored in full.

To illustrate the storage demands, storing compressed geometry requires around

10 bits per vertex (bpv), although this strongly depends on the amount of distortion

considered acceptable, while storing compressed connectivity requires an average of

1 - 2.5 bpv when encoded by valence coding. These values quickly add up when tem-

poral correspondence cannot be exploited, especially considering that 3D scanned

data tends to be captured at a high resolution.

Massive savings could potentially be achieved by extracting a rest pose from

TVM sequences and approximating the motion using some form of deformation.

However, extracting a rest posemesh from a TVM sequence is a non-trivial problem.

One part of this problem arises due to 3D scanning limitations, as parts of the

18

2.3. Editing TVM sequences

X

1

2

3

4

Y

D

B

C

A

Figure 2.9: An example of a bijective or one-to-one mapping. All elements of the

set X have exactly one image in set Y and all elements of set Y have exactly one

preimage in set X. Source: [Sch]

scanned surface may not be visible at all times throughout the sequence. In fact,

some parts of the surface may not be captured by any frame of the sequence.

A bijective mapping, shown in fig. 2.9, is a mapping of set X to set Y in such a

way that elements have a one-to-one correspondence. This means that each element

from set Xmaps to exactly one element from set Y, and vice versa. The sets must

therefore have the same number of elements. An attractive approach to obtaining

bijective mapping between successive frames would be by adding the missing areas

of the surface to all frames of the sequence.

However, determining the precise positioning of themissing surface in all frames,

including frames in which the surface is occluded due to self-contact, is a difficult

problem. After adding the missing surface areas, the exact bijective mapping be-

tween successive frames would still have to be established, either by re-sampling the

surface or by matching vertex pairs, which could lead to further issues in surface

areas which should correspond between successive frames but have been sampled

with different amounts of vertices. An exact solution to this problem is not obvious.

An even more prohibitive issue with establishing a mapping between frames is

the possible change of genus. In topology, genus (fig. 2.10) is a property of surfaces
that determines the number of holes in a surface. Holes should not be confused

with boundaries. While a boundary is a manifestation of a scanning artifact, which

produces a surface edge that is impossible in physical reality, a hole is a physical

property of the represented object. An example of an object with a genus of zero

would be a simple sphere (fig. 2.10a), while a torus (the "donut shape", fig. 2.10b) has

a single hole and therefore a genus of one.

Only deformations of surfaces with the same genus can be represented using a

triangle mesh with constant connectivity. While temporal correspondence between

the vertices of successive frames could be established in a scenario in which self-

19

2. An introduction to mesh editing

(a) A sphere. (b) A torus.

Figure 2.10: A sphere is a genus zero surface, since it has no holes. A torus, which

has one hole, is a genus one surface.

contact during 3D scanning changes the surface genus, changes in connectivity

would be necessary, once again limiting the potential to exploit this correspondence.

This issue is not negligible, since changes in the genus of 3D scanned surfaces are

not uncommon.

These issues can be mitigated by taking an alternative approach that instead of

tracking elements of the surface tracks the volume occupied by the model [DVV21;

Dvo+22]. This assumes that the input model only changes in volume negligibly

under deformation, however, most practical inputs fulfill this condition.

If the volume occupied by the model is divided into volume elements which are

then tracked throughout the sequence, temporal correspondence can be established

between successive frames. This correspondence can then be used to determine

which areas of the surface move coherently. Therefore, motion throughout the se-

quence can be tracked.

For the method to be applied, it is necessary to determine the space occupied by

the volume, which suggests issues with input meshes containing boundaries. How-

ever, this issue can be mitigated using the generalized winding number calculation

described in section 3.2.1.1.

The tracking data obtained by a volume element tracking method are suitable

for organic shape representation commonly used by the game and entertainment in-

dustries, advertising, and similar areas, rather than engineering applications, which

require high precision and rigorous model definitions. This is ideal, since the areas

already primarily use triangle meshes for model representation.

Volume tracking data has been used in mesh compression [Dvo+23] and is suit-

able for use in other fields, such as remeshing, mesh simplification or mesh editing.

Specifically, it would be well suited for organic editing operations with a focus on

artistic intention and providing simple and intuitive tools for animators, rather than

precise vertex positioning. Editing operations modeled by volume repositioning

would fall in the space deformation category.

20

2.3. Editing TVM sequences

A system for tracking volume elements has recently been developed at the Uni-

versity of West Bohemia (UWB) and has been made available for the purposes of this

work. The editing system developed in this work, therefore, uses the tracking data

produced by the tracking system as an additional input to the input TVM sequences.

In the following chapter, the volume tracking algorithm is described in detail.

21

Volume tracking for
TVM sequences 3
In this chapter, the algorithm developed in Towards Understanding Time Varying
Triangle Meshes [DVV21] and As-rigid-as-possible volume tracking for time-varying
surfaces [Dvo+22] is first introduced and then described in detail.

3.1 Overview
As has been mentioned in the previous text, the tracking system exploits the corre-

spondence of volume elements throughout a TVM sequence. For this to be possible,

the input must fulfill several conditions.

Most importantly, the volume must remain constant throughout the sequence

or change negligibly, since disappearing and reappearing volume elements would

necessarily have no corresponding elements in successive or previous frames. The

input data must also be able to provide volume occupancy information, either by

indicating a simple binary response of "occupied" or "not occupied", or a continuous

response representing the possibility that the given area is occupied. The ability to

obtain a continuous answer extends the range of possible inputs by TVM sequences

containing boundaries, since ordinarily only watertight and manifold meshes could

provide a binary answer to the volume occupancy query.

Since 3D scanning technology captures the surface of objects rather than directly

the occupied volume, the surface representation data must first be transformed into

a volumetric representation using the volume occupancy query in a step that can be

referred to as voxelization. A voxel is the equivalent of a pixel in a 3D environment,

representing the smallest element of a grid.

In the next step, the volume is subdivided into volume elements, called centers,
which are represented by the location of the volume centroids. The centers should be

distributed over the occupied volume uniformly, forming elements roughly similar

in size. The number of centers is constant throughout the sequence, allowing tem-

poral correspondence to be established and movement of the centers to be tracked

between frames.

23

3. Volume tracking for TVM sequences

This structure represents the shape in a manner similar to a deformation graph

or a skeleton, however, unlike the hierarchical structure of a skeleton or the edges

of the deformation graph, there is no relationship between the centers at this step.

Relationships between the centers are established using center affinity, which the
authors formulate. Roughly, center affinity describes which centers move together.

Affinity is strong in neighborhoods, however, not all neighboring centers belong

to the same part of the overall shape, and may not therefore move uniformly. This

possibility must be captured by the center affinity as well.

Once all frames have been converted to a volume representation and the cen-

ters have been distributed throughout the volume in the first frame, the algorithm

extrapolates center positions for the next frame linearly as an initial guess. The cen-

ter positions then undergo an optimization process based on energy minimization

using center affinity. The formulation of this energy will be discussed in detail in

section 3.2.3.

This process continues, extrapolating positions from each previous frame into

each following frame. After the center positions in a given frame have been finalized,

center affinity is updated using newobservation of the centers’movement, becoming

theoretically more accurate as the sequence progresses.

The entire algorithm can therefore be divided into four steps, which are de-

scribed in the remainder of the chapter. The steps are the following:

• voxelization,

• uniform volume sampling,

• optimization,

• and center affinity update.

3.2 Algorithm
In this section, each step of the algorithm is described in detail.

3.2.1 Voxelization
In the first step of the algorithm, the input TVM sequence data is converted frame-

by-frame into volume data. This is a separate processing step which can be fully

completed for all frames of the sequence before progressing to volume sampling

and optimization.

Since the remainder of the algorithm takes a number of parameters and is likely

to be ran several times while searching for an appropriate combination of the pa-

rameters, it is reasonable to fully complete voxelization and save the voxelized data

24

3.2.1.1. Generalized winding number

Figure 3.1: An example of a voxelized mesh generated in Blender using a resolution

of 2
6
. At this render size and the resolution of 2

9
voxels per side, which is used by

the volume tracking system, the voxels are nearly indistinguishable from a smooth

surface.

separately, so that it can be reused in the following steps without repeated process-

ing.

Each frame is voxelized independently. The authors use a regular lattice with

a resolution of 512 voxels along the longest axis, which divides the model’s axis-

aligned bounding box. An example of a voxelized mesh can be seen in fig. 3.1. This

grid contains indicator function values. An indicator function is a positive-valued

function at points in which a property is indicated and zero valued in points where

the property is not present. In this case, the indicated property is whether a given

voxel is a part of the model volume.

The algorithm then proceeds one of two ways, depending on whether the model

is watertight or contains boundaries. For watertight models, entire columns of the

grid are processed simultaneously using an axis-aligned ray cast. The intersections

of the model and the ray are determined, and the indicator function value is filled in

appropriately for the whole column. A ray is cast for each column of the grid, which

can be done in parallel, increasing the voxelization speed.

For models with a boundary, the ray-cast method cannot be applied as some

parts of the surface are missing and no intersection with the ray would be found.

The authors instead use the generalized winding number to determine volume

occupancy.

3.2.1.1 Generalized winding number

The generalized winding number 𝑤𝑔 [JKS13] is defined as per eq. 3.1, where q is the

queried point for which we would like to obtain the volume occupancy information,

25

3. Volume tracking for TVM sequences

F is the set of all the faces in the mesh, 𝑡 is the currently evaluated triangle andΩ𝑡 (q)
is the signed solid angle between triangle 𝑡 and the point q.

𝑤𝑔 (q) =
1

4𝜋

∑︁
𝑡∈F

Ω𝑡 (q) (3.1)

The volume tracking system uses a more recent variant of the calculation intro-

duced in Fast Winding Numbers for Soups and Clouds [Bar+18] as the fast winding
number 𝑤𝑓 . The authors of the tracking system evaluate the fast winding number

in each voxel of the grid to determine the value of the indicator function IF, which
is then given by the schema 3.2.

IF(q) =
{

1 𝑤𝑓 (q) > 0.5

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3.2)

3.2.2 Uniform volume sampling
In this next step, the algorithm processes the grid containing the indicator function

values and attempts to distribute centers throughout the occupied volume uniformly.

This section describes the process for the first frame, since further frames use an

extrapolation of previous frames as an initial guess and bypass the processing nec-

essary to initialize the first frame.

Each of the centers is associated with a set of voxels, for which this center is

the nearest center. This set of voxels becomes associated with this center and its

movement. The size of this set decreases with a growing number of centers used

to track the volume, and the greater precision is achieved in tracking the volume

elements. However, additional centers lead to increased processing time and mem-

ory requirements. The authors of the method choose to use 1000 centers as a value

that has proven suitable in the experiments, maintaining a useful resolution while

keeping the processing demands reasonable.

As an initial guess, the centers are distributed randomly within the volume, that

is, within voxels where IF(x) = 1, x being the voxel center points. Then, in a single

pass over the entire volume, voxels with a positive indicator function are assigned to

the center nearest to them, forming each center’s set of nearby affected voxels. A kd-

tree is used for finding nearest neighbors efficiently. Kd-trees are discussed further

in section 5.2.2. From this set of nearby voxels, centroid positions are calculated by

averaging the voxel positions, and centers are shifted towards the obtained centroid

positions. This process is repeated, finding the updated nearest centers and updat-

ing centroid positions until convergence, which is achieved either by completing a

sufficient number of iterations, or reaching a point at which no centroid position

moves by a distance greater than a set threshold, thus achieving sufficient precision.

26

3.2.3. Optimization

This positioning is then used as the initial uniform volume sampling fromwhich

further frames will be derived. This makes the result of the entire algorithm strongly

dependent on initial center positioning. Since the first step of the sampling process

is random and results for the first frame differ based on the initial random center

positions, either the random seed or the initial guess for the first frame must be

saved to achieve replicability in the later stages of the algorithm.

The approach described here is reminiscent of Lloyd’s iterative algorithm for

creating centroidal Voronoi tessellations, however, this algorithm differs in that only

occupied space is included in the calculation and therefore the cells of voxels belong-

ing to each center can be non-convex and even non-continuous. For Voronoi cells

𝑉𝑖 associated with the 𝑖-th center, deviation from uniformness 𝐷𝑈 can be quantified

as per eq. 3.3.

𝐷𝑈 =
∑︁
𝑖

∫
x∈V𝑖

∥c𝑖 − x∥2

(3.3)

The authors formulate deviation fromuniformness 𝐸𝑈 as per eq. 3.4with respect

to the irregular cell shapes. Here, C is the set of all centers, c𝑖 denotes the 𝑖-th center
and x̄𝑖 denotes the center of mass of the voxels associated with center c𝑖. The value
𝐸𝑈 represents an uniformness energy to be minimized by the algorithm in the next

step.

𝐸𝑈 =
1

2

∑︁
c𝑖∈C

∥c𝑖 − x̄𝑖∥2

(3.4)

3.2.3 Optimization
This section formulates the energy which is used in the iterative optimization pro-

cess, which finds center positions in each frame of the sequence. In addition to the

uniformness energy 𝐸𝑈 , a smoothness energy 𝐸𝑆 is formulated. Both energies are

then considered by the optimization process, forming an overall energy.

3.2.3.1 Smoothness energy

While the positions of the centers in the first frame have been initialized using a de-

gree of randomness, the centersmustmove smoothly and coherently throughout the

rest of the sequence in order to produce the desired volume element tracking behav-

ior. This necessitates the formulation of a way to propagate the centers throughout

the sequence in a manner which would respect the underlying transformations of

the modeled volume.

Neighboring elements of the volume are connected and should therefore travel

together. In reality, parts of the volumewill not always be connected rigidly - stretch-

27

3. Volume tracking for TVM sequences

ing is necessary especially in joint areas, otherwise objectswould not deform through-

out the sequence but rather only be rotated and translated, which is an uninteresting

class of motion at a global level. Locally, however, transformations should be rigid,

which can be exploited.

Using the optimal rigid transformation A𝑖 corresponding to the 𝑖-th center

c𝑖, which transforms the set of centers affine with c𝑖 optimally, we can define the

propagated position p𝑖 of the 𝑖-th center ĉ𝑖 from a previous frame towards the

current frame. Eq. 3.5 describes this transformation which uses a rotation matrix

R𝑖 and a translation vector t𝑖.

p𝑖 = A𝑖(ĉ𝑖) = R𝑖ĉ𝑖 + t𝑖 (3.5)

Given this transformed position p𝑖, the smoothness energy 𝐸𝑆 can be formulated

as per eq. 3.6.

𝐸𝑆 =
1

2

∑︁
c𝑖∈C

∥c𝑖 − p𝑖∥2

(3.6)

The transformationA𝑖 can be obtained using a weighed variant of the Kabsch

algorithm, which is further discussed in section 5.2.1. The transformation is calcu-

lated as per eq. 3.7, where 𝑤𝑖 𝑗 represents the affinity of the centers and 𝜇 represents

an affinity threshold, below which centers with minimal affinity are not considered.

The authors set this threshold at a value of 𝜇 = 0.001. SO(3) denotes the group of
rotations in R3

.

(R𝑖, t𝑖) = arg min

R∈SO(3),t∈R3

∑︁
𝑤𝑖 𝑗≥𝜇

𝑤𝑖 𝑗 ∥c𝑗 − (Rĉ𝑗 + t)∥2

(3.7)

The initialization and update of center affinities 𝑤𝑖 𝑗 is discussed in 3.2.4.

3.2.3.2 Overall energy

Formulating the overall energy to beminimized is as simple as 𝐸 = 𝐸𝑆+𝛽𝐸𝑈 , adding
the terms and using a weighing constant 𝛽, which controls which of the parameters

has the greater impact on the outcome. The authors use a default value of 𝛽 = 1, not

prioritizing either term.

The authors of the method estimate the gradient of the uniformness energy and

the smoothness energy as eq. 3.8 and 3.9 respectively.

𝜕𝐸𝑈

𝜕c𝑖
≈ c𝑖 − x̄𝑖 (3.8)

𝜕𝐸𝑆

𝜕c𝑖
≈ c𝑖 − p𝑖 (3.9)

28

3.2.4. Updating center affinity

From these gradients they derive eq. 3.10, a closed-form solution for the location

of the center c𝑖.

c𝑖 =
p𝑖 + 𝛽x̄𝑖

1 + 𝛽
(3.10)

However, since the position of centers c𝑖 affects the centers of mass x̄𝑖 and the

transformed center locations p𝑖, an iterative solution is still necessary. Center posi-

tions are updated until a given number of iterations is reached, or until both of the

gradient values are small enough for every center c𝑖.

3.2.4 Updating center affinity
In the previous step, the existence of weights 𝑤𝑖 𝑗, which capture the affinity between

centers 𝑖 and 𝑗, was assumed. However, at the start of sequence processing, there is

no such information available and must be initialized.

Since no motion data is available for the first frame, center affinity is approx-

imated based on the distance of centers, assuming that centers which lie close to

each other are probably physically connected and move together, although this is

not fully correct. For example, in the case of an animation of a walking human, the

legs move in opposing directions throughout the sequence. A first frame in which

the legs would be just in the middle of passing each other by would incorrectly de-

termine that the centers on the inner sides of the legs should move uniformly. This

should quickly be corrected for successive frames.

In the first frame, the Gaussian function is used to assign a proximity-based

affinity 𝑎
𝑝

𝑖𝑗
to neighboring centers, which starts strong and falls off with distance, as

defined in eq. 3.11.

𝑎
𝑝

𝑖𝑗
= exp (−𝜎𝑝 · ∥ĉ𝑖 − ĉ𝑗∥2) (3.11)

In following frames the affinity can be further informed by the dissimilarity of

the rigid transformations from the previous frame, 𝑑𝑖(ˆA𝑖, ˆA 𝑗). This defines a new
affinity for centers in motion, described by eq. 3.12.

𝑎𝑚𝑖𝑗 = exp (−𝜎𝑚 · 𝑑𝑖(ˆA𝑖, ˆA 𝑗)2) (3.12)

The falloff rate 𝜎 is defined using parameters 𝜌𝑝 and 𝜌𝑚 for convenience. The

parameters represent the distance at which the Gaussian function reaches values

0.5 and 0.01 respectively. The falloff rate is then calculated as 𝜎𝑝 = − ln (0.5)/𝜌2

𝑝 and

𝜎𝑚 = − ln (0.01)/𝜌2

𝑚.

The authors evaluate the dissimilarity 𝑑𝑖 of transformations using the set of

voxels V𝑖 which forms the volume cell corresponding to center c𝑖. If each voxel is
denoted v𝑘, then 𝑑𝑖 can be written as

29

3. Volume tracking for TVM sequences

𝑑𝑖(A,B)2 =
1

|V𝑖 |
∑︁

v𝑘∈V𝑖

∥A(v𝑘) − B(v𝑘)∥2 . (3.13)

As shown in On evaluating consensus in RANSAC surface registration [HDV19],
the computational complexity of evaluating transformation dissimilarity does not

depend on the number of voxels. the authors of the tracking system exploit this in

their implementation.

The last feature of center affinity is that it should be maintained through time

rather than completely redefined in each frame. Towards this goal an infinite impulse

response (IIR) filter can be used, which combines past values with the new. The

filtered affinity values 𝑎̃𝑖 𝑗 can then be defined as

𝑎̃0

𝑖 𝑗 = 𝑎
𝑝

𝑖𝑗
,

𝑎̃
𝑓≠0

𝑖 𝑗
= 𝛼𝑎𝑚𝑖𝑗 + (1 − 𝛼) 𝑎̃𝑓−1

𝑖 𝑗
.

(3.14)

Here the parameter 𝛼 ∈ ⟨0, 1⟩ represents the strength of the IIR filtering. In the

experiments, the authors use 𝛼 = 0.01. The superscript refers to the frame number 𝑓 .

Finally, the weights used in the optimization step are computed as follows:

𝑤0

𝑖 𝑗 = 𝑎
𝑝

𝑖𝑗
,

𝑤
𝑓≠0

𝑖 𝑗
= 𝑎

𝑝

𝑖𝑗
𝑎̃
𝑓

𝑖 𝑗
.

(3.15)

30

Proposed method 4
This chapter proposes a four-step pipeline for editing TVM sequence data, typically

captured via 3D scanning. The steps of this pipeline are designed to be executed

independently and when needed, their specific algorithms should be replaceable

with other, more advanced implementations. Such improvements are proposed later

in the work in section 6.4 based on the results of the analysis.

The input sequences must be processed by the previously described volume

tracking algorithm, which produces tracking data that is then also provided as an

input to the editing system. For the volume element tracking to work, the TVM

sequences must meet requirements which have also been described earlier in this

work. Primarily, the sequences must consist of manifold triangle meshes, in which a

boundary is permissible. Due to the dependency on the volume tracking algorithm,

the editing system inherits this limitation.

The system should attempt to adhere to the principles which have been pre-

sented along with the existing editing methods, that is, it should attempt to create

an easy to use and intuitive editing environment with predictable behavior.

The steps of the pipeline are the following

• introducing motion,

• distributing motion to other centers,

• distributing motion to other frames,

• and deforming the surface.

In the first step, the animator executes an editing operation by manipulating an

effector. In a simple case, this effector can simply be one center which is dragged to

a new location by the animator.

This action launches a cascade of events, in which the translation of one center is

distributed to other centers within the same frame. Here, the manner of distributing

the translation will affect which centers will move along with the effector and to

what extent.

31

4. Proposed method

Next, the motion of centers executed within one frame is distributed to all of

the previous and following frames. The center positions are now changed in every

frame of the sequence.

In a final step, the surface is deformed in every frame based on the changes to

the tracking data, which deform the space surrounding the tracked centers. At this

stage, the sequence is deformed in every frame.

Through this pipeline, interesting effects should be achievable, for example such

as slimming or fattening a model throughout the sequence, or changing some of

their physical features - for example growing a hump back or enlarging the nose of

a model.

4.1 Introducing motion
In the most trivial case, a motion t𝑖 can be introduced into the sequence by changing
the position of a single center c𝑖. Theoretically, multiple centers could also bemoved

in this step, but for simplicity, the method should initially expect one center to move

at a time. This center becomes the effector.

Less trivial editing operations could be implemented in further work, such as

the ability to move multiple centers at a time, an operation for shrinking or growing

the volume of the cell associated with a given center, or an editing operation which

could allow formanual painting of the weights which determine how nearby centers

react to the translation of the effector. This could allow for locking some centers

in place when their movement would be undesirable. A rotation editing operation

could be also implemented in future work, rotating the neighborhood of the effector.

4.2 Distributing motion to other centers
The motion t𝑖 of the 𝑖-th center must next be distributed to other centers within

the same frame of the TVM sequence. A simple way to achieve this is to assign the

same motion vector t𝑖 to all other centers in the frame, multiplied by a factor 𝑤𝑗

calculated using the Gaussian function using user-specified parameters. The scale

of this function should be defined using a 𝜎 parameter, or by specifying an effective

radius, similarly to the method described in section 3.2.4.

The Gaussian function creates an area of editing effect. The effect decreases with

the distance from the original moved center. For effective editing, the user must be

able to control the falloff effect of the 𝜎 parameter of the function, either directly or

indirectly by setting the distance at which the weights 𝑤𝑗 should become negligible.

In eq. 4.1 for determining the editing weights, c𝑖 refers to the effector center and c𝑗
refers to the center for which the weight 𝑤𝑗 is being determined.

32

4.3. Distributing motion to other frames

𝑤𝑗 = exp (−𝜎 · ∥c𝑖 − c𝑗∥2) (4.1)

The motion of center c𝑗 should therefore be described as ĉ𝑗 = c𝑗 + 𝑤𝑗t𝑖, where
ĉ𝑗 is the new position of the center c𝑗 after editing.

As that the Gaussian function can be applied at any distance from the center,

the behavior is well-defined for the entire domain, creating no sudden jumps at the

edge of a given editing radius.

However, the user might conceivably prefer for distant centers not to move at

all. To achieve this, a threshold parameter could be introduced. This would create a

slight discontinuity at the edge of the domain, causing some centers to be affected

by editing, even if minimally, and their neighbors not to be affected at all. However,

even this discontinuity could be exploited by a creative user, forming a different

class of deformations with a hard edge.

The impact of editing could also be restricted to nearby centers using compactly

supported functions. Such functions have nonzero values only on the ⟨0, 1⟩ interval.
Wendland’s functions [Fas07] are an example of a family of compactly supported

functions.

For the purposes of the analysis, implementing the basic variant of falloff with

no thresholding is most important, since this variant is more likely to preserve local

detail, while hard-edge editing operations are in a certain sense more destructive.

This work aims mostly at achieving smooth deformations, which preserve surface

properties, rather than operations, which could be intentionally destructive.

4.3 Distributing motion to other frames
Once the motion has been distributed to all of the affected centers within one frame,

their motion should be distributed to other frames. Several approaches to frame-to-

frame motion distribution are possible:

• distribution, which transfers motion between two successive frames by find-

ing the nearest neighbors of the effector in the current frame and transfer-

ring the motion to the corresponding neighborhood in the next frame (frame

𝐴 → 𝐵, 𝐵 → 𝐶),

• deformation, which finds the neighborhood of the effector in the edited frame

and transfers the motion to the same neighborhood in each next frame (frame

𝐴 → 𝐵, 𝐵 → 𝐶),

• or a deformation, which finds the neighborhood of the effector in the edited

frame and transfers the motion from the edited frame to all other frames of

the sequence (frame 𝐴 → 𝐵, 𝐴 → 𝐶).

33

4. Proposed method

The approaches differ slightly in their expected behavior. Since centers are ex-

pected to travel throughout the sequence in a unified fashion, the first approach

should be similar to the remaining two approaches. However, neighborhoods do

change in practice, and an implementation using this approach could pick up the

motion of nearby centers which had not been edited in the originally edited frame.

The remaining two approaches differ minimally. If the neighboring centers were

transformed fully rigidly throughout the sequence, the approaches would be equiva-

lent. However, this is not the case, and transformations between neighboring frames

are likely to be closer to rigid than transformations between distant frames. There-

fore, the last approach was chosen for this method and the motion is distributed

frame-by-frame, using the affected frame as an origin point from which motion is

distributed backwards through the sequence, where the current frame is the source

frame and the previous frame is the target frame, while simultaneously also dis-

tributing the motion forward through the sequence, where the current frame is the

source and the next frame is the target.

In this step, the center temporal correspondence provided by the volume track-

ing is vital, as it establishes the natural movement of the volume between the frames.

For each center, a neighborhood of 𝑛 centers can be found. By comparing their cur-

rent locations with their locations in the following frame and extracting an optimal

rotation R𝑓
, which would achieve this natural movement of centers between the

frames, the natural movement can be extracted. The index 𝑓 refers to the target

frame index.

The translation vector t𝑖 of the edited center can then be transformed using

this naturally occurring rotation, in principle maintaining the natural motion but

extending it by features added by the animator. In the target frame, the neighbor-

hood of the edited center can once again be used to determine the next optimal

transformation and repeatedly transform the translation vector t𝑖, until it has been
carried to the beginning and the end of the sequence. The transformed vector t𝑖 can
be denoted t𝑓

𝑖
, signifying that it had been transformed from the coordinate system

of its neighborhood in frame 𝑓 − 1 to the coordinate system of the frame 𝑓 . In each

frame, the vector t𝑓
𝑖
can then be used to determine center deformation using the

same method that had been used to determine center deformation in the frame that

had originally been edited. The recursive process of calculating the vector t𝑓
𝑖
in each

frame is described in eq. 4.2 and shown in the diagram in fig. 4.1.

t𝑓
𝑖
= R𝑓 t𝑓−1

𝑖
(4.2)

The optimal rigid transformation can be calculated using the Kabsch algorithm,

which will be further discussed in section 5.2.1 on the implementation of this

method. Nearest neighboring centers can be found using a kd-tree, which is a data

34

4.4. Deforming the surface

t𝑓
𝑖

t𝑓−1

𝑖
t𝑓+1

𝑖
t0

𝑖
t𝑛
𝑖

R𝑓−1 R𝑓+1

Figure 4.1: A diagram of the motion distribution process. Optimal rotation R𝑓
is

used to progressively deform the original translation vector t𝑖.

structure that allows for space partitioning suitable for speeding up neighborhood

queries. It will be described in more detail in section 5.2.2.

Notably, this part of the pipeline in principle does not care about how motion

is distributed from the center which had been edited originally. It simply finds the

rigid transformation, which places the edited point into the coordinate system of

the next frame. This means that if the editing action can be defined by the starting

position and rotation of the edited center and its final position and rotation, it is

fully defined for the target frame as well, regardless of the specific algorithm for

motion distribution within the frame. This is important for future implementation

of functions such as rotation editing, which may not need to replace this component

of the pipeline, although that depends on the specifics of the editing action.

Other editing actions, such as actions which could shrink or increase the volume

around a point, would likely have to reimplement this pipeline step as well, since

distributing translation vectors throughout the sequence would not be relevant. In

this specific case, distributing the editing action would likely be very simple, since

the volume corresponding to each center is well defined in each frame and a volume

scaling parameter would remain constant throughout the sequence, requiring no

special calculation to distribute it.

4.4 Deforming the surface
Finally, the motion of the volume elements throughout the entire sequence can be

used to deform the triangle meshes in each frame of the sequence. At this stage,

the volume elements have been successfully deformed in every frame and their

repositioning should translate into changes of the surface.

In order to deform the surface itself, nearest neighboring centers to each vertex

of the mesh can be discovered, and a translation can be determined by weighing the

motion of these centers from their unedited positions to their edited positions. The

weights can be determined in a manner similar to eq. 2.10 and 2.11 in embedded

deformations, weighing the influence of each center based on its distance from the

vertex. By moving every vertex on the surface in this manner, the entire surface is

deformed.

The deformed position v̂𝑓

𝑖
of a vertex v𝑓

𝑖
, the 𝑖-th vertex in frame 𝑓 , can be calcu-

lated as per eq. 4.3. Here 𝑘 denotes the number of nearest neighboring centers to the

35

4. Proposed method

vertex used by the method, 𝑤̄𝑗 is the normalized weight of the edited center ĉ𝑓
𝑗
as per

eq. 2.11 and c𝑓
𝑗
is the position of the same center prior to the sequence deformation.

v̂𝑓

𝑖
= v𝑓

𝑖
+

𝑘−1∑︁
𝑗=0

𝑤̄𝑗(ĉ𝑓𝑗 − c𝑓
𝑗
) (4.3)

However, this step introduces potential problems. An initial issue is the integer

number of neighbors which affect the deformation, which is not only tracking-

dependent, but also somewhat arbitrary, requiring manual parameter tuning. The

experiments should test the impact of the choice of the neighborhood size and im-

provements should be suggested in the analysis, with possible focus on themitigating

the difficulty of choosing the parameter.

Once again, the simplest variant of the algorithm should be implemented and

the above listed issues should be considered during analysis. Since this part of the

pipeline does not depend on the specific choice of algorithms used to modify the

volume elements, observations of its effects on the surface should apply regardless

of changes to the preceding pipeline steps. While modifications to the previous parts

of the pipeline could lead to better volume element distribution and placement, the

quality of the final product, i.e., the resulting edited time-varying mesh sequence

could be improved independently.

By improving this part of the pipeline in furtherwork, the edited center positions

could be re-processed to produce potentially higher quality results. Similarly, any

future software implementing this editing method could introduce new variants

of this pipeline step with the possibility to apply it to existing animation. This is

especially desirable in the commercial sphere. Applied to products, such as games

or animated movies, remastered versions of the media could be created simply

by updating the existing animation and rendering the product, requiring minimal

manual intervention and artist involvement.

36

Implementation 5
The application was implemented using the Unity engine version 2021.3.16f. The

Unity engine provides tools for advanced graphics rendering aswell as user interface

(UI) creation. The engine also supports virtual reality (VR) integration. Additional in-

formation about the implementation is available in the attached user documentation

in appendix A and programmer documentation in appendix B.

Initially, the application was developed as a desktop application with 3D graph-

ics. Screen captures from the original version of the application can be seen in fig. 5.1

and 5.2. The model was placed in a scene which could be manipulated using a cam-

era that could freely fly through the scene and rotate. The camera could approach

the model from any angle, however, some of the centers would be hard to view and

manipulate.

In this version of the application, centers could only be translated within the

camera view plane. This is sometimes exploited in other modeling applications,

since aligning the view plane with an axis can lead to easy base model creation with

precise vertex positioning. In an application focused on organic editing, this is less

desirable, since the flattened shape of the 3D model on a 2D screen is more difficult

for the animator to manipulate. The animator has to keep a mental model of the

shape of the surface and attempt to find the correct plane with which to align the

camera in order to make the desired changes. This often leads to unsatisfactory

results once the model is viewed from other angles.

In applications such as Blender, sculpting surfaces is possible and emulates the

real life process of clay sculpting. An inexperienced Blender user with experience in

clay sculpting can, however, easily struggle with the provided tools, since unlike in

real life, they are constrained to using them only in the view plane. These limitations

only become more apparent once the internal structure of an object can be edited,

rather than just the surface. A user reaching into a volume andmanipulating it would

have to maintain a mental model of the positions of all centers within the volume, at

best assisted by implied depth by lighting and depth-based coloring. Some editing

actions may even be impossible if the view of a given center is obstructed in the

desired editing plane and the user cannot set a depth at which the cursor should

37

5. Implementation

Figure 5.1: A screen capture of the original application concept which was aban-

doned in favor of VR integration.

Figure 5.2: Centers could be translated only in the camera view plane in the legacy

application. The influence of the editing action was shown in blue, visibly falling off

with distance, while the selected vertex was shown in yellow.

38

5.1. Scene structure

operate. At that point, slicing of the model would have to be introduced to allow the

user to view and manipulate the center. The animator would have to use a slicing

control along with the pointer interchangeably.

These inconveniences lead to the original application concept being abandoned

in favor of a VR implementation, to which the original application has been con-

verted. One downside of such an implementation is that VR applications are often

deployed on the headset without access to the processing power and storage space

of a desktop computer. Specifically in this case, the Oculus Rift headset was used

during development, to which applications are typically deployed as Android .apk

packages.

However, the Unity engine allows for VR applications to be developed and pre-

viewed within the editor, while using the host computer to process the application

logic and store data. Desktop targeted builds of the applications also use the host

machine for processing and storage. This requires the headset to remain connected

to the computer, limiting the mobility of the user and the tracking options. When

connected to the computer, seated editing is most likely, rather than approaching

and manipulating the model as one would a physical object in reality.

In the future, a client-server architecture could be implemented, using the VR

client to display the model and submit editing actions and UI interactions to a

server, which would then use the resources of the host machine to calculate the

deformation and return the final center and vertex positions back to the user. Since

TVM sequences have high storage requirements as well, storing the full sequence

on the headset would likely be impossible. This would require some form of loading

system for the data, which would keep only a part of the sequence available to the

user and load in the remaining parts on-demand. Implementing this system was

attempted, but was scrapped due to the complexity of the communication between

the client and server components, which would not be possible to complete within

the scope of this work.

In the following text, the implemented VR application is presented. First, the

structure of the application is described along with the used resources. Later, the

chapter describes how editing actions are processed in practice, which components

contain the processing logic, and how they communicate.

5.1 Scene structure
The Unity engine organizes applications into scenes. Scenes contain game objects,
the basic building block of Unity applications. Game objects are then further orga-

nized hierarchically within a scene. A scene defines the root of a coordinate system,

in which the game objects are contained, each having their transformation - their

own position, location and scale. This transformation defines a local coordinate sys-

39

5. Implementation

tem, in which child game objects can be contained. Scripts attached to game objects

are called components.
The editing system is composed of only one scene. This scene contains several

top level game objects. Their functions will be described in detail along with the

functions of some of their child objects and components. The notable top level

objects are the following:

• XR Origin

• Environment

• Level

• Controller

• Brush

The XR Origin object is one of the most important objects in the scene, as it rep-

resents the VR headset along with the controllers. The application uses the UnityXR
Interaction Toolkit, which is a library for integrating virtual reality into Unity appli-
cations. Many options for integrating VR into Unity are available, however the XR
Interaction Toolkit is relatively mature and a wide range of learning materials which

utilize it is available. It also offers cross-platform compatibility, enabling support for

the application to be extended to other headsets in the future. While implementing

the VR interaction system, I loosely followed tutorials by Valem Tutorials [Val22].

The tutorials also provide an animated variant of the Oculus hand models, which I

have used in the application.

Most of the interaction logic is contained in the XR Interaction Toolkit scripts
attached to the XR Origin object and its children. The Left Hand and Right Hand
child objects contain the XR Controller component, representing the VR controllers

and their Input System action bindings. Further among their child objects, XR Poke
Interactor components enable poke-type interactions with the user interface.

The Left Hand andRight Hand objects each have aCanvas component attached to

one of their child objects. This object represents amenu,which the user can access by

turning the inside of their wrist towards the headset. The right hand menu contains

general settings and playback controls, while the left hand menu allows for setting

editing parameters. This interaction between the direction of the user’s sight and

the menus is enabled by XR Gaze Interactor and XR Gaze Interactable components.

Lastly, a teleportation function is implemented to enable easy navigation. Tele-

portation is made possible by the XR Ray Interactor component. Teleportation Area
and Teleportation Anchor objects then mark objects in the scene as areas which can

be teleported to.

40

5.2. Method implementation

The Environment game object is mainly cosmetic, replacing the default skybox

with an outer space visual. Since the application may serve as promotional material

at the UWB, it is desirable for the application to be visually attractive. Therefore,

it was designed to resemble a space ship or a space station hangar with a view of

space and futuristic neon visuals. The sky box was designed following a tutorial

by Paradyme Games [Par20] and uses textures provided by the creator. The VR

environment can be seen in fig. 5.3 and 5.4. An example of editing is shown in fig.

5.5.

The Level game object contains all of the components of the level, which have

been built using the 3D Free Modular Kit [Bar23] available at the Unity Asset Store.
It also contains the interaction UI for selecting input sequences. The Sequence object
is a child of the Level object as well. The Sequence object is discussed further in the

next section, as it contains some of the sequence loading and editing logic.

Controller is a simple game object with one script attached. This script loads

the settings file from the current directory, which should contain the path to the

directory containing the input data. In the archive enclosed with this work, the build

of the application points to the included input sequences.

Brush is the game object that contains the majority of the logic components. It

will therefore be described thoroughly in the next section, which shows how all of

the above listed components contribute to the application.

Along with the already mentioned resources, I have also used Google Icons and

Google Fonts to create the application UI. The application uses the Major Mono
Display font.

5.2 Method implementation
The sequence is loaded via the Sequence UI component, which is represented by a

world-space canvas near the location at which the user enters the application. For

each available sequence, the canvas contains a button which loads this sequence.

The button calls to the Sequence component attached to the game object of the same

name, calling its Load()method.

The method loads frames of the sequence by reading the centers files, mesh files

and a settings file containing the playback framerate in frames per second (FPS).

The method is ran asynchronously, as loading the sequence is resource-intensive

and would otherwise cause the main thread to wait for the sequence files to be

read. From the user’s point of view, the application would become unresponsive

and stuck on the last rendered frame. In virtual reality, this can be an uncomfortable

experience and should therefore be avoided whenever possible.

Once the files have been loaded, themethod initializes theCenter Pool to the loca-
tions of the centers in the first frame of the sequence. TheCenter Pool is a component

41

5. Implementation

Figure 5.3: A screen capture of a frame of the TVM sequence centers displayed in

VR. The mesh surface can be made transparent, making the centers easy to view

and interact with. The playback menu is also shown in the image.

Figure 5.4: A screen capture of a frame of the TVM sequence displayed in VR. The

surface material is set to an opaque lit material, making the surface easier to inspect,

but hiding the centers. Some centers may be visible due to their diameter not fitting

into the volume they represent. They may also be displaced from the volume by

editing.

42

5.2. Method implementation

Figure 5.5: A screen capture of the editing process in the VR environment. The

influence of editing is shown in red with a visible falloff, while the edited center is

highlighted in yellow.

which manages the Center UI objects in the scene. It initializes a pool of centers of

the size required by the sequence. Only centers for one frame are initialized, since

no more than one frame will be shown at one time, and center counts are constant

in all frames. This means that all frames of the sequence can be displayed simply by

moving the center object positions. Similarly, each frame of the mesh is represented

by one object, for which vertex coordinates and connectivity are updated as the

sequence is played back.

The actual center position values are kept separate from the coordinates of their

UI representations. This allows the centers to be edited in the UI without losing

their true locations. In fact, after each editing action is committed and calculated, UI

positions are fully reset using the updated model data. This is a principle from the

Model-View-Controller (MVC) software design paradigm, in which the UI compo-

nents are kept independent from the model representation. The user interacts with

a controller, in this case the Sequence component, in order to commit an editing

action. The controller propagates this action to the model, which is then modified.

The modifications of the model are then propagated to the view components.

The CommitEdit()method is also executed asynchronously, since it can be very

time consuming, especially for longer or larger sequences. In fact, in the current

implementation, the method is nowhere near capable of running in real time, which

is discussed later in section 6.2. Most of the time is spent on surface deformation.

While the method is running, the handheld controller game objects are disabled

and a prompt indicating that the application is waiting to finish processing a task is

43

5. Implementation

shown. Hiding the controllers prevents the user from interacting with the environ-

ment in an unpredictable manner during the editing, however, their input actions

still activate if buttons are pressed. This means that the user is free to continue mov-

ing throughout the room by using the teleport function or the joystick walk, but

will not trigger events on the UIs which are highly sequence-dependent.

Editing activates the Commit() method on the Brush component. A Brush is

simply a collection of components which define each of the remaining three steps

of the pipeline:

• Center Deformation,

• Sequence Deformation,

• and Surface Deformation.

These classes are abstract. They are implemented by the classes Gaussian Cen-
ter Deformation, Kabsch Sequence Deformation, and Neighborhood Surface Deforma-
tion. Each of these components contains a method which executes their step in the

pipeline. The components’ methods are called from the Brush class, which therefore
defines the flow of data between them and the order of processing.

TheBrush class never explicitly calls the center deformation component. Instead,

it calls the sequence deformation component and hands over the center deformation

component as a parameter of the call. The sequence deformation component’s task

is to propagate center deformation from the initial frame throughout the entire

sequence, therefore it needs to have access to the center deformation algorithm.

Instead of processing only the remaining frames of the sequence, it is reasonable to

include the deformation of the initially edited frame in its scope.

Once the centers have been deformed in each frame by the sequence deforma-

tion algorithm, control is handed over back to the Brush class, which has retained
original center positions and received the deformed positions. The original and de-

formed positions are passed over to the surface deformation component and used

to calculate the translation vectors by which each vertex of the surface should be

moved. The deformed vertex positions are passed back to the Brush class, which
updates the model. At this point, the Commit()method is completed and the frame

is redrawn in the UI. Simplified code of the algorithm can be found in the listing

5.1.

Source code 5.1: Committing edits

1 void Commit(int centerIndex , int frameIndex , Vector3
transformedCenter , Frame[] frames)

2 {

3 var center = frames[frameIndex]. centers[centerIndex];

44

5.2. Method implementation

4 var translation = transformedCenter − center;

5

6 / / D e f o rm i n g t h e c e n t e r s i n e a c h f r am e o f t h e s e q u e n c e
7 var deformedCenters = sequenceDeformation.DeformSequence(

centerIndex , frameIndex , translation , frames ,

centerDeformation);

8

9 for (int i = 0; i < frames.Length; i++)
10 {

11 / / D e f o rm i n g t h e s u r f a c e i n f r am e i u s i n g t h e b o t h
12 / / t h e u n e d i t e d and t h e d e f o r m e d c e n t e r p o s i t i o n s
13 var deformedSurface = surfaceDeformation.

DeformSurface(frames[i].centers , deformedCenters[i],

frames[i]. vertices);

14

15 / / U p d a t i n g t h e m o d e l
16 frames[i]. centers = deformedCenters[i];

17 frames[i]. vertices = deformedSurface;

18 }

19 }

The Gaussian Center Deformation component is trivial, in that it simply takes

each center and calculates the weight by which the translation of the effector should

be scaledwhen applied to it. Amore interesting algorithm can be found in theKabsch
Sequence Deformation class.

The algorithm first finds the nearest neighbors of the effector in the current

frame. This is the only time that the nearest neighbor query is executed by the

sequence deformation algorithm. The Carry() function is then used along with a

direction parameter which should be set to either 1 or -1. The parameter defines

the direction from the current frame in which the effector translation should be

distributed. The method determines the source and the target frame and finds the

optimal rotation by which to rotate the translation vector. It uses the Kabsch algo-

rithm described in section 5.2.1. It then carries this vector into the next frame in the

same direction using the same neighboring vertices. Lastly, it calculates the center

deformations for the current frame using the transformed vector. This process is

repeated until the beginning or the end of the sequence is reached.

The assumption that the same neighborhood can be used throughout the entire

sequence may lead to some inaccuracy in cases where the initial neighborhood did

not consist of centers which travel together for the entire duration of the sequence.

However, the method provides visually good results and in case of editing artifacts,

changes to themethodwould be trivial. Simplified code of the sequence deformation

and the carry method can be found in listings 5.2 and 5.3 respectively.

The Neighborhood Surface Deformation component is once again trivial in its

45

5. Implementation

implementation. Its notable feature is the use of a kd-tree, which is initialized once

per frame and used to search for the nearest neighbors of each vertex in the frame.

The kd-tree data structure is described in section 5.2.2.

Source code 5.2: Sequence deformation

1 Vector3 [][] DeformSequence(int centerIndex , int frameIndex ,
Vector3 translation , Vector3 [] centersBefore , Vector3 [][]

allCenters , CenterDeformation centerDeformation)

2 {

3 int frameCount = allCenters.Length;
4 Vector3 [][] deformedFrames = new Vector3[frameCount

][];

5

6 / / F i n d i n g t h e n e a r e s t n e i g h b o r s t o t h e e d i t e d v e r t e x
7 var nearestCenters = GetNearestNeighbors(allCenters[

frameIndex][centerIndex], centersBefore);

8

9 / / C a r r y i n g t h e e d i t t o w a r d s t h e b e g i n n i n g o f t h e
s e q u e n c e

10 Carry(centerIndex , frameIndex , −1, frameCount ,

nearestCenters , translation , allCenters , deformedFrames ,

centerDeformation);

11

12 / / C a r r y i n g t h e e d i t t o w a r d s t h e e n d o f t h e s e q u e n c e
13 Carry(centerIndex , frameIndex , +1, frameCount ,

nearestCenters , translation , allCenters , deformedFrames ,

centerDeformation);

14

15 / / D e f o rm i n g t h e c e n t e r s i n t h e c u r r e n t f r am e
16 deformedFrames[frameIndex] = centerDeformation.

DeformCenters(centerIndex , translation , allCenters[

frameIndex]);

17

18 return deformedFrames;
19 }

Source code 5.3: The Carry method

1 void Carry(int centerIndex , int frameIndex , int
frameDirection , int frameCount , int[] nearestCenters ,
Vector3 translation , Vector3 [][] allCenters , Vector3 [][]

deformedFrames , CenterDeformation centerDeformation)

2 {

3 int nextFrameIndex = frameIndex + frameDirection;
4 bool isBeforeSequence = nextFrameIndex < 0;

5 bool isAfterSequence = nextFrameIndex >= frameCount;

6

7 / / R e c u r s i o n s t o p c o n d i t i o n

46

5.2.1. The Kabsch algorithm

8 if (isBeforeSequence || isAfterSequence)
9 return;
10

11 / / F i n d i n g t h e r o t a t i o n m a t r i x R u s i n g t h e K a b s c h
a l g o r i t h m

12 var P = Kabsch.MatrixFrom(centerIndex , nearestCenters

, allCenters[frameIndex]);

13 var Q = Kabsch.MatrixFrom(centerIndex , nearestCenters

, allCenters[nextFrameIndex]);

14

15 var avgP = Kabsch.Avg(P);

16 var avgQ = Kabsch.Avg(Q);

17

18 Kabsch.Subtract(P, avgP);

19 Kabsch.Subtract(Q, avgQ);

20

21 var R = Kabsch.GetRotation(P, Q);

22 var RD = R ∗ translation;

23

24 / / C a r r y i n g t h e e d i t t o w a r d s t h e n e x t f r am e
25 var rotatedTranslation = new Vector3(RD[0], RD[1], RD

[2]);

26 Carry(centerIndex , nextFrameIndex , frameDirection ,

frameCount , nearestCenters , rotatedTranslation , allCenters

, deformedFrames , centerDeformation);

27

28 / / D e f o rm i n g t h e c e n t e r s i n t h e c u r r e n t f r am e
29 deformedFrames[nextFrameIndex] = centerDeformation.

DeformCenters(centerIndex , rotatedTranslation , allCenters[

nextFrameIndex]);

30 }

5.2.1 The Kabsch algorithm
The Kabsch algorithm was first introduced in A solution for the best rotation to relate
two sets of vectors [Kab76; Wik23a] in 1976 by Wolfgang Kabsch. The method is

used to calculate an optimal rotation matrix which aligns the points in two sets by

minimizing the root mean squared deviation (RMSD) [Wik23c] between point pairs.

RMSD is calculated as per eq. 5.1, where 𝑥̂𝑖 is the expected position of a point, 𝑥𝑖

is the actual position of the point and 𝑁 is the size of the point set. In the point

alignment problem, 𝑥𝑖 and 𝑥̂𝑖 correspond to the coordinates of the points in the

source and the target frame.

𝑅𝑀𝑆𝐷 =

√︄∑𝑁
𝑖=1

(𝑥̂𝑖 − 𝑥𝑖)2

𝑁
(5.1)

47

5. Implementation

This method is used very frequently in computer graphics, since aligning two

sets of points is a common problem. For example, the problem also appears in point

cloud registration, which is one part of the 3D scanning process. Since depth images

only capture the scanned object from one point of view, multiple images have to

be merged to obtain a full view of the scanned surface. As depth images produce

point clouds, the problem of merging two images translates directly to finding the

optimal transformation which would align the two point sets.

Along with finding the optimal rotation, optimal translation is sometimes re-

quired. The problem of finding both the optimal rotation and translation is called

the partial Procrustes superimposition [Wik23b]. It differs from full Procrustes su-

perimposition by omitting the scaling of the point set.

Given a point setA and a point setBwhich should be aligned by optimal rotation,

the Kabsch algorithm begins by building matrix P as an (𝑁 × 3) matrix created

by placing the coordinate vectors of the points from set A as rows of the matrix.

Analogically, the matrix Q is created using the points from set B.

An average of each point set is then found. This is the position of the centroid

of each of the point sets. The algorithm works by translating both point sets so that

their centroids lie in the origin of the coordinate system. Therefore, the centroid

position of the point set Amust be subtracted from each row of the matrix P, and

the centroid of set Bmust be subtracted from the rows of matrix Q.

If the point sets contained identical points that had merely been rotated and

translated, it is easy to see that at this step, the point sets could be precisely aligned

simply by rotating one of them until alignment. However, the point sets are typically

distorted and do not align perfectly.

In the next step, the Kabsch algorithm calculates the covariance matrix H as per

eq. 5.2. The desired rotation matrix R can then be computed using Singular Value

Decomposition (SVD). The SVD of matrix H can be seen in eq. 5.3. Finally, based

on the sign of the determinant of VUT
from eq. 5.4, the matrix R can be computed

using eq. 5.5. The implementation of the Kabsch algorithm in this work uses the

Math.NET Numerics [Mat23] library for linear algebra as well as the SVD algorithm

implementation.

H = PTQ (5.2)

H = UΣVT
(5.3)

𝑑 = sgn det (VUT) (5.4)

R = V

1 0 0

0 1 0

0 0 𝑑

 UT
(5.5)

48

5.2.2. Kd-tree

5.2.2 Kd-tree

A k-dimensional tree [Ben75], also written as kd-tree or k-d tree, is a data structure
used in space partitioning point sets, particularly in applicationswhich require quick

nearest neighbor or range searches. Range searches are a type of search that looks

for all the points which lie within a specified distance from a query point.

A kd-tree can be constructed by splitting the point set along each axis recursively.

In each step, the point with the median coordinate along the currently processed

dimension is selected and used to divide the point set in two parts. Each of these

parts is then processed along the next dimension. Given a 3-dimensional case, this

means that the point set would first be split by a plane along the 𝑥 axis, forming

two point sets which would each be split along the 𝑦 axis, forming four different

point sets, which would then be split along the 𝑧 axis. The algorithm continues to

subdivide the point set, cycling back to the 𝑥 axis and repeating the steps until all

nodes contain sufficiently small point sets.

This has the benefit of defining very small neighborhoods. Initially, nearest neigh-

bors can be searched for locally, within one node. If the distance to the nearest

neighbor is smaller than the distance to the nearest dimension divider, the point

must be the true nearest neighbor, since no closer point can lie beyond the divider.

If the nearest neighbor within the node does not fulfill the condition, the neighbor-

ing node must be searched as well. The traversal of the tree continues up the tree

hierarchy until the condition of the nearest neighbor being closer than the nearest

divider from an unsearched area is fulfilled.

Kd-trees provide the most benefit when they can be used repeatedly for many

searches over the same point set. The complexity of kd-trees construction is shown

to be O(𝑛 log(𝑛)) in On building fast kd-Trees for Ray Tracing, and on doing that in
O(N log N) [WH06]. This is the case of the proposed surface deformation method,

which searches for nearest neighboring centers of each vertex in the mesh.

The input point set is the set of center positions before the editing action. Typi-

cally, the set of centers will be much smaller than the set of all vertices in each frame.

Since the 𝑛 in the complexity function refers to the size of the input point set, the

cost of building and searching the tree is decoupled from the size of the input mesh

data. At the same time, the tree has to be searched once for each vertex in each frame.

The complexity of kd-tree nearest neighbor searches is O(log(𝑛)) on average and
O(𝑛) in the worst case. For finer tessellations, this means that kd-tree generation

and searches can remain fast as long as the center count stays the same.

Regardless of this, surface deformation remains the slowest part of the algorithm.

This is expected, since vertices in each frame can number in the tens of thousands,

while the number of centers, which are processed in the previous steps, is an order

of magnitude smaller.

49

5. Implementation

The implementation of a kd-tree used in this work was provided along with

the volume tracking algorithm by the UWB. The method used to retrieve nearest

neighbors from the tree searches the tree up to a given distance from the input

point, returning all neighbors in the radius. This can be an insufficient number of

neighbors, necessitating a second search with an increased range parameter. The

parameter is doubled each time the search fails. A kd-tree which could continue the

search until a sufficient number of neighbors was found could improve the efficiency

of the implemented surface deformation method. Additionally, the range parameter

can work well if the required number of neighbors can usually be found at first or

second search. However, the optimal value of the parameter depends on the volume

sampling as well as the scale of the model, complicating its selection.

50

Testing and analysis 6
This chapter introduces the data used in the experiments and the data formats used

by the application. The data is then used in editing experiments, which are then

evaluated. Based on experiment results, modifications and future directions for the

work are suggested.

6.1 Input data
The sequences used in this work have been published by the authors of Articu-
lated Mesh Animation from Multi-View Silhouettes [Vla+08a] and are available online
[Vla+08b]. The dataset consists of dynamic mesh sequences, however, the editing

system does notmake use of the temporal correspondence between sequence frames

and effectively treats them as TVM sequences.

6.1.1 Input data format
The input directory is specified in the settings.xml file. This directory is searched
when the application is started and all of its subdirectories are assumed to contain

input sequences of the same name. The names are listed in the UI. Upon selecting

one of the sequences, the application attempts to load the sequence data. In the data

folder of a sequence, the subfolders centers and meshesmust be present. Optionally,

a settings.xml file can also be present, which is used to set the default sequence FPS.

Examples of settings.xml files are included in the attached data archive. The location
of the files is listed in appendix C.

Themeshes directory is expected to contain files in the .obj format. An example

of an .obj file is shown in listing 6.1.

File 6.1: Mesh file format.

v 0 . 4 9353 0 . 0415381 0 . 0984336

v 0 . 514614 0 . 0468725 0 . 0316093

v 0 . 4 9535 0 . 0479066 0 . 0146358

51

6. Testing and analysis

. . .

f 1545 1538 1564

f 1539 1523 1569

f 1569 1523 1553

. . .

The centers directory is expected to contain files with either the .xyz or .bin
extension. The specific extension is important, since it determines which file loading

algorithm will be used. An example of an .xyz file is shown in listing 6.2. The

structure of the .bin file is similar. It begins with a single integer indicating the

number of centers stored in the file. The remaining data consists of float numbers,

where every three consecutive floats represent the 𝑥, 𝑦 and 𝑧 coordinates of a center,

respectively.

File 6.2: Centers .xyz file format.

0 . 34939298 0 . 89302266 −0 .14726524

0 . 36640382 0 . 5401483 −0 .022185493

0 . 37571722 0 . 6321302 0 . 074741736

. . .

6.2 Experiments
6.2.1 Sequence: samba
6.2.1.1 Enlarging the stomach

The first experiment focused on enlarging the stomach area of a model. The desired

shape was easily modeled by selecting a suitable falloff parameter for the Gaussian

function. The surrounding centers of the effector moved in the expected way, cre-

ating a bulging stomach. Several editing actions were required to adjust the shape

to look more natural. The editing actions carried over well to other frames and

extended well to the surface as well. A comparison image of the surface before and

after editing can be seen in fig. 6.1.

One downside of the process was the long processing time for surface defor-

mation. The average time in seconds spent on each stage of processing per editing

action can be found in table 6.1. As the table shows, the algorithm spends the vast

majority of the processing time in the surface deformation stage. In an effort to

decrease the time spent in this stage, using only two nearest neighbors in the sur-

face deformation stage was attempted and the editing process was repeated. The

results can be seen in fig. 6.2. When using two nearest neighbors, effectively only

one neighbor is used, since the most distant neighbor is always assigned a weight of

52

6.2.1.2. Bending the arm

zero. As can be seen from the figure, the surface becomes distorted when using only

one neighbor to influence the deformation of the geometry. The change also did not

lead to a significantly lower processing time. This can be related to the search radius

of the kd-tree, which may on average be returning a greater number of centers than

necessary, leading to some parts of the algorithm processing the same amount of

centers, despite the fact that only two centers would be used.

6.2.1.2 Bending the arm

In the next experiment, the arm of a model was bent upwards. A larger falloff param-

eter had to be chosen, since the influence of the editing action would have spread

to the torso of the model otherwise. The forearm was then edited by first moving a

center near the middle and then near the tip of the hand. The deformation did not

have the expected results, excessively deforming the forearm in a way that was not

recoverable by further editing. The result of deformation in the edited frame can be

seen in fig. 6.3. The deformation also did not carry through the sequence well, the

forearm deforming excessively in the final frames of the sequence. This can be re-

lated to the neighborhood of the edited center, since the hand of the model touches

the torso in the last frames, which causes centers to be redistributed in the volume

near the contact point. A comparison of the last frame of the sequence before and

after editing is shown in fig. 6.4.

6.2.2 Sequence: squat2

6.2.2.1 Mohawk

In the squat2 sequence, the model’s hairstyle is quite well defined and should be

possible to deform to simulate longer hair. The sequence was tracked using 4000

centers, leading to most of the volume being densely packed with centers. However,

in the head and hair area, fewer centers are available, likely due to the smaller volume

of these areas. The centers inside the hair volume were rather few and far apart. By

using a large falloff parameter, it was possible to move them almost separately from

the remaining centers. A comparison of the surfaces before and after editing is

shown in fig. 6.5

The radial symmetry of the falloff pattern is undesirable in this case, as the

hairstyle extends in one direction and choosing effectors in a way that would com-

bine translations favorably is rather unintuitive. For an animator, it would be much

easier to have a tool with a different falloff pattern available.

53

6. Testing and analysis

Figure 6.1: A side-by-side comparison of a frame of the sequence before and after

editing.

Figure 6.2: The surface is distorted when only one neighbor influences the surface

deformation.

54

6.2.2.1. Mohawk

Figure 6.3: Bending the arm did not result in the desired outcome.

Figure 6.4: The edit did not carry through the sequence well.

55

6. Testing and analysis

6.2.2.2 Nose job

Interesting applications of the method could be found in facial deformation, since

the currently implemented brush shape is well suited to making rounded, bulge-

shaped edits to the surface. Since much of the human face is rounded, applications

could include deforming the cheeks, cheekbones, nose, lips or eyebrow shape, as

well as the overall head shape. Such deformations could even change the appearance

of a person sufficiently to appear as a different sequence model. In applications

where crowds of people with some variety of appearance is required, this could be

beneficial.

Unfortunately, the face of the model does not contain as many centers as other

areas of the body, making fine and smooth edits affecting only very small volumes

difficult. As a proof of concept, the nose shape of the model was modified. This

modification can be seen in fig. 6.6. The modification carried well throughout the

sequence, deforming the model’s face believably and maintaining the surface details.

6.2.2.3 Slimming

Themodel in the squat2 sequence is wearing loose clothes which can be quite promi-

nent in the stomach and leg areas. A slimming deformation was therefore attempted

with the goal of making the clothes appear tighter. The deformation carried well

throughout the sequence, although since a rather small falloff was used, large areas

were affected all at once, bending the model’s knees slightly. By using a larger falloff

and editing more centers along the legs, a tighter fit of the pants could have been

achieved without the effect spreading to the rest of the sequence. The results of the

experiment can be seen in fig. 6.7 and 6.8.

6.2.3 Sequence: handstand

6.2.3.1 Wide stance

In this experiment, widening the final stance of the model in the handstand position

was attempted. The results are shown in fig. 6.9 and 6.10. While unlike the samba
sequence deformation, it was possible to spread the arms wider, this resulted in

widening the model since a smaller falloff parameter was used. The model could

have been edited in the final stance instead, allowing the deformation to propagate

backwards to the starting pose. However, in the last frame, the shoulders of the

model would have had to be moved apart as well, which could not be done without

deforming the face of the model as well.

56

6.2.3.1. Wide stance

Figure 6.5: It was possible to lengthen the model’s hairstyle.

Figure 6.6: The model’s facial features are changed while still resembling plausible

human anatomy.

57

6. Testing and analysis

Figure 6.7: The edit in the standing position. The blue areas are the silhouette of the

model prior to editing.

Figure 6.8: The edit in the squat position.

58

6.2.3.1. Wide stance

Figure 6.9: The arms of the model have been opened wider with the goal to achieve

a wider stance in the handstand. Editing the arms also affected the torso, making

the model wider.

Figure 6.10: The deformation did carry through the sequence, but resulted in an

awkward stance.

59

6. Testing and analysis

6.2.3.2 Feet apart

In the next experiment, a similar widening of the model’s stance was attempted.

However, it was very difficult to attempt and spread the feet wider apart due to the

influence of the editing on the other leg. By editing only the tips of the feet, the

spread of influence was limited, but resulted instead in an unnatural shape of the

legs. The deformations also did not carry well through the sequence. The results are

shown in fig. 6.11 and 6.12.

6.2.3.3 Hump back

In the final experiment, a similar deformation to the samba belly deformation was

attempted. The back of the model in the handstand sequence moves very dynami-

cally. A hump was added to the back successfully and carried through the sequence,

however, the motion at playback is unconvincing, as the hump does not give an

impression of being a part of the model’s body and instead appears to move with

the model’s clothes. The results can be seen in fig. 6.13 and 6.14.

6.3 Analysis

The editing method in its current state has been tested and shown to be well suited

for some types of intended deformation. The shape of the effector’s area of effect

makes the method well suited for adding rounded features to models and making

small localized corrections, such as adjusting the shape of an area of a model’s body

or changing their facial features.

Attempts at deforming larger areas of sequences, such as attempts at changing

arm or leg positions, did not lead to good results, which is expected, since the area

of effect could not be properly captured. Low quality of deformation can also be

caused by choosing an insufficient number of neighboring centers to be used in

surface deformation.

One drawback of using the method in its current implementation is the exe-

cution time per editing action. Ideally, animators should receive instant feedback.

However, the surface deformation part of the pipeline currently takes minutes to ex-

ecute per each editing action. The average time per one action for each experiment

is shown in table 6.1. The time spent on center deformation per method call was

almost always below one millisecond. Compared to surface deformation, sequence

deformation required an insignificant amount of time as well.

60

6.3. Analysis

Figure 6.11: Widening the stance of the model resulted in unnatural leg bending.

Figure 6.12: The deformation did not carry well through the sequence.

61

6. Testing and analysis

Figure 6.13: A hump was added to the model’s back.

Figure 6.14: The hump was maintained throughout the sequence, but inherited the

motion of the model’s clothing, thus appearing unnatural in motion.

62

6.4. Proposed improvements

Table 6.1: Average editing times. Center and vertex counts are listed per frame.

Experiment Frames Centers Vertices Deformation time [s]
Centers Sequence Surface

belly

175 1000 9971

0.00 0.03 49.20

belly 2 0.00 0.04 48.78

arm 0.00 0.03 49.35

mohawk

250 4000 10002

0.00 0.13 197.85

nose job 0.07 0.21 199.47

slimming 0.00 0.15 208.39

wide stance

175 1000 10002

0.00 0.03 32.95

feet apart 0.00 0.03 30.90

hump back 0.00 0.03 33.43

6.4 Proposed improvements
In the experiments, issueswere frequently caused by the editing area of effect extend-

ing to centers which should not be deformed, or not extending to the edited centers

with a sufficient deformation intensity due to the effort not to deform other areas of

the frame. This clearly indicates a need for a blocking function, which would con-

strain the positions of centers which should not be deformed. Similarly, the ability

to assign deformation intensity ahead of committing the deformation would greatly

improve the usability of the system. A system similar to weight painting in mesh

skinning could be implemented and deformations could be committed on demand,

rather than by center translation alone.

Deformations such as performed in the mohawk experiment could benefit from

introducing new shapes of the editing falloff function. The shapes could be config-

urable similarly to brush shapes in digital painting software. The user could then

be given a choice between committing edits immediately upon translating a center,

in which case the deformation would be controlled by the brush shape directly, or

using the weight painting system, which could be compatible with custom brush

shapes as well, but would differ in the requirement to commit the editing action

explicitly.

Other limitations of the system were encountered when larger scale deforma-

tions were attempted, such as bending the arm of a model. This specific use case

would benefit from a rotation-based editing operation, which could use a point in

space as a pivot along which centers would be rotated. Which centers should be

affected by the rotation could once again be determined by weight painting or by

blocking off the areas which should not be affected.

An interesting approach to modeling rotation could be inspired by mesh skin-

ning. The user could define a bone-like effector at runtime by specifying two points

63

6. Testing and analysis

in space to which nearby centers would be assigned. The user could then deform the

sequence bymanipulating this temporary bone. This could lead to a faster workflow

than specifying a pivot and blocking off undesirable areas.

A significant quality-of-life improvement could also be achieved by optimizing

the surface deformation part of the pipeline. Currently, it is not possible to edit

sequences in real time. The user has to wait minutes for each editing action to

complete the surface deformation.

One way to mitigate this issue (besides parallelization of the current solution)

would be to enable the user to edit only the sequence of centers first and execute

the surface deformation as a last step. This way, the user could make the required

modifications uninterrupted, triggering surface deformation on demand at their

own convenience. In this case, the user would lose the ability to verify that their

actions are having the desired effect on the surface. However, during the final surface

deformation, intermediate stages after each action could be saved, allowing the user

to return to a point at which an action made undesirable changes without losing

their previous work.

Alternatively, there is space for optimization in the nearest neighbor search al-

gorithm. Using a kd-tree without a search range parameter, which could potentially

cause the search to repeat, could speed up the calculation. The number of neighbors

could possibly also be set automatically as a quality of life improvement. By scaling

the models to a predefined size and finding the volume that each center represents,

neighborhood size could be determined from the size of the volume which should

affect each vertex. A suitable volume of effect could be determined experimentally.

A massive factor in surface deformation is also the number of affected vertices.

At this time, all centers are affected by each editing action due to the Gaussian falloff

parameter. If only some centers of the sequence were modified, it would naturally

follow that only the vertices near those centers could be affected by the deformation.

This could dramatically decrease the number of vertices to be deformed. As it is,

many vertices undergo minimal deformation which does not contribute to the over-

all look of the animation. This approach is dependent on being able to determine

which vertices should be affected by the edited centers. However, centers already de-

fine a volume to which they correspond - vertices near this volume should therefore

be affected.

In fact, modeling deformation as displacement of the cells represented by each

center could be beneficial. In the tracking, centers are evenly distributed throughout

the volume. This property is quickly lost during editing, since centers can fully exit

the volume or become clumped together. Any approachwhich could eithermaintain

the volume of the model during editing and redistribute centers appropriately could

possibly sustain a longer chain of deformations without the model becoming too

distorted. For deformations for which maintaining the volume is too restrictive,

64

6.4. Proposed improvements

explicit volume editing functions could be added.

Other possible improvements could arise by using the data generated during

the tracking stage to identify which centers move together in the sequence and

should therefore be deformed together. Such data could even be used to train a

neural network which could then attempt to extend the motion of the model, thus

prolonging the sequence. Although the applications of AI animationmight be limited

in this case, the current popularity of similar artificial intelligence applications could

bring exposure to this method.

65

Conclusion 7
This work focused on implementing a system for editing time-varying mesh se-

quences. In its first part, the work introduced the theoretical prerequisites to 3D

model representation and mesh editing, ensuring that the reader is familiar with

concepts relevant to the implementation of the method as well as basic concepts in

computer graphics.

The implemented method made use of a volume tracking system which had

recently been developed at the UWB. The system was also described in detail. Us-

ing tracking data generated by the tracking system, a method using the Gaussian

function for distributing deformations between deformed volume elements was de-

veloped. The volume element deformations were then further distributed to other

frames of the time-varying mesh sequences. Finally, based on the deformation of

the volume elements throughout the sequence, a method for deforming the mesh

surfaces was developed.

The results of the implemented method were analyzed. Based on this analysis,

future directions for the development of the system were proposed. Overall, the

work represents a first attempt at implementing a new approach to time-varying

mesh sequence editing with many possible directions for future improvement that

could lead to new workflows in the area of computer animation being developed.

67

User documentation A
The app can be launched by double-clicking the TVM VR Editor.exe file located in
the Application_and_libraries/Build directory or from the Unity engine project in

Application_and_libraries/Project. A virtual reality headset must be connected to the

computer, along with two VR controllers. The recommended headset is the Oculus

Rift, as it was used throughout the development. If the user wishes to use their

own data, they should change the path in the settings.xml file prior to starting the

application. The path should not contain spaces.

Upon entering the virtual environment, the user will appear in a room, which

they can navigate either using teleportation or using the VR controller thumbsticks.

The left controller thumbstick controls movement, while the right thumbstick con-

trols turning.

Teleportation is possible by lightly pressing the left trigger button, which will

first highlight the target location, and upon being fully pressed, will teleport the user.

The teleportation beam is shown in fig. A.1.

At start, the user should appear near the control station. The user can return

Figure A.1: By pressing the left trigger button lightly, the user can select an position

to be teleported to.

69

A. User documentation

Figure A.2: The sequence menu displays the available sequences. The Save button

saves the current state of the edited sequence.

to the control station by teleporting to a marked area on the floor. The control

station is the user interface enabling the selection of a sequence to be displayed, as

well as enabling sequences to be saved using the Save button. The UI is shown in

fig. A.2. The UI can be controlled by either hand using the tip of the index finger

shown in place of the controller. The list of available sequences is initialized at the

start of the application and will not refresh if changes are made to the file system.

Saved sequences are saved to the folder they have originally been loaded from. A

new directory is created which uses the original sequence name with an appended

timestamp.

Once the user has loaded a sequence, they can move towards it either by using

teleportation or using the left thumbstick walk. Once they are in range of the se-

quence, they can use the right trigger button to grab the displayed centers an move

them, thus editing the sequence. The centers to be edited light up, the intensity of

their coloring changing with the strength of the editing action. If the model is diffi-

cult to access, the user can use the right grab button to drag the model into a better

position. This does not affect the model data.

By facing the wrist side of the right controller, the playback menu is displayed.

Out of the five playback buttons, the top button skips to the beginning of the se-

quence, the bottom button skips to the end, the left button moves to the previous

frame, the right buttonmoves to the next frame (both options looping if they reach a

limit of the sequence) and the button in the center plays or pauses the sequence. The

sequence cannot be edited while it is being played. On the left side of the menu, the

upper button resets the position of the sequence, if it had been moved by using the

right hand grab. The second button on the left of the menu switches the sequence

mesh material. When the material is transparent, an alpha slider is available to the

70

A. User documentation

Figure A.3: The right hand menu controls playback and visualization.

Figure A.4: The left hand menu controls the settings of the brush.

user, allowing them to to control the visibility of the surface. Lastly, an FPS slider

is available, which slows down or speeds up the playback. The bar above the menu

displays the playback progress. The right hand menu is shown in fig. A.3.

A similar menu attached to the left controller contains brush settings. The sigma

parameter controls the falloff, where smaller numbers indicate slower falloff and

therefore a larger editing area, Kabsch neighbors refer to the number of neighboring

centers used to distribute center deformation between frames, and surface neighbors

refer to the number of neighboring centers used to deform the surface.

71

Programmer
documentation B
In the Unity engine, project resources as well as scripts are typically organized in

the Assets folder. The structure of the Assets folder in this project is the following:

• Plugins

• Resources

• Samples

• Scenes

• Scripts

• Settings

• TextMesh Pro

• XR

• XRI

The Plugins folder contains theMathNet.Numerics library .dll. The library is used
to implement the Kabsch algorithm.

The Resources folder contains data used to build the scene. It is further divided
into the following subfolders:

• 3rd party

• Fonts

• Materials

• Textures

• Prefabs

73

B. Programmer documentation

The 3rd party folder contains third party resources, such as the modular envi-

ronment asset, icons used in the user interface, textures used to create the galaxy

particle system and the animated hand models. The Fonts folder contains the font
used by the application as well as the generated SDF font asset. TheMaterials folder
contains the materials used in the scene. The Prefabs folder contains the prefab ob-
jects used as templates when instantiating game objects for the scene, such as the

model of sequence centers and a template for the sequence selection button. Lastly,

the Textures contains the used textures.
The Samples folder is a folder created by importing the XR Interaction Toolkit

samples library. The folder contains components provided by the library to enable

a simple implementation of VR interactions.

The Scenes folder contains the single scene of the application. The Settings folder
contains Unity pipeline presets. The TextMesh Pro folder contains a font rendering
library imported by Unity. Folders XR and XRI contain XR and XR interaction

settings.

The Scripts folder is the most interesting part of the project, as it contains the

original source code of the application. It contains the following subfolders:

• Creative

• Data Structures

• Interaction

• Logic

• UI

• Util

• Util/IO

• Util/Settings

The folder Creative contains scripts Sphere Wave and Sphere Wave Settings. The
Sphere Wave script contains the code which animates the centers shown prior to any

sequence being loaded. The Sphere Wave Settings script then contains the presets for
this animation.

TheData Structures folder contains the Face and Frame classes, which are simple

containers used to organize mesh vertices into faces and sequence data into frames.

It also contains the KdTree class, which was provided by the UWB.

The Interaction folder contains scripts Activate Teleportation Ray, Animate Hand
On Input and Grab To Move. The first two scripts were created following tutorials

74

B. Programmer documentation

by Valem Tutorials [Val22]. All of the scripts are used to react to input from the VR

controllers.

The Logic folder contains the core of the application. The Controller script looks
for input data on startup, while the remaining scripts form parts of the editing

pipeline. Center Deformation, Sequence Deformation and Surface Deformation are ab-
stract classes that define the input and output of each step of the editing pipeline.

Classes Gaussian Center Deformation, Kabsch Sequence Deformation and Neighbor-
hood Surface Deformation inherit from the abstract classes and provide implementa-

tions to the pipeline steps. The Brush class is responsible for calling the classes and
executing the pipeline.

The UI folder contains mainly simple scripts for processing UI events. Notable

classes include the Center IO class, which notifies registered listeners when a center

is hovered or selected, theCenter Pool, whichmaintains a pool of center game objects,

and the Sequence class, which is responsible for loading and saving sequences, as

well as triggering pipeline execution when a center is edited.

The Util folder contains classes Mesh IO and Centers IO used for loading the

input files and class Serialization used to serialize classes to .xml file. It also contains
settings container classes andmathematical helper classes including theKabsch class,
which provides methods implementing the Kabsch algorithm.

75

Readme.txt C
1 The work contains the following attachments:

2

3 Aplication_and_libraries

4 − Project/TVM VR Editor

5 The Unity engine project folder , including the source code.

6 A project settings file is located at

Aplication_and_libraries/Build/settings.xml.

7 Switch the input folder from Input_data to Results in the

file.

8

9 − Build

10 The built Unity application.

11

12 Input_data

13 − handstand

14 − samba

15 − short_samba

16 − squat2

17

18 Input sequences used in the experiments. Each folder

contains the centers and meshes directories as well as a

settings.xml file , which specifies the sequence framerate.

19

20 Poster

21 − Kacerekova_Zuzana_2023.pub

22 − Kacerekova_Zuzana_2023.pdf

23

24 Poster source file and generated PDF.

25

26 Results

27 − handstand_feet_apart

28 − handstand_hump_back

29 − handstand_wide_stance

30 − samba_arm

31 − samba_belly

77

C. Readme.txt

32 − samba_belly2

33 − squat_2_mohawk

34 − squat_2_nose_job

35 − squat_2_slimming

36

37 Experiment results.

38

39 Text_thesis

40 − A system for editing triangle mesh sequences with time −

varying connectivity.zip

41 − A_system_for_editing_triangle_mesh_sequences_with_time −

varying_connectivity.pdf

42

43 Thesis source files and generated PDF.

78

Bibliography

[Au+08] AU, Oscar Kin-Chung; TAI, Chiew-Lan; CHU, Hung-Kuo; COHEN-

OR, Daniel; LEE, Tong-Yee. Skeleton Extraction by Mesh Contraction.

In: ACM SIGGRAPH 2008 Papers. Los Angeles, California: Association
for ComputingMachinery, 2008. SIGGRAPH ’08. isbn 9781450301121.

Available from doi: 10.1145/1399504.1360643.

[Bar+18] BARILL, Gavin; DICKSON, Neil; SCHMIDT, Ryan; LEVIN, David I.W.;

JACOBSON, Alec. Fast Winding Numbers for Soups and Clouds. ACM
Transactions on Graphics. 2018.

[Bar23] BARKING DOG. 3D Free Modular Kit [https://assetstore.unity.
com/packages/3d/environments/3d - free - modular - kit - 85732].

2023. [Online; accessed 15-May-2023].

[Ben75] BENTLEY, Jon Louis. Multidimensional Binary Search Trees Used for

Associative Searching. Commun. ACM. 1975, vol. 18, no. 9, pp. 509–517.

issn 0001-0782. Available from doi: 10.1145/361002.361007.

[Che+11] CHENG, Wang; CHENG, Ren; XIAOYONG, Lei; SHULING, Dai. Au-

tomatic skeleton generation and character skinning. In: 2011 IEEE In-
ternational Symposium on VR Innovation. 2011, pp. 299–304. Available
from doi: 10.1109/ISVRI.2011.5759655.

[Dvo+22] DVOŘÁK, Jan; KÁČEREKOVÁ,Zuzana; VANĚČEK, Petr; HRUDA, Lukáš;

VÁŠA, Libor. As-rigid-as-possible volume tracking for time-varying

surfaces. Computers & Graphics. 2022, vol. 102, pp. 329–338. issn 0097-

8493. Available from doi: https://doi.org/10.1016/j.cag.2021.10.

015.

[Dvo+23] DVOŘÁK, Jan; KÁČEREKOVÁ, Zuzana; VANĚČEK, Petr; VÁŠA, Libor.

Priority-based encoding of triangle mesh connectivity for a known ge-

ometry. Computer Graphics Forum. 2023, vol. 42, no. 1, pp. 60–71. Avail-
able from doi: https://doi.org/10.1111/cgf.14719.

79

https://doi.org/10.1145/1399504.1360643
https://assetstore.unity.com/packages/3d/environments/3d-free-modular-kit-85732
https://assetstore.unity.com/packages/3d/environments/3d-free-modular-kit-85732
https://doi.org/10.1145/361002.361007
https://doi.org/10.1109/ISVRI.2011.5759655
https://doi.org/https://doi.org/10.1016/j.cag.2021.10.015
https://doi.org/https://doi.org/10.1016/j.cag.2021.10.015
https://doi.org/https://doi.org/10.1111/cgf.14719

Bibliography

[DVV21] DVOŘÁK, Jan; VANĚČEK, Petr; VÁŠA, Libor. Towards Understand-

ing Time Varying Triangle Meshes. In: PASZYNSKI, Maciej; KRAN-

ZLMÜLLER,Dieter; KRZHIZHANOVSKAYA, Valeria V.; DONGARRA,

Jack J.; SLOOT, Peter M.A. (eds.). Computational Science – ICCS 2021.
Cham: Springer International Publishing, 2021, pp. 45–58. isbn 978-3-

030-77977-1.

[Fas07] FASSHAUER, Gregory E. Meshfree approximation methods with MAT-
LAB. Singapore: World Scientific Publishing, 2007. Interdisciplinary

mathematical sciences. ISBN 9789812706331.

[HDV19] HRUDA, Lukas; DVOŘÁK, Jan; VÁŠA, Libor. On evaluating consen-

sus in RANSAC surface registration. Computer Graphics Forum. 2019,
vol. 38, pp. 175–186. Available from doi: 10.1111/cgf.13798.

[JKS13] JACOBSON, Alec; KAVAN, Ladislav; SORKINE-HORNUNG, Olga. Ro-

bust Inside-Outside Segmentation Using Generalized Winding Num-

bers.ACMTransactions on Graphics (TOG). 2013, vol. 32. Available from
doi: 10.1145/2461912.2461916.

[JT05] JAMES, Doug L.; TWIGG, Christopher D. Skinning Mesh Animations.

ACM Trans. Graph. 2005, vol. 24, no. 3, pp. 399–407. issn 0730-0301.

Available from doi: 10.1145/1073204.1073206.

[Kab76] KABSCH, W. A solution for the best rotation to relate two sets of vec-

tors. Acta Crystallographica Section A. 1976, vol. 32, no. 5, pp. 922–923.
Available from doi: 10.1107/S0567739476001873.

[KSO10] KAVAN, L.; SLOAN, P.-P.; O’SULLIVAN, C. Fast and Efficient Skinning

of Animated Meshes. Computer Graphics Forum. 2010, vol. 29, no. 2,
pp. 327–336. Available from doi: https://doi.org/10.1111/j.1467-

8659.2009.01602.x.

[Kav+07] KAVAN, Ladislav; COLLINS, Steven; ZARA, Jiri; O’SULLIVAN, Carol.

Skinning with dual quaternions. In: 2007, pp. 39–46. Available from

doi: 10.1145/1230100.1230107.

[Le12] LE, Binh. Smooth skinning decompositionwith rigid bones.ACMTrans-
actions on Graphics (TOG). 2012, vol. 31. Available from doi: 10.1145/

2366145.2366218.

[Lip+04] LIPMAN, Yaron et al. Differential coordinates for interactive mesh edit-

ing. In: 2004, pp. 181–190. isbn 0-7695-2075-8. Available from doi:

10.1109/SMI.2004.1314505.

[Mat23] MATH.NETPROJECT.Math.NETNumerics [https://www.mathdotnet.
com]. 2023. [Online; accessed 15-May-2023].

80

https://doi.org/10.1111/cgf.13798
https://doi.org/10.1145/2461912.2461916
https://doi.org/10.1145/1073204.1073206
https://doi.org/10.1107/S0567739476001873
https://doi.org/https://doi.org/10.1111/j.1467-8659.2009.01602.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2009.01602.x
https://doi.org/10.1145/1230100.1230107
https://doi.org/10.1145/2366145.2366218
https://doi.org/10.1145/2366145.2366218
https://doi.org/10.1109/SMI.2004.1314505
https://www.mathdotnet.com
https://www.mathdotnet.com

Bibliography

[Par20] PARADYMEGAMES.Nebula Particle System and Skybox inUnity [https:
//www.youtube.com/watch?v=r6ssghmcqu4]. 2020. [Online; accessed

15-May-2023].

[Roh21] ROHMER, Damien. INF585/2020 - Computer Animation [YouTube].

2021. [visited on 2022-05-01]. Available from: https://www.youtube.

com/playlist?list=PLkGB0Y1UEJxuwYFq7t2XBtIAzs95P7wR6.

[Sch] SCHAPEL. Bijection [online]. Wikimedia.org. [visited on 2022-05-07].

Available from: https://commons.wikimedia.org/wiki/%5C%5CFile:

Bijection.svg. This file has been released into the public domain.

[SA07] SORKINE, Olga; ALEXA, Marc. As-Rigid-As-Possible Surface Mod-

eling. In: 2007, pp. 109–116. Available from doi: 10.1145/1281991.

1282006.

[Sor+04] SORKINE,Olga et al. Laplacian Surface Editing. In: 2004, vol. 71, pp. 179–

188. Available from doi: 10.1145/1057432.1057456.

[SSP07] SUMNER, Robert W.; SCHMID, Johannes; PAULY, Mark. Embedded

deformation for shape manipulation. ACM Transactions on Graphics.
2007, vol. 26, no. 3, p. 80. Available fromdoi: 10.1145/1276377.1276478.

[TL] TURK, Greg; LEVOY, Marc. Stanford bunny [online]. Stanford Univer-
sity. [visited on 2022-05-01]. Available from: https://graphics.stanford.

edu/~mdfisher/Data/Meshes/bunny.obj.

[Val22] VALEM TUTORIALS. How to make a VR game - Unity XR Toolkit 2022
[https ://www . youtube . com/playlist ? \list = PLpEoiloH - 4eP -

OKItF8XNJ8y8e1asOJud]. 2022. [Online; accessed 15-May-2023].

[Váš20] VÁŠA, Libor. Zpracování polygonálních sítí [Courseware]. 2020. [vis-
ited on 2020-12-31]. Available from: https://courseware.zcu.cz/

portal/studium/courseware/kiv/zpos/prednasky.html.

[Vla+08a] VLASIC, Daniel; BARAN, Ilya; MATUSIK, Wojciech; POPOVIĆ, Jovan.

Articulated Mesh Animation from Multi-View Silhouettes. ACM Trans.
Graph. 2008, vol. 27, no. 3, pp. 1–9. issn 0730-0301. Available from doi:

10.1145/1360612.1360696.

[Vla+08b] VLASIC, Daniel; BARAN, Ilya; MATUSIK, Wojciech; POPOVIĆ, Jovan.

Articulated Mesh Animation from Multi-View Silhouettes dynamic mesh
dataset [https://people.csail.mit.edu/drdaniel/mesh animation/
]. 2008. [Online; accessed 15-May-2023].

81

https://www.youtube.com/watch?v=r6ssghmcqu4
https://www.youtube.com/watch?v=r6ssghmcqu4
https://www.youtube.com/playlist?list=PLkGB0Y1UEJxuwYFq7t2XBtIAzs95P7wR6
https://www.youtube.com/playlist?list=PLkGB0Y1UEJxuwYFq7t2XBtIAzs95P7wR6
https://commons.wikimedia.org/wiki/%5C%5CFile:Bijection.svg
https://commons.wikimedia.org/wiki/%5C%5CFile:Bijection.svg
https://doi.org/10.1145/1281991.1282006
https://doi.org/10.1145/1281991.1282006
https://doi.org/10.1145/1057432.1057456
https://doi.org/10.1145/1276377.1276478
https://graphics.stanford.edu/~mdfisher/Data/Meshes/bunny.obj
https://graphics.stanford.edu/~mdfisher/Data/Meshes/bunny.obj
https://www.youtube.com/playlist?\list=PLpEoiloH-4eP-OKItF8XNJ8y8e1asOJud
https://www.youtube.com/playlist?\list=PLpEoiloH-4eP-OKItF8XNJ8y8e1asOJud
https://courseware.zcu.cz/portal/studium/courseware/kiv/zpos/prednasky.html
https://courseware.zcu.cz/portal/studium/courseware/kiv/zpos/prednasky.html
https://doi.org/10.1145/1360612.1360696
https://people.csail.mit.edu/drdaniel/mesh_animation/
https://people.csail.mit.edu/drdaniel/mesh_animation/

Bibliography

[WH06] WALD, Ingo; HAVRAN, Vlastimil. On building fast kd-Trees for Ray

Tracing, and on doing that in O(N log N). In: 2006 IEEE Symposium on
Interactive Ray Tracing. 2006, pp. 61–69. Available from doi: 10.1109/

RT.2006.280216.

[Wik23a] WIKIPEDIA.Kabsch algorithm—Wikipedia, The Free Encyclopedia [http:
//en.wikipedia.org/w/index.php?title=Kabsch%20algorithm&

oldid=1152183115]. 2023. [Online; accessed 15-May-2023].

[Wik23b] WIKIPEDIA. Procrustes analysis — Wikipedia, The Free Encyclopedia
[http ://en . wikipedia . org/w/index . php ? title = Procrustes %

20analysis & oldid = 1151503166]. 2023. [Online; accessed 15-May-

2023].

[Wik23c] WIKIPEDIA. Root-mean-square deviation — Wikipedia, The Free En-
cyclopedia [http://en.wikipedia.org/w/index.php?title=Root-
mean-square%20deviation&oldid=1145735789]. 2023. [Online; ac-

cessed 15-May-2023].

[Zot] ZOTTIE. CSG tree [online]. Wikimedia.org. [visited on 2022-05-01].

Available from: https ://commons . wikimedia . org/w/index . php ?

curid=263170. This file is licensed under the Creative Commons

Attribution-Share Alike 3.0 Unported license. To view a copy of this

license, visit https://creativecommons.org/licenses/by-sa/3.0/

deed.en.

82

https://doi.org/10.1109/RT.2006.280216
https://doi.org/10.1109/RT.2006.280216
http://en.wikipedia.org/w/index.php?title=Kabsch%20algorithm&oldid=1152183115
http://en.wikipedia.org/w/index.php?title=Kabsch%20algorithm&oldid=1152183115
http://en.wikipedia.org/w/index.php?title=Kabsch%20algorithm&oldid=1152183115
http://en.wikipedia.org/w/index.php?title=Procrustes%20analysis&oldid=1151503166
http://en.wikipedia.org/w/index.php?title=Procrustes%20analysis&oldid=1151503166
http://en.wikipedia.org/w/index.php?title=Root-mean-square%20deviation&oldid=1145735789
http://en.wikipedia.org/w/index.php?title=Root-mean-square%20deviation&oldid=1145735789
https://commons.wikimedia.org/w/index.php?curid=263170
https://commons.wikimedia.org/w/index.php?curid=263170
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en

List of Figures

2.1 A CSG modeled object . 6

2.2 An RBF interpolated surface . 8

2.3 An SDF example . 8

2.4 Mesh examples . 11

2.5 Examples of non-manifold geometries 11

2.6 A mesh with a boundary . 11

2.7 Free-form deformation . 12

2.8 Laplacian editing . 14

2.9 Bijective mapping . 19

2.10 Genus examples . 20

3.1 Voxelization example . 25

4.1 Distributing motion to other frames 35

5.1 Initial application concept . 38

5.2 Legacy center editing . 38

5.3 TVM sequence centers in VR . 42

5.4 TVM sequence meshes in VR . 42

5.5 Editing in the VR interface . 43

6.1 Experiment: samba belly . 54

6.2 Experiment: samba belly 2 . 54

6.3 Experiment: samba arm . 55

6.4 Experiment: samba arm 2 . 55

6.5 Experiment: squat2 mohawk . 57

6.6 Experiment: squat2 nose job . 57

6.7 Experiment: squat2 slimming . 58

6.8 Experiment: squat2 slimming 2 . 58

6.9 Experiment: handstand wide stance 59

6.10 Experiment: handstand wide stance 2 59

6.11 Experiment: handstand feet apart . 61

83

Bibliography

6.12 Experiment: handstand feet apart 2 . 61

6.13 Experiment: handstand hump back . 62

6.14 Experiment: handstand hump back 2 62

A.1 Teleportation . 69

A.2 Sequence menu . 70

A.3 Playback menu . 71

A.4 Brush menu . 71

84

List of Tables

6.1 Average editing times . 63

85

List of Listings

5.1 Committing edits . 44

5.2 Sequence deformation . 46

5.3 The Carry method . 46

6.1 Mesh file format. 51

6.2 Centers .xyz file format. 52

87

	Introduction
	An introduction to mesh editing
	Representing 3D models
	Triangle meshes
	Mesh sequences

	Mesh editing
	Space deformation
	Surface deformation
	Editing methods

	Editing TVM sequences

	Volume tracking for TVM sequences
	Overview
	Algorithm
	Voxelization
	Uniform volume sampling
	Optimization
	Updating center affinity

	Proposed method
	Introducing motion
	Distributing motion to other centers
	Distributing motion to other frames
	Deforming the surface

	Implementation
	Scene structure
	Method implementation
	The Kabsch algorithm
	Kd-tree

	Testing and analysis
	Input data
	Input data format

	Experiments
	Sequence: samba
	Sequence: squat2
	Sequence: handstand

	Analysis
	Proposed improvements

	Conclusion
	User documentation
	Programmer documentation
	Readme.txt
	Bibliography
	List of Figures
	List of Tables
	List of Listings

