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Abstract

My presented dissertation thesis aims to show possibilities and the usage of statistical physics

in biomechanics, especially for modelling a muscle on a molecular level (myosin II molecular

motor) and its connection to the so-called Maxwell's demon. In the model, I use the Fokker-

Planck equation with the Wang-Peskin-Elston algorithm for solving partial di�erential equations,

which approximates the Markovian chain in the spatial variable. I compare The WPE algorithm

to the corresponding analytical solution in two cases - the stationary Fokker-Plank equation and

the di�usion equation. Then, I create a three-state model depending on ATP concentration and

simulate the myosin head behaviour. The most important results are the molecular motor's

velocity and simulation of measurement, which imitates Maxwell's demon's behaviour. The

measurement procedure calculates the production of relative entropy and mutual information.

All source codes are written in MATLAB software.
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Chapter 1

Introduction

The topic of the presented thesis concerns muscle mechanics at the microscopic level. The head

of myosin II is the main object of the thesis. Myosin is a member of a superfamily of linear

molecular motors [35, 78]. Its main task is muscle contraction. Myosin �laments create a thick

muscle �lament [3].

These molecular motors belong among nano-systems. Thus, the myosin head executes Brow-

nian motion � it undergoes thermal �uctuations [82]. These neverending �uctuations produce

unpredictable movement.

A biological system modelling requires some assumptions and simpli�cations. Concerning

muscle modelling, some pure mechanical models exist. Hill's model is the most well-known one

or its enhancement called Huxley's model [107] or Hai-Murphy's model [81].

These models are based on classical mechanics and omit thermal �uctuations and random

character of the environment as if they were macro-systems. At the nanoscale, however, the

system behaves di�erently due to random thermal �uctuations. Thus, it is essential to include

them in the model of myosin. It is the reason for using a statistical description of the myosin

head movement.

The statistical description used in the thesis combines a mechanical approach and a chemical

one (see Figure 1.1). In my model, e�ective potentials describe the mechanical aspects of be-

haviour. The chemical features are characterised by transition rates between discrete states of the

head and the form of the e�ective potentials as well [44]. Many authors, e.g. [16, 136], use this

statistical description of the myosin dynamics. Cited authors use a system with an even number

of myosin states (especially two). These articles inspire my model, but it works with three states

for the myosin head description (like in [27]). On the contrary, my model does not primarily aim

to study mechanical properties, like in these papers. It mainly analyses information-theoretical

aspects.

In reality, myosin functionality belongs to physiological processes. Myosin consumes ATP

(adenosine triphosphate) molecule and converts its energy to mechanical work with producing

ADP (adenosine diphosphate) molecule. The movement of myosin is regulated in many ways,

such as phosphorylation, autoinhibition, divalent cations, or actin-linked regulation [37]. The

whole process is very complex and depends on the type of muscle where the studied myosin is [84].

In my dissertation thesis, I focus on skeletal muscles and the in�uence of ATP concentration.

In 2016, a dissertation thesis was defended at the Department of Mechanics Faculty of Applied

sciences, which is focused on modelling muscles as well [139]. However, that thesis is more devoted

2



Chapter 1: Introduction

Mechanical 
approach

Chemical 
approach

Statistical
physics
approach

Effective potential

Transition rates

Reality

Figure 1.1: Reality and its possible approaches to describe it. The �gure of a real muscle �la-
ment is taken from [135]. It is tarantula (spider) thick muscle �lament under 3D cryo-electron
microscope. The statistical physics approach is connected to mechanical approach (via e�ective
potentials) and to chemical approach (via transition rates of chemical reactions).

to pure biomechanical modelling (three �lament model of cross-bridge) than mine, where I omit

the presence of the titin �lament in the model.

The idea of Maxwell's demon inspired my thesis. This metaphorical "being" represents an

e�ective controlling process at the molecular level. Information is the keyword in this topic

[72]. In physics, Shannon's meaning of entropy quanti�es information. Similarly, in my work,

I focus on the connection among mechano-chemical processes, information �uxes, and gains

corresponding to their control.

The work has several parts. The �rst part is a summary of the recent state-of-art. In Chapter

2 is the biological background. The chapter describes molecular motors, especially myosin II and

their signi�cance to muscle contractions. As an impressive illustration, there is a narrative of

the latest achievements in Nobel prices given in studying nanomachines.

In Chapter 3, there is a rapid overview of the statistical and information theory. Several

sections have a key role in the rest of the thesis. They are

• 3.4.3 � describing the Fokker-Planck equation using for the myosin head movement descrip-

tion,

• 3.4.4 � describing information which is a quite important physical quantity for Maxwell's

demon concept,
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Chapter 1: Introduction

• 3.4.4 � describing Maxwell's demon itself and its history and recent progress in this �eld.

The second part is about the main objectives and crucial hypotheses of the thesis.

In the third part, the methodology used in the model is described. Chapter 5 contains an

analytical solution of simpli�ed versions of the Fokker-Planck equation. It serves as an initial

veri�cation of the model. The chapter is closely connected to Chapter 10. Chapter 6 is devoted

to the used algorithm for the Fokker-Planck equation's spatial solution. It is not an original

algorithm. The procedure was taken from [132]. Chapter 7 focuses on a description of the three-

state model originally used by [27]. However, this approach to the myosin head was applied to

a di�erent set of equations, not to the Fokker-Planck one used here.

Chapter 8 describes the condensation of the states. It is here due to myosin data were found

only for more states models, especially, �ve-state one. The procedure is not original. Ref. [136]

used it to condensate the �ve states model to receive two states model. However, the procedure

to obtain the three states model was not clear. The biggest issue was how to deal with a one-way

transition between two states and how to condensate the original states properly. For these

reasons, the procedure can be considered as a new result. Chapter 9 describes the method

of numerical measurement prediction. The measurement is simulated by a random number

generator and using the central limit theorem [142]. Thus, it uses Gaussian distribution. This

method produces relative information and mutual information.

The fourth part focuses on the results of the model. Chapter 10 describes a comparison

between the analytical and numerical solution provided by the WPE algorithm. Chapter 11

deals with the non-normalised probability density is changed by di�erent boundary conditions.

Chapter 12 uses the condensation of states method to include the ATP concentration into the

three-state model. The included dependences have integrated Arrhenius equations [84], which is

often used in physical chemistry [31]. Crucial chapters for the thesis follow this chapter. Chapter

13 contains the results of the model mechanical property � velocity. The next one (Chapter 14)

deals with the numerical simulation of measurement techniques which is described in Chapter 9.

The �fth part contains the thesis's bene�ts, a recommendation for the following work, a

conclusion and its summary. The subsequent chapters are resumes in di�erent languages (Czech,

English and German), my published papers and bibliography sources used for this thesis.

The last part, the Appendix, deals with topics that are not suitable to the text itself, but

there are essential for a better understanding of problems around the thesis �eld. There is a

chapter referring to thermodynamic potentials, a chapter about balance types and a chapter

about potentials used to input the Fokker-Planck equation.
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Chapter 2

Biological background

The thesis outlines the biological background of the nanomachines to create a basic overview.

These nanomachines are called molecular motors due to their ability to convert mechanical

energy to work � movement. Sometimes, researches consider the movement as a deterministic

one. However, there is also a source of stochastic movement. It is the Brownian motion.

The �eld of molecular motors is growing very fast. It is proved by the list of Nobel prize in

Chemistry [121]. Since 2015, when my work on this topic has begun, two Nobel prizes awarded

to scientists whose works touch molecular motors.

The �rst came in 2016 for the creation of a synthetic molecular motor. The short version

of the Nobel prize committee declaration sounds to Jean-Pierre Sauvage, Sir J. Fraser Stoddart,

and Bernard L. Feringa "for the design and synthesis of molecular machines" [121].

Jean-Pierre Sauvage had founded the basics of creating a synthetic molecular motor. In 1983,

he developed a way how to control molecules. Figure 2.1 shows the description of the control

mechanism.

Figure 2.1: Jean-Pierre Sauvage's way of control molecules. Adapted from [122]

The next winner from this year, Sir J. Fraser Stoddart, came with a molecular elevator in

2004 [122], see Figure 2.2.

The last winner (Bernard L. Feringa) has constructed a nano-car (molecular car), see Figure

2.3
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Chapter 2: Biological background

Figure 2.2: J. Fraser Stoddart's molecular elevator. Adapted from [122]

Figure 2.3: Bernard L. Feringa's molecular car. Adapted from [122]

The second prize related to molecular motor came one year later, in 2017. Molecular motors

themselves were not the winning topic. Nevertheless, it allows a more detail way of studying

them. The award was for the developing of cryo-electron microscope [123].

In that year, Jacques Dubochet, Joachim Frank and Richard Henderson won the Nobel

prize "for developing cryo-electron microscopy for the high-resolution structure determination of

biomolecules in solution." [124]

Three signi�cant steps summarise the progress on the cryo-electron microscope. The �rst one

was Henderson resolution increasing of an electron microscope. The electron microscope requires

a vacuum, where the aqueous solution evaporates and changes the properties of the sample [123].

A way how to prevent water vaporisation was an idea of Dubochet. He came with a method

of water vitri�cation. It means the method can change water to a kind of glass � to an amorphous

structure. It provides uniform background to visualisation [123].

The last part of the Nobel prize 2017 in Chemistry was for 3D structure analysis. There

are several randomly oriented samples with a similar structure, which a computer analyses and

produces the 3D structure [123].

The development in the �eld goes very fast. The resolution of obtained Figures increases

rapidly, see Figure 2.4.
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Figure 2.4: Protein image resolution before 2013 and after 2013. Adapted from [123]
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Chapter 2: Biological background

2.1 Molecular motors

Molecular motors have many functions in a biological system. They convert energy to create

mechanical work, like motors well-known from an ordinary human's daily life. Some of the molec-

ular motors' performance a�ects the macroscale. As an example can serve muscle contraction. In

this case, many molecular motors (myosins II) join together to contract a muscle. Other motors

function can be observed indirectly (for example, poorly working cytoplasmic dynein can cause

several serious diseases � see Section 2.2.2) or not at all.

There are three sets of molecular motors. The �rst set is called linear due to its movement

along a �lament. The second set is rotary. It is moving along its axis. The last set is called

revolution motors [35].

This division to the sets is not the only possibility, how to divide them. Sometimes the third

set is called nucleic acids motor proteins [60], or it is neglected at all [5].

Figure 2.5: Di�erent sets of molecular motors. Human walk is an equivalent to a linear motor.
Rotation motor move like planetary rotation or like o wheel. Revolution motor move similary to
the Moon around Earth. Adapted from [35].

2.1.1 Linear motors

Linear motors can be divided into two massive groups according to their movement on a �lament

(the type of �lament depends on the speci�c kind of the motor). One of these groups is called

processive. It means the motor has two stalks, and every time at least one is connected to the

�lament. Sometimes motors from this group are called walking due to their similar movement

to a human walk, see Figure 2.5. The movement can also be the "inchworm" type. Figure 2.6

shows both types of movement.

The second group is called non-processive. The rest of the motors, which does not �t the

�rst group, belongs to this second group. An example of the non-processive motor is myosin II,

see Section 2.3.

More information about linear motors is in Section 2.2.
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Chapter 2: Biological background

Figure 2.6: Linear molecular motors movements. On the Figure is molecular motor myosin V
with its walking style of movement at the left side of the Figure and with its inchworm style at
the right side, respectively. Adapted from [5].

2.1.2 Rotation motors

F0F1-ase, helicases, and �agella are representatives of rotation motors [35]. The F0F1-ase serves

to the synthesis of ATP [60]. Bigger attention is to F1 part [96]. Its movement is shown in Figure

2.7. The step requiring energy is not the synthesis of ATP from ADP and inorganic phosphate,

but the binding of ADP and the phosphate to the enzyme which produces the ATP [96]. In other

words, there is needed energy for storing.

Figure 2.7: F1-ase (part of F0F1ase) molecular motors movements. The actin �lament goes
around γ-axis. Adapted from [5].

2.1.3 Revolution motors

This group was established in 2013 [35], aside from the rotation motor. In that year, Guo and

his team found out that these motors do not rotate. The second di�erence is in the size of a

channel inside the motor. Rotation motors have a smaller (<2 nm), revolution motors have a

9
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more extensive (>4 nm) channel.

Revolution motors are related to DNA (deoxyribonucleic acid). It "translocate DNA along

the helix through unidirectional revolution, resulting in a thermodynamic edge over-rotation

motors involving double-stranded DNA translocation" [35].

Figure 2.8: Revolution motors movements along the 12 subunits of the connector channel.
Adapted from [35].
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2.2 Linear Molecular Motors

Three superfamilies of linear molecular motor exist � kinesins, dyneins, and myosins. Each of

these superfamilies divides itself into classes and further into types [78].

2.2.1 Kinesin

In this superfamily, 14 subclasses of kinesins exist, which share amino acid sequence homology.

They are mainly involved in mediating transport and primarily going from the (-) end to the (+)

end of the microtubule. Two kinds of kinesin classes are exceptions to these rules. kinesin-13 can

enhance the depolymerisation of microtubule ends due to not having motor activity. Kinesin-14,

on the other hand, has motor activity, but it moves reversibly to other kinesins, thus from the

(+) end to the (-) end and serves during mitosis [78].

Figure 2.9: Some motors from the kinesin superfamily and their purpose. Kinesin-1 and kinesin-
2 ensure organelle transport, kinesin-5 pushes two microtubules apart and kinesin-13 enhances
the microtubule depolymerization. Adapted from [78].
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Usually, a kinesin consists of two heads linked with a tail by a stalk [78]. These heads are

used in the same way as humans use their feet for walking. Thus, at least one kinesin head

connects to the �lament (to a microtubule). Kinesins are usually part of the molecular motors

group called the processive motors, with some dyneins and myosin-V.

The tail served as storage for a cargo (organelle) during its transport. Nevertheless, from

this rule are some exception too. Evolution developed kinesins to serve various purposes. Thus,

it was impossible to keep the same shape. Some kinesins could have four heads (two pairs on

each side) and none tail, or have just two connected heads, see Figure 2.9.

The most common kinesin is kinesin-1, which ensures organelles transport. It is a dimer of

two heavy chains, each associated with a light chain, with a total molecular weight of about 380

kDa. The molecule comprises a pair of globular head domains connected by a short �exible linker

domain to a long central stalk and terminating in a pair of small globular tail domains associated

with the light chains. Each domain carries out a particular function: the head domain binds

microtubules and ATP and is responsible for the motor activity of kinesin; the stalk domain

involves in dimerisation through a coiled-coil interaction of two heavy chains; the tail domain is

responsible for binding to receptors on the membranes of cargoes [78]. Recent discovery shows

this conventional kinesin behaves unconventionally; it slips against each other [79].

The example of the subclass, which ensures non-typical movement among other kinesins, is

the kinesin-5. Its purpose is to slide between two microtubules. The movement is to their (+)

ends. Due to this, it requires to be bipolar two sets of motor's heads, see Figure 2.9.

The last example of the kinesin subclass is kinesin-13. It is shown in Figure 2.9 as the last

one. This member was originally identi�ed "in screens for motors involved in spindle function"

[88]. The main role of kinesin-13 is the depolymerisation of the microtubule.

2.2.2 Dynein

A large amount of dyneins with di�erent purposes exists. Some of them are in neurons, some

in the cilia and �agella and some inside eukaryotic cells [55]. The last group is called the

cytoplasmic dynein. Properties of the cytoplasmic dynein are varying among diverse organism

where the dynein exits. For example, bovine cytoplasmic dynein has di�erent properties than

porcine one [1, 126] or human one [56].

Dyneins, in general, are huge dimer molecules (>0.5 MDa1) [78]. Cytoplasmic dynein is a

dimer with a size of approximately 1.2 MDa [55]. There are several di�erent components � the

stalk, the motor domain and the tail domain. All these components are a few tens of nanometers

long, see Figure 2.10.

The microtubules bounding domain (microtubule BD) and coils create the stalk. The motor

domain consists of 6 AAA motor domains where the motor's fuel (ATP) can attach to the dynein.

For example, if the ATP binds to the AAA1 domain, the stalk unbounds from the microtubule.

Thus, the electrostatic force is broken [75].

Cytoplasmic dynein moves vesicles (cargo) along microtubule in a processive way [55]. On the

other hand, dynein usually cannot carry cargo alone. There are necessary the other proteins like

e.g. dynactin which create with dynein one complex [14], see Figure 2.11. The next possibility

1Dalton (Da) is another name (Non-SI) for the uni�ed atomic mass unit. Scientists in biochemistry and
molecular biology often use it. Although, it was never approved by the Conf�erence G�en�eral des Poids et Mesures
[19]
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Figure 2.10: Dynein structure. Adapted from [34]
.

is that several dyneins join together [105]. Thus, dynein is a cooperative molecular motor. The

cooperation helps dyneins e�ectiveness of the "tug-of-war" against stronger kinesin [100].

Figure 2.11: Di�erent proteins helping dynein. Adapted from [14]
.

Cytoplasmic dynein mechanical cycle is drawn in Figure 2.12. In the initial state, the dynein

stalk is attached to the microtubule. The ATP provides energy to unbound from the microtubule.

The stalk is released. During ATP hydrolysis to ADP, the stalk provides the power stroke and

moves to the next bounding domain to the microtubule's (-) end (the retrograde motor). The

last step is tail priming (and moving with the cargo).

The most impressive property of the cytoplasmic dynein is the so-called catch-bond e�ect.

It allows increasing of the stall force. In other words, dynein can walk with a higher load, see

Figure 2.13.

If cytoplasmic dynein does not work correctly, it can cause some serious diseases like Parkin-

son, Alzheimer, ALS (Amyotrophic lateral sclerosis), or Glaucoma [55].
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Figure 2.12: Scheme of the dynein mechanochemical cycle. High a�nity is in the underline
states. D and D* denotes post-power stroke and pre-power stroke states, respectively. Adapted
from [76]

.

Figure 2.13: In�uence of the catch bond e�ect. Adapted from [53]
.

2.2.3 Myosin

Motors from the myosin superfamily usually contain six polypeptides � two identical high-

molecular-weight polypeptides (myosin heavy chains) and four light chains. One myosin can

contain more than one type of light chain [18].

In an alternative division, myosins have a globular head, �exible neck and a long tail. The

tail depends on the myosin type, but generally, the tails bind speci�c cargoes [78]. It is similar

to previous superfamilies.

The myosin superfamily properties are extensive. There are more than 20 classes to cate-

gorize [18]. For example, myosin I is involved in endocytosis (transport organelles through cell

membrane [130]), myosin II causes muscles contraction, myosin V is quite similar with its func-

tionality to kinesins � it is processive and transports cargo along a �lament [78], myosin VI goes

"backwards" [18]. A small overview of myosin functions is in Table 2.1.

Because of an already huge number of myosin classes, a limitation for a new class of myosin

exists. It says: "To prevent a premature in�ation in the number of newly described myosin classes

due to the discovery of divergent myosins in the newly sequenced genome, it was proposed to

establish new myosin classes only in cases where putative class members derive from at least two

reasonably distantly related genera . . . . Myosins known from only a single genus are considered

"orphan" myosins" [18]. The structure is on Figure 2.15.

14



Chapter 2: Biological background

Figure 2.14: Common classses of myosins and their properties. Adapted from [78]
.

Table 2.1: Di�erent classes of myosin and their functions � examples. Inspired by [18].

Function Myosin class

Tension generation I, II, VII, VIII

Endocytosis I, II, VI, VII, X

Signal transduction I, III, V, VI, VII, IX, X, XV, XVI

Organelle movement/localization V, VII, XI, VII

The evolution history of myosins is very long. The origin of myosins can be tracked to early

eukaryotes. It is presumed they had di�erent groups in their era [104]:

• similar to present class I,

• with domain features � now found in classes V, XI,

• with MyTH4/FERM tail domain � classes IV, VII, X, XII, XIV, XV, XXII.

Superfamily class

orphan

type

Figure 2.15: Myosin superfamily structure.
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2.3 Muscle contraction and myosin II

Every muscle is created by myosin II (in the next text is denoted only as myosin � it was discovered

as the �rst one [78]) and by actin �laments at the nanoscale, see Figure 2.16. It is necessary

to go deep into the muscle structure through a bundle of muscle �bre, multinucleated muscle

cell, myo�bril and sarcomere to �nd these �laments, see Figure 2.17. The distance between two

myosin heads connected to actin's binding site is 36 nm [99]. Each myosin head can perform 3 �

4 pN [30, 41]. The power-stroke distance is around 2 � 8 nm [44].

Figure 2.16: Schematic actin-myosin complex. Adapted from [107].

The structure of the (mammalian) skeletal muscle is strictly hierarchal. It is possible to see

the basic structure of the muscle with a bare eye � its thick �laments (myosins), see Figure 2.18

and thin (actins) �laments. In the case of a smooth muscle, the �laments do not have a precise

orientation. They are organised randomly � with an in�uence of the precise type of smooth

muscle.

The widely accepted theory of muscle contraction is called the cross-bridge hypothesis. The

myosin attached to the actin �lament creates a so-called cross-bridge, and by a rowing movement,

it can create muscle contraction [101]. It is necessary for at least 20 myosin heads working

together to produce continuous sliding [117]. Experiments show that one molecule of ATP (fuel)

consumption provides energy enough to several myosin cycles [57, 58].

There are several ways how to divide the cross-bridge (continuous) cycle into a discrete cycle.

The complex myosin movement is usually simpli�ed to a 6-state kinetic model [44] as follows � a

molecule of ATP bounds on the myosin head (step 1). The ATP hydrolyses into ADP (adenosine

diphosphate) and free P (phosphorus). It is step 2. The hydrolysis provides energy to bound to

actin (step 3), where the atom of phosphorus is released (step 4). The ADP molecule relaxes

from myosin (step 5), and it is replaced by a new ATP molecule (step 6). Then myosin unbinds

itself from actin, and the cycle is complete (step 1).

16



Chapter 2: Biological background

Figure 2.17: Skeletal muscle and its elements to the molecular level � from muscle �bre to myosin-
actin complex. Bundles of muscle �bres create every muscle. Every �bre is created by repeating
myo�bril units made by sarcomeres. A sarcomere is bounded by a Z disk surrounded by an I band.
Between two I bands is A band created by actin and myosin �laments. Adapted from [78].
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Figure 2.18: Tarantula thick �lament. On left side it is a 3D image with resolution 1.3 nm.
Adapted from [135]. On the right side it its 3D printout. Data was provided by Roger Craig and
Shixin Yang from Department of Cell and Developmental Biology, University of Massachusetts
Medical School, USA. It was printed by Jan Heczko from Department of Mechanics, Faculty of
Applied Sciences, University of West Bohemia, Czech Republic.

A little di�erent description is in [78]. There is a written 5-state myosin cycle. It assumes as

the �rst step, the myosin head is released from the actin �lament, and the head binds ATP. In the

second step, the ATP hydrolyses to ADP and P. It causes the myosin head rotation. Then, the

myosin head is bent to the actin �lament. In the fourth step, there is the "power-stroke", when

the phosphorus atom is released, elastic energy straightens myosin and moves actin �lament to

the left. In the last step, the ADP molecule is released, a new ATP molecule binds to the myosin,

and the head is free from actin. The �fth step ends at the same con�guration as the �rst one.

So, it can consider as a 4-state myosin cycle.

The movement of myosin can be more simpli�ed to 3-state cycle ([25, 27, 128]) or even to

2-state cycle ([16]). The 2-state cycle is only bound and unbound states. This description does

not provide any deeper knowledge about the contraction controlled by Ca2+ [2]. The 3-state

model is used further for its ability to describe muscle contraction. It recognises the unbound

state, the weakly-bound state and the post-power stroke state. More details about the 3-state

model are in Chapter 7.

The description of the myosin cycle by a numerical means has two di�erent approaches. The

more common one is by classical Hill and Huxley models [39, 40, 45], but they do not consider

surrounding in�uence. Di�erent mathematical model has to be used to do so, see Chapter 3 and

its sections 3.4.2 and 3.4.3, especially.

Myosin molecular motor can undergo a load and still works, although there is a limitation.

At loads bigger than the stall force, the myosin could no longer support the continuous forward

motion, resulting in the actin �lament is e�ectively pulled backwards [22].
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Statistical and information theory

background

Statistical physics describes the whole ensembles of systems, where our computation abilities

are not su�cient to handle every member of the ensemble or a random parameter is present

in the description. Statistical physics covers a description of large systems or, on the other

hand, small systems (meso-, micro-). These small systems are essential for this theses due to

the connectivity of statistical physics and molecular motors. Here, I use distributions with a

meaning of probability density of myosin head presence. It is a way how to describe a statistical

ensemble.

Nowadays, statistical physics has two parts � classical (equilibrium) and non-equilibrium.

These groups correspond with the division of thermodynamics. In classical statistical physics,

the temperature is well de�ned, and the whole system is in thermal equilibrium (with the same

temperature in whole volume [61]). In non-equilibrium statistical physics, the temperature of

the whole system cannot be de�ned. Sometimes, it is possible to be close to an equilibrium. It

means the temperature exists only in a small vicinity of a point [61]. Statistical physics explains

thermodynamics [94].

19



Chapter 3: Statistical and information theory background

3.1 Statistical physics

Statistical physics studies systems where it is impossible to study the individual behaviour of

every particle precisely. It can be for di�erent reasons

• number of particles is too high to handle it by today's computation methods

• random e�ects

It may seem more straightforward to simplify its reducing number of particles and neglect

the random e�ects, but this has no sense. Without these e�ects, it is impossible to obtain valid

data, and for example, water cannot freeze without random e�ects [15].

3.1.1 Relation between thermodynamics and statistical physics

The connection between thermodynamics and statistical physics was established by Ludwig

Boltzmann in 1872 [94]. In this year, he published his H-theorem [11] where he tried to derivate

the second law of thermodynamics from the laws of mechanics.

He came with a result [68]

− kB
dH

dt
=

dS

dt
(3.1)

where kB is Boltzmann constant, H is a function for a dilute gas comprised of spherical particles1

H =
∑
i

fi ln fiδ~xδ~p (3.2)

with statistical distribution f of the ensemble, position ~x and momentum ~p.

Variable S in equation (3.1) is thermodynamic entropy.

Boltzmann claimed (see Section 3.2.2) based on knowledge of the second law of thermody-

namics
dH

dt
≤ 0. (3.3)

The equality is valid only in an equilibrium state [68]. It is not the only bene�t of Boltzmann's

work on H-theorem. He showed the Maxwell-Boltzmann distribution is the only distribution

that stays invariant during molecular collisions [94].

Based on the work of Boltzmann, who established the fundamentals of statistical physics (or

sometimes called statistical mechanics) [94], thermodynamic potentials (see Appendix A), are

connectors between statistical physics and thermodynamics. The connector can be Ensemble

theory and its partition function. See Section 3.3.

Sometimes, thermodynamics is noted as a macroscopic counterpart of statistical physics [15].

1Boltzmann's H-function is identical to Shannon entropy[68]
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3.2 Equilibrium thermodynamics

Equilibrium (or classical) thermodynamics is more used than non-equilibrium thermodynamics

nowadays. It describes a more signi�cant part of all thermodynamics phenomena[95]. It was

developed in the 18th and 19th century by observing heat engines.

The most fundamental postulate of the equilibrium thermodynamics is sometimes called the

zeroth law of thermodynamics. It describes what the equilibrium and thermodynamic variables

(function) are.

In Ref. [114], there is a possible formulation of the law:

Zeroth law "If a system is left isolated for a su�ciently long time from any environment and

any external system, it will reach a state with no further macroscopic changes. Such a state is

said to be in an equilibrium state. . . . "

3.2.1 First law of thermodynamics

First law of thermodynamics is kind of conservation of energy law [95]. The mathematical

description of the law is [61]

dU = dQ+ dW (3.4)

where dU is di�erential of inner energy, dQ di�erential of accepted heat and dW is di�erential

of accepted work2.

This law set the heat as a form of energy. Before general acceptance of thermodynamics' �rst

law, the heat was considered an indestructible �uid-like substance without mass, called caloric.

The caloric measured was calories [61].

3.2.2 Second law of thermodynamics

The second thermodynamics law does not have such a clear expression as the �rst (and the

zeroth) one. It has many versions mostly equivalent � with some reasonable assumptions [59].

William Thomson (Lord Kelvin)

It is impossible to derive mechanical e�ect from any portion of matter by cooling it below the

coldest surrounding objects' temperature through an inanimate material agency.[125]

Later, the law was reformulated by McClare in 1970 for a microscopic version of the second law

[52]:

C. W. F. McClare

"It is impossible to devise an engine, of any size whatever, which, acting in a cycle which takes

a time t, shall produce no e�ect other than the extraction of energies, which have equilibrated

with each other in a time less than t, from a reservoir at one temperature and the conversion of

these energies into a form in which they would remain stored for longer than t; either at a higher

temperature or in a population-inversion." [87]

2The sing '+' prior the term dW is sometimes change to the sign '-', which means in that case it is considered
produced work[95].
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3.2.3 Third law of thermodynamics

Sometimes it is called the Nernst�Planck theorem [114]. It says a limitation to the entropy:

"The entropy of a system approaches a constant value as the temperature approaches zero."

[59]

From this statement usually comes out, the temperature cannot be negative [114]. It is not

always true [98]. Some systems break it. These systems are in localised spin systems [12].
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3.3 Ensemble theory

In classical statistical physics, the ensemble theory describes large systems often. It provides a

way to categorised problems into simple groups. Three kinds of ensembles exist, the microcanon-

ical, the canonical and the grand canonical ensembles, respectively [94]. The microcanonical

ensemble describes a simple closed system, where all system options have the same probability.

The second one, the canonical, allows a close system to have some options with higher or lower

probabilities. The last one, the grand canonical ensemble, provides a way to treat an open sys-

tem, where interaction with surroundings is allowed. For example, this ensemble is valid for a

chemical reaction description, which is out of the thesis's scope.

3.3.1 The Microcanonical ensemble

The most elementary one is the Microcanonical ensemble. It assumes that every microstate of

the isolated system in thermal equilibrium occurs with the same probability pm. It means

pm =
1

g
= const., (3.5)

where g is called the statistical weight. The approach is not quite applicable in an open system

case, but it is handy for deriving the other canonical ensembles [142].

3.3.2 The Canonical ensemble

The second one is called The (Gibbs) Canonical ensemble. It describes a closed isothermal system

in the surrounding characterised by a thermostat. For most purposes, the thermostat's precise

nature is not very relevant [94], but it needs to be de�ned. Ref. [142] de�nes the thermostat as a

macroscopic component with a much larger number of degrees of freedom than the system. The

thermostat has a constant volume and can exchange only thermal energy with the system, not

particles.

For using the Canonical ensemble for N identical particles with total energy E, the system

has to ful�l two simple conditions, which are obvious from the thermostat de�nition.∑
r nrEr = E = NU∑
r nr = N

}
(3.6)

These conditions say the total product of the number of particles nr with their energy Er is total

energy E which also expresses the product of all particles N and the mean energy U .

Then the probability of the given particle r is determined by a relation

pr = Z−1 exp(−βEr), (3.7)

where β−1 is the product of Boltzmann constant k and temperature T . The parameter Z−1

has the meaning of a scaling factor to obey one of the axioms of probability which says total

probability has to be equal 1. A mathematical expression for Z can be obtained from this

condition

Z =
∑
r

exp(−βEr). (3.8)
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A schematic visualisation of equation (3.7) is drawn in Figure 3.1. The energy of the state

and the number of particles there determine the probability of the given state.

number of particles

energy per particle

probability

Figure 3.1: Schematic representation of the dependence probability density on energy and number
of particles with a given energy. The biggest amount of particles is with the lowest energy, and
only a few particles have the biggest energy. The probability is a normalised product of the number
of particles and their energies. The scheme is scaleless.

The quantity Z has not only meaning of the scale factor but also can be used for a statistical

expression of thermodynamic parameters (entropy S, Helmholtz free energy FH and so on, see

appendix A). Due to its wide use, the parameter Z has its own name, the partition function.

Sometimes Z is also called the "sum-over-states" from German Zustandssumme [94]. It is worth

stressing that in the case of degenerated energy levels (multiple states have the same energy),

the partition function can be determined as

Z =
∑
s

gs exp(−βEs), (3.9)

where gs is the weight function of the given degenerated state s. Equation (3.9) is only compu-

tational simpli�cation of the previous equation. There can be found a relationship between the

maximum values of the index s and the index r

max(s) ≤ max(r). (3.10)

The equality sign is valid only in a case of gs ≡ 1 for all s.

An example of a system with degenerated energy levels can be in biology myosin molecules

involved in muscle contraction, see Section 2.3. In such cases, the thermostat can describe the

aqueous solution in cells. Particles of the solution �uctuate with their energy (Brownian motion)

and impact the myosin head. The impact can in�uence the movement of the head.

A knowledge of a parameter A expected value (or mean value) 〈A〉 is very important in

statistics. It can be evaluated by a simple relation

〈A〉 = Z−1
∑
r

Ar exp(−βEr), (3.11)

where Ar is a value of the parameter A with an energy Er.
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3.4 Non-equilibrium thermodynamics

In non-equilibrium statistical physics, �uctuations of the system have a signi�cant role. The

�uctuation is de�ned like the irregularity or stochasticity among the realisations, which are

statistical by its nature (requirement of a data ensemble) and the uncertainty (given a part of

the data up to a given time and it is impossible to predict precisely the remaining data or the

data in the future) [114].

The main approaches for description are various �uctuation theorems and the Langevin

equation; see Equation (3.29) with a direct connection to Jarzynski's theorem.

3.4.1 Fluctuation theorem

There is not only one �uctuation theorem. Their history began in 1993 [36], when Evans et

al. [28] simulated shear of �uids. Two years later, Gallavotti and Cohen proved the �uctuation

theorem rigorously for deterministic dynamics [33].

Jarzynski created one of the most important �uctuation theorems described further. It is

developed and expanded in Refs. [43, 49, 50, 51, 110].

Jarzynski theorem

The Jarzynski theorem's base was founded in 1997 [48]. It comes from in�nitely slow parameters

change during its path γ between points A and B and from the assumption that total work W

performed in such system is equal to the Helmholtz free energy di�erence ∆FH (see Section A.4)

between the initial and the �nal con�guration

W = ∆FH ≡ FBH − FAH . (3.12)

Equality comes from the work of spring de�nition. The spring with a rubber band has similar

properties as a polymer (like myosin), see Figure 3.2. The spring has a known inside force Fspring.

Thus,

W =

∫
Fspringdγ. (3.13)

Figure 3.2: An ideal spring is connected with a rubber band. A being pulls the spring and the
band, respectively along a path γ. Adapted from [10].

When the parameters change along γ at a �nite rate, the W will depend on the microscopic

initial condition of the system and reservoir, and its average will exceed ∆FH

〈W 〉 ≥ ∆FH . (3.14)
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The di�erence 〈W 〉 −∆FH is equal to dissipation work Wdiss.

Jarzynski has realised the following thing. He presumed that the system ful�ls a canonical

distribution for its initial conditions. Thus, the system has a Hamiltonian H0 and the beginning

and H1 at the end. An ensemble of all possible trajectories z between point A and B describes

a phase-space density f , which satis�es

f0 = Z−1
0 exp(−βH0). (3.15)

Next, he presumed, the space density f evolves under the Liouville theorem. Thus,

df

dt
= 0. (3.16)

So, it must be valid

f = f0 = Z−1
0 exp(βH0) (3.17)

In such system, the ensemble average 〈exp(−βW )〉 may be expresses as

〈exp(−βW )〉 =

∫
f exp[−β(H1 −H0)]dz =

=

∫
Z−1

0 exp(βH0) exp[−β(H1 −H0)]dz =

=Z−1
0

∫
exp(−βH1)dz =

=Z−1
0 Z1

(3.18)

The Helmholtz free energy di�erence ∆FH is de�ned by

∆FH = −β−1 ln
Z1

Z0
(3.19)

or
Z1

Z0
= exp(−β∆FH) (3.20)

From this, it is possible to write directly Jarzynski �uctuation theorem (or Jarzynski equality)

〈exp(−βW )〉 = exp(−β∆FH). (3.21)

Jarzynski �uctuation theorem can be simpli�ed to relation (3.14) via Jensen's inequality

[114]. It says that for every convex function y(x) (second derivation is positive function) and its

mean values (see Figure 3.3) is valid

〈y(x)〉 ≥ y(〈x〉). (3.22)

Thus, the backward derivation starts with rewriting Equation (3.21) to an explicit form for

∆FH

∆FH = β−1 ln〈exp(−βW )〉. (3.23)

On the right side of Equation (3.23), Jensen inequality is applied and the rest are simple

26



Chapter 3: Statistical and information theory background

0 0.5 1 1.5 2 2.5 3

x [-]

0

5

10

15

20

25

y 
[-

]

y(x) = exp(x)
<y>
y(<x>)

Figure 3.3: Graphical illustration of Jensen's inequality for the exponential function.

algebraic modi�cations

β−1 ln〈exp(−βW )〉 ≥ −β−1 ln exp〈−βW 〉 = −β−1(−β)〈W 〉 = 〈W 〉. (3.24)

Thus, the initial relation for mean work is obtained

〈W 〉 ≥ ∆FH . (3.14)

3.4.2 Langevin equation

In the scale of molecular motors is not the Newton second law su�cient. It has to be enhanced

by a term that describes the thermal �uctuations (Brownian motion). There is also an in�uence

of the drag force. The Langevin equation ful�ls both, and this is why many authors use it for

the description of the molecular motion [69, 137].

The Langevin equation takes random thermal forces as an input and generates the variable's

stochastic process, such as the Brownian particle position (x), as an output. Although the

random thermal force is supposed to contain no memory, i.e., no �nite temporal correlations,

the Langevin equation transforms this stochastic process into the output, which has a memory

of the past [114].

The equation itself is created by a balance among a total force FT , a drag force Fdrag, which

is caused by the surroundings, and a Brownian force of random motion FB

FT = Fdrag + FB. (3.25)

The total force can be expressed according to the Newton second law

FT = m
d2x

dt2
. (3.26)
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The drag force (or viscosity) is de�ned as

Fdrag = −γdrag
dx

dt
, (3.27)

where γdrag is a drag coe�cient.

The Brownian force describes the stochastic property of the system. It behaves like a Gaussian

white noise [114, 137], i.e.

〈FB〉 = 0. (3.28)

The simplest form of Langevin equation can be written in a form [29]

m
d2x

dt2
= −γdrag

dx

dt
+ FB. (3.29)

A more advanced form of the equation can be modi�ed, for example, by a control force

created by a potential V [137]. The enhancing requires to make a transition from the ordinary

di�erential equation to a partial one

m
∂2x

∂t2
= −γdrag

∂x

∂t
− ∂V

∂x
+ FB. (3.30)

For myosin II molecular motor, the mass m is typically about 10−21 kg, the drag coe�cient

γdrag is about 10−7 pNs/nm [29].

3.4.3 Fokker-Planck equation

In my thesis, the Fokker-Planck equation (in some sources called the Smoluchowski equation

[29]) is considered only in following version [133]

∂ρ

∂t
=

D

kBT

∂

∂x

(
∂V

∂x
− FLoad

)
ρ+D

∂2ρ

∂x2
, (3.31)

where ρ is the probability density, D di�usion coe�cient and FLoad is a force of an external load.

Other variables have been de�ned earlier.

The Fokker-Planck equation says that the time evolution of the probability density is given

by two parts � by two terms. The �rst term is controlled transport by an e�ective potential φ

[102]

φ = V − x · FLoad. (3.32)

It is possible to derive many versions of the Fokker-Planck equation from the Langevin

equation by even more kinds of derivatives [38, 118, 134, 97]. However, all of them have in

common the transition from a phase-space to a state-space.

Properties of the Fokker-Planck equation

The Fokker-Planck equation has several interesting properties [114]:

• Principle of superposition

The Fokker-Planck equation is a linear one. Thus, convolution of the initial condition and

Green function create the solution. The same applies to di�usion equation, see Section 5.2.
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• Equation of continuity for probability densities

The Fokker-Planck equation can be written as a set of partial di�erential equations

∂ρ

∂t
= −∂J

∂x
(3.33)

J = − D

kBT

(
∂V

∂x
− FLoad

)
ρ−D∂ρ

∂x
, (3.34)

where J is probability density �ux. The Equation (3.33) corresponds to the Fick law (the

continuity equation), which is well-known from di�usion theory [59].

• Equilibrium state under homogeneous temperature

The Fokker-Planck equation's solution closes to the canonical equilibrium distribution, see

Section 3.3.2, if the temperature T is a constant. In this case, the �ux J vanishes for all x.

• H-theorem

The distance between a Fokker-Planck equation solution in an arbitrary time and the

stationary solution can be expressed by the Kullback-Leibler distance. This distance is a

kind of entropy � the relative one, which is non-negative and disappears only if the solution

in time and the equilibrium are identical. Chapter 9 uses this property. there I show the

mathematical de�nition of the Kullback-Leibler distance. The de�nition is also in Section

3.4.4.

3.4.4 Information

"Information is physical." Rolf Landauer originally said this famous statement. It is the name

of his famous article from 1991 [70].

Information is characterised by the probability of choosing a speci�c event from a large group

of events and by receiving remembering such choice [129]. It brings new view to a convention

thermodynamic problem, see Figure 3.4.

The de�nition of information is according to Ref. [52] as follows

1) "Knowledge obtained from investigation, study, or instruction.

2) Intelligence, news, facts, data.

3) The attribute inherent in and communicated by one of two or more alternative sequences

or arrangements of something (such as the nucleotides in DNA and RNA or binary digits

in a computer program) that produce a speci�c e�ect.

4) A quantitative measure of the uncertainty in the outcome of an experiment to be performed.

5) A formal accusation of a crime made by a prosecuting o�cer as distinguished from an

indictment presented by a grand jury.

6) Anything or any process that is associated with a reduction in uncertainty about something.

7) Information is always associated with making a choice or a selection between at least two

alternatives or possibilities."

The Shannon de�nition of information is analogical to entropy in statistical physics. Shannon

entropy H uses probabilities to its description [80]

H(X) = −
∫
ρ(x) log ρ(x)dx, (3.35)
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where X is a random variable. It says a less probable event produces more information when it

occurs. The base of the logarithm is equal to 2 in a case, the entropy is in bits. If it is in nats,

the logarithm is natural one � the base is equal to Euler number e [21]. The notation H comes

from Boltzmann's H-teorem [120]. This entropy is de�ned in a di�erent way than entropy shown

in Section A.1.

Figure 3.4: The di�erence between information thermodynamics (on the left) and classical ther-
modynamics (on the right). The information thermodynamics allows to have an external agent
which is not included to the system but it is able to in�uence the system via information �ow dI.
Adapted from [46]

Following important parameters in information theory are joint entropy and condition en-

tropy.

The joint entropy is de�ned as follows

H(X,Y ) = −
∫ ∫

ρ(x, y) log ρ(x, y)dxdy (3.36)

and conditional one

H(Y |X) = −
∫ ∫

ρ(x, y) log ρ(y|x)dxdy, (3.37)

respectively.

These parameters are very important, no doubt. But the key role in information theory

have Kullback-Leibler distance and mutual information [21]. Kullback-Leibler distance has been

already mentioned in Section 3.4.3 as a property of the Fokker-Planck equation. It expresses

how two distribution ρa and ρb are similar to each other

D(ρa ‖ ρb) =

∫
ρa log

ρa
ρb

dx . (3.38)

The Kullback-Leibler distance is sometimes noted as information [63].

Mutual information I indicates the correlation between two probability variables [112], it is

sometimes called also as transfer entropy [111]. Its de�nition can be written with using Shannon
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entropy [21] as

I = H(X) + H(Y )−H(X,Y ) . (3.39)

This relation can rewritten with probability densities [21]

I =

∫∫
ρ(x, y) log

ρ(x, y)

ρ(x)ρ(y)
dxdy (3.40)

This equation make easier to show why the mutual entropy is denoted as mean value of

Kullback-Leibler distance. To do this, it is important relation [108]

ρ(x, y) = ρ(x|y)ρ(y) . (3.41)

Then, it is clearly

I =

∫∫
ρ(x, y) log

ρ(x, y)

ρ(x)ρ(y)
dxdy = (3.42)

=

∫∫
ρ(x|y)ρ(y) log

ρ(x|y)ρ(y)

ρ(x)ρ(y)
dxdy = (3.43)∫

ρ(y)

∫
ρ(x|y) log

ρ(x|y)

ρ(x)
dxdy =

∫
ρ(y)D(ρ(x|y) ‖ ρ(x)dy. (3.44)

Generalised second law of thermodynamics

The second law of thermodynamics can be generalised by information term

−∆U +

n∑
m=1

T

Tm
Qm ≤ −∆F + kBTI, (3.45)

where U is a di�erence of system internal energy system between the begging and the end of the

studied interval, Qm is heat exchanged between the system process with temperature Tm and

the heat reservoir with temperature T . The parameter F is free energy di�erence [113].

The inequality can be simpli�ed for case of an isothermal process of a system with single

heat bath with using �rst thermodynamics law [93, 113] as

Wext + ∆F ≤ kBTI. (3.46)

For this form of second law of thermodynamics, it is possible to modify also Jarzynski �uc-

tuation theorem by a term with mutual information dependent on its trajectory γ

〈exp(−β(W −∆F )− γ)〉 = 1. (3.47)

For the mutual information dependent on its trajectory γ is valid simple connection to classical

mutual information I

〈γ〉 = 〈I〉. (3.48)

The validity of Equation (3.47) was proved in Refs. [62, 93].

Information is connected closely to idea of Maxwell's demon (see Section 3.4.5). It in�uences

the system somehow. To do so, it performs a kind of measurement. The measurement and its

31



Chapter 3: Statistical and information theory background

memory reset require to perform a work (Wmeas and Wreset, respectively). An inequality to

describe such works establishes as

Wmeas +Wreset ≤ kBTI. (3.49)

The inequality is called the generalised Landauer principle [93].

3.4.5 Maxwell's demon

In 1871, James Clerk Maxwell introduced a being, which can break the second law [72, 86]. In

the beginning, Maxwell supposed to have only "faculties and instruments were so sharpened

that we could detect and lay hold of each molecule and trace it through all its course." [86] The

time, the idea of faculties and instruments change to a "being" that has these abilities. The

principle of acting the being was simple. Consider a vessel with an almost precisely uniform

spatial distribution of particles. Some of them are hotter, some colder. Then divide the vessel

into two parts with a connection - some door controlled by the being. The being can distinguish

the hotter and colder particles, respectively. Thus, its ability to control the door by opening and

closing allows releasing the hotter particles to, for example, the right part and the more cold

ones into the vessel's left part. The being does not perform any work, but it obtains the hotter

right part and colder left part of the vessel. It is in contradiction to the second law.

William Thomson named the being Maxwell's demon. The word demon is used here without

any malicious meaning [72, 125]. It is just a hypothetical agent or device of arbitrary small mass

[72]. The demon evolved during its existence several times. It received "metabolism" in 1923

from demon:lewis and Randall [72, 74] and "intelligence" in 1924 from demon:nyquist [72, 90].

Also, it obtained "eyes" for watching molecules via light signals in 1951 from Brillouin [72], or

in other words, an ability to measure [103], which have been modi�ed to observe even quantum

e�ects, like black body radiations [72, 103]. The demon has, from its de�nition ability of feedback

control. Some of the skills also cause temporal exorcism. The best known was a Brillouin one.

Nevertheless, Maxwell's demon has returned among living physical problems [72].

During the Maxwell demon history, not only its skills changed. The change was also in a

physical realisation of the demon. Smoluchowski considered the demon as automated trapdoor

[103, 72], see Figure 3.5. The trapdoor can be connected with a spring and then serves as a

one-way valve which allows for an increase in density on one side while preventing �ow in the

reverse direction[103]. Szilard invented a single molecule engine, see Figure 3.6. The engine's

working substance is a single-molecule gas in a box of a given volume, immersed in a thermal

reservoir at temperature T , and manipulated by an external agent (demon). The demon splits

the box into two halves and measures on which side the molecule is. Then, the demon carries out

a reversible expansion to the original volume to extract work Wext = kBT [93]. Later, di�erent

kind of ratchets embodied the demon [102]. The most famous one is the Feynman ratchet wheel,

and pawl [47, 114]. This device's task is simple � to prevent movement in the opposite direction

than is required, see Figure 3.7.

Nowadays, Maxwell's demon is no longer just a theoretical construct. However, it is still

a kind of metaphor. Several experiments were set-up to prove Maxwell's demon. Recently, an

experiment with a single-electron box (SEB) controlled by a gate voltage Vg and monitored by

a single-electron transistor (SET). The scheme of the experiment is in Figure 3.8 [93]. Ref.

[67] shows a similar experiment. It was done with a colloidal particle and two optical traps,
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Figure 3.5: Smoluchowski automated trap door. Molecules are kept in one part (B) by a trap
mechanism (spring) and molecules from the second part (A) have an allowance to pass through.
Adapted from [103].

Figure 3.6: Szilard one molecule engine. In an initial state, a free molecule is moving in a box
(a). Then the box is divided into two parts by a movable partition (b). A weight connected to
the partition (c) is moved due to thermal collisions with the molecule far away from the weight.
Thus, the weight goes higher. Taken from [103].

see Figure 3.9 or rotating colloidal particle, see Figure 3.10. The next experiment came back to

Maxwell's original mental experiment. The setup uses energy from thermal system measurements

and feeds forward, in order to extract work, see Figure 3.11, [8, 127]. Maxwell's demon was

discovered on the quantum level in di�erent experiments [8, 20].

Also, biochemical signal transduction [46], and molecular motors ful�l properties of Maxwell's

demon [64]. Furthermore, a �lament segment's shape was compared to a ratchet due to its

sawtooth shape even before [77] � this kind of model of Maxwell's demon description applied on

the myosin II motor I use in the thesis.
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Figure 3.7: Feynman ratchet wheel and pawl. Thermal collisions with a paddle wheel make a
turn of a spool with a weight. The spool rotates only in the desired way due to the ratchet wheel,
which prevents movement in the opposite direction. For this device's correct work, it is necessary
to have two di�erent temperatures baths [47]. Adapted from [114].

Figure 3.8: Experimental realization with a single-electron box (SEB) controlled by a gate voltage
Vg and monitored by a single-electron transistor (SET). The controlling system decides according
to the electron number (n=0,1). Adapted from [93]
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Figure 3.9: Schematic representation of a colloidal particle and two optical traps. The top �gure
shows the experimental set-up: one trap keeps �xed at position x = 0, and the other is shifted
horizontally at velocity vtrap. A controllable electrostatic �eld created by two electrodes biases the
particle towards one of the traps. The bottom �gure shows a contour plot of the potential a�ecting
the particle during a process where the moving trap is shifted and then moved back to its initial
position. A realisation of the particle's trajectory is visualised as a �uctuating white line. The
Szil�ard cycle achieved by measuring the trap. The particle lies in the middle of the process and
biasing the trap in the second half. Adapted from [93].
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Figure 3.10: Experimental realisation using a rotating colloidal particle. The top �gure shows
the experimental set-up, where two particles are attached to the cover glass. One of the particles
is regarded as a rotating Brownian particle. Four electrodes controllers induce an electric �eld.
The bottom �gure shows two shapes of the e�ective potential. It is a superposition of a sinusoidal
potential and a constant torque. The particle's position is measured, and the potential is switched
from one shape to the other when the particle crosses the potential minima in the uphill direction.
Adapted from [93].

Figure 3.11: Thermal light is produced by collecting laser pulses scattered from a spinning glass
di�user wheel. High transmittance beam splitters (BS) and highly sensitive avalanche photodiodes
(APDs) implemented as the demon's measurement. The two �nal linear photodiodes are the work
extraction mechanism, acting as an electromotive source that charges a capacitor (C). A nonzero
average voltage across C can be obtained by feed-forward of the demon's measurement, swapping
its polarity according to the APD measurement outcomes. Adapted from [127].
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3.4.6 Information motors

Information motors are also considered a kind of Maxwell's demon [65]. These motors (sometimes

called feedback motors) can convert information to work [42]. Ref. [83] studies the connection

between information and Maxwell's demon. There is a simple three-state model, where a demon

reads a data strip (bits) and lifts a weight according to the obtained data, see Figure 3.12.

Figure 3.12: Information demon collects information from a data strip (bits) and in every tran-
sition A → C lifts the weight m by an amount ∆h. Adapted from [83].
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Objectives and hypotheses

38



Chapter 4

Objectives and hypotheses

Topics of molecular motors and Maxwell's demon are vast. The thesis cannot contain everything.

Thus, I have chosen to focus on the Fokker-Planck framework applied to the myosin head. The

approach is already used by many researchers groups, like Chen's, Wang's, and Yin's [16, 133,

136].

The initial step is to study literature about molecular motors, Maxwell's demon and infor-

mation motors.

The �rst necessary objective concerning the modelling is to make own veri�cation of the used

algorithms. As was mentioned before, the Fokker-Planck equation is the base equation in the

model which describe the system behaviour. It is a partial di�erential equation of �rst-order in

time and second in space variable, respectively. Its solving can bring some di�erent results in

comparison with an analytical solution.

The second task is to �nd a simpli�cation of the myosin head movement model (how to

discretise the movement cycle), which is not commonly used in this framework but is still well

applicable to the problem. If the model does not use even some dependence on the ATP molecules

concentration, add to it.

Next, the Fokker-Planck framework provides probability densities of the myosin head pres-

ence. It can be interesting to watch the normalising condition's necessity to ensure the myosin

head is within the domain. I hypothesise that the di�erent boundary conditions in�uence the

total sum of the probability density a lot.

The model requires to have an output comparable with an experiment. For this reason, I

study the molecular motor's velocity here.

The last objective is to connect the myosin head description with Maxwell's demon concept.

The demon has many di�erent abilities � watching the procedure of the movement or controlling

the movement. These "powers" are simulated by numerical means. Here, I focus on watching the

myosin head movement only. The next ability (system control) can be attached to the model in

future. However, it is complicated to validate these simulations of controlling system procedure.
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Methodology
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Chapter 5

Analytic solution of the di�usion

equation and the stationary

Fokker-Planck equation

This thesis focuses on myosin II head which moves along actin �lament and causes a muscle con-

traction. The surroundings in�uence the head movement. Thus, it needs a stochastic approach

for its simulation.

The Fokker-Planck equation describes stochastic behaviour of the given object's probability

density in time t and space x. Therefore, the myosin II head is the object from the Fokker-Planck

equation. It is the essential equation in the model.

The equation is as follows

∂ρ

∂t
=

D

kBT

∂

∂x

(
∂V

∂x
− FLoad

)
ρ+D

∂2ρ

∂x2
, (3.31)

where ρ = ρ(x, t) is the probability density, D di�usion coe�cient and FLoad is an external

load force. V is internal potential of the actin-myosin complex. Parameter kBT is a product of

the Boltzmann constant kB and thermodynamic temperature T .

Concerning the model, I solve the equation numerically. However, it is instructive to simplify

the equation and solve it analytically to compare these two approaches.

I compare two simpli�ed versions of the equation (the solution of the complete Fokker-Planck

equation is not trivial [23] and exceeds the scope of the thesis). The simpli�ed versions are called

stationary Fokker-Planck equation and the di�usion equation.

The modi�cation to the stationary Fokker-Planck equation is simple. It is

0 =
D

kBT

∂

∂x

(
∂V

∂x
− FLoad

)
ρ+D

∂2ρ

∂x2
. (5.1)

To obtain di�usion equation from (3.31), it is necessary to say, there are no internal or

external drifting forces. It means
∂V

∂x
− FLoad = 0 . (5.2)
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Chapter 5: Analytic solution

Then the di�usion equation is indeed

∂ρ

∂t
= D

∂2ρ

∂x2
. (5.3)

I compare analytical and numerical solutions of these simpli�ed equations in Chapter 10.

Chapter 6 describes the used numerical algorithm (called the WPE algorithm).
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Chapter 5: Analytic solution

5.1 Analytic solution of the stationary Fokker-Planck equation

The stationary Fokker-Planck equation is as follows

0 =
D

kBT

∂

∂x

(
∂V

∂x
− FLoad

)
ρ+D

∂2ρ

∂x2
. (5.1)

With using notation

ψ =
∂V

∂x
− FLoad , (5.4)

and divided by D, the stationary equation is simply

0 =
1

kBT

∂

∂x
ψρ+

∂2ρ

∂x2
. (5.5)

By simple modi�cation, I obtain

0 =
∂

∂x

[
ψρ

kBT
+
∂ρ

∂x

]
=
∂J

∂x
. (5.6)

It says, the �ux J needs to be a constant in stationary state. Moreover, to have �nite probability

density ρ, the �ux has to equal to zero [85], i.e. J ≡ 0.

The idea of �nite probability density simpli�es the solution �nding problem of the stationary

Fokker-Planck equation, which is of the second order in space variable, �nd a solution of the �rst

order equation. Therefore
ψρ

kBT
+
∂ρ

∂x
= 0 . (5.7)

Its solution is straightforward1

ρ = C exp

(
− φ̃

kBT

)
. (5.8)

where φ̃ is a primitive function to ψ. I identify it to the e�ective potential directly

φ̃ ≡ φ = V − x · Fload . (5.9)

The integration constant C has a meaning of the corresponding inverse partition sum Z−1. Thus,

C−1 = Z =

∫
exp

(
− φ̃

kBT

)
dx . (5.10)

Hence, the full solution in the original variables is

ρ =

exp

(
−V − x · Fload

kBT

)
∫

exp

(
−V − x · Fload

kBT

)
dx

. (5.11)

1The procedure is described for example in Ref. [6]
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Chapter 5: Analytic solution

5.2 Analytic solution of the di�usion equation

I choose the di�usion equation to show time dependency di�erence between analytical and nu-

merical (WPE algorithm) solution. It is a very easy simpli�cation of the Fokker-Planck equation

by "turning o�" the drifting term. The di�usion equation has a form

∂ρ

∂t
= D

∂2ρ

∂x2
. (5.3)

The solution to the equation is well-known [24] or [31]. Usually, it depends on the solution's

interval � in�nite or �nite spatial variable [24]. Here, the analytical solution is required to a

comparison with the numerical solution. Only the analytical solution on a �nite interval with

connected Neumann boundary conditions at both sides is used in the thesis.

∂ρ(t, 0)

∂x
= 0, (5.12)

and
∂ρ(t, L)

∂x
= 0. (5.13)

Parameter L; L = 36 nm is the �nite domain's length. It says, there is zero �ux across the

borders. Thus, the myosin head cannot leave the domain and it is pushed back. It corresponds

to the re�ecting boundary, see Section 6.1.

The solution has a form

ρ(t, x) =
1

2
A0 +

∞∑
n=1

An exp

[
−
(nπ
L

)2
Dt

]
cos

nπx

L
. (5.14)

and the initial condition must obey

ρ(0, x) =
1

2
A0 +

∞∑
n=1

An cos
nπx

L
. (5.15)
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Chapter 6

Wang-Peskin-Elstone algorithm

In this thesis, I use Wang-Peskin-Elstone algorithm (shortly the WPE algorithm [133]) for numer-

ical integration of the Fokker-Planck equation, see (3.31). The original version of this algorithm

was introduced in 2003 [132]. In 2007 an improved version of the algorithm was published [131].

This later version can handle discontinuous version of the Fokker-Planck equation. The discon-

tinuity is in the potential V . The biggest advantage of the WPE algorithm is the preservation

of detail balance [132]. It means no additional numerical error in a stationary state1.

In this chapter, I present the original version of the algorithm. It is entirely su�cient for the

thesis's scope. Other authors[16, 136] use this algorithm to deal with numerical simulations of

molecular motors as well.

The algorithm can be modi�ed to solve spatially dependent di�usion coe�cient, but it is not

the thesis's objectives. More information about that problem can be found in Appendix A of

Ref. [132].

The spatial variable x is divided into N equidistanted nodes xn with step ∆x, i.e.

∆x = xn+1 − xn . (6.1)

The principal algorithm assumes the �ux Jn+1/2 between nodes xn and xn+1 can be rewritten

with a help of forward F and backward B �uxes.

Jn+1/2 = Fn+1/2pn −Bn+1/2pn+1 (6.2)

where pn is a probability of �nding the motor at site xn .

The solution of the WPE algorithm can be interpreted as a spatially discrete Markov chain

[132]. The solution has a form of the master equation

dpn
dt

= −(Bn−1/2 + Fn+1/2)pn + Fn−1/2pn−1 +Bn+1/2pn+1, (6.3)

and satis�es, for a space step ∆x, a relationship

pn(t) ≈
∫ xn+∆x/2

xn−∆x/2
ρ(x, t)dx ≈ ρ(xn, t)∆x . (6.4)

Parameters Fn+1/2 and Bn+1/2 are between nodes xn and xn+1, respectively, see Fig. 6.1.

1For more details about balance see Appendix B
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Chapter 6: Wang-Peskin-Elstone algorithm

...............

Fn-1-1/2 Fn-1/2 Fn+1-1/2

   n-1............... n n+1

Fn-2-1/2

Bn-2-1/2 Bn-1-1/2 Bn-1/2 Bn+1-1/2

Figure 6.1: Scheme of spatial �uxes in the WPE algorithm.

These parameters are determined by a stationary solution of the originally solved equation.

For the Fokker-Planck equation (3.31) can be written as follows[132]

Fn+1/2 =
D

(∆x)2

∆φn+1/2

kBT

exp

(
∆φn+1/2

kBT

)
− 1

∀n ∈ 〈0;N〉 (6.5)

and

Bn+1/2 =
D

(∆x)2

−
∆φn+1/2

kBT

exp

(
−

∆φn+1/2

kBT

)
− 1

, (6.6)

where ∆φn+1/2 is de�ned to be

∆φn+1/2 = φ(xn+1)− φ(xn), (6.7)

where φ(x) = V (x)− x · FLoad is called the e�ective potential [102].
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Chapter 6: Wang-Peskin-Elstone algorithm

6.1 Boundary conditions

The WPE algorithm work with three kinds of boundary conditions � periodic, absorbing and

re�ecting.

The �rst, called the periodic boundary condition, assumes an in�nite number of actin-myosin

head complexes. They are periodically repeated. Therefore, each system has the same probability

densities as its neighbours. The scheme is in Figure 6.2.

...............

1

2

N

N-1

B1/2

B1+1/2 BN-1-1/2

BN-1/2

F1/2

F1+1/2 FN-1-1/2

FN-1/2

Figure 6.2: Scheme of periodic boundary condition of the WPE algorithm.

The second, called absorbing conditions, assumes that myosin head can go out of the studied

domain never return inside. The situation is similar to a rupture on a swing ride. The seat is

out of the fairground amusement and never can return there just by itself, it needs a repair.

The usage of this condition for numerical analysis without any normalisation condition is

quite tricky. Nobody can tell if the decrease in a probability is given by this boundary condition

or by numerical integration method. Its scheme is shown in Figure 6.3.

...............1 2 NN-1

B1/2 B1+1/2 BN-1-1/2 BN-1/2

F1/2 F1+1/2 FN-1-1/2 FN-1/2 Fabs

Babs

Figure 6.3: Scheme of absorbing boundary condition of the WPE algorithm.

The last possible boundary condition is called re�ecting one. It means if the myosin head

goes to the boundary, The head returns to the domain of interest. It is like the re�ection in a

mirror. In other words, it goes back like a yoyo in its lowest position.

This boundary condition can help with determining the total probability decrease source in

case of absorbing boundary conditions.
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Chapter 6: Wang-Peskin-Elstone algorithm

The scheme of re�ecting boundary condition is in Figure 6.4.

...............1 2 NN-1

B1/2 B1+1/2 BN-1-1/2 BN-1/2

F1/2 F1+1/2 FN-1-1/2 FN-1/2

Figure 6.4: Scheme of re�ecting boundary condition of the WPE algorithm.
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Chapter 7

Three state model of myosin II

In 1999, a three-state model of myosin II was introduced in Ref. [25] and further developed in

articles [27, 128]. The last mentioned model is based on an ensemble approach. Authors call

these mechanochemical states the unbound (motor is loaded with ADP and P), the weakly-bound

(myosin is bent to the actin �lament) and the post-power-stroke, see Figures7.1 and 7.2. Ref. [27]

uses transition rates based on Ref. [128] as follows: The transitions between the unbound and

the weakly-bound is k12 ' 40 s−1 and k21 ' 2 s−1, respectively. Between the weakly-bound and

the post-power-stroke state was determined similarly for both directions k23 ' k32 ' 1 · 103 s−1.

The last step is irreversible and can be done from the post-power-stroke state to the unbound

with the rate

k31(x) = 80 exp{−km(x+ d)/F0}, (7.1)

where km ' 2.5 · 1 · 10−3 Nm−1 is the spring constant of myosin neck linkers. These linkers are

schematically shown in Figure 7.2. The parameter d ' 8 nm, which corresponds to a length of

the myosin power-stroke. The force F0 = 12.6 pN corresponds to the motor inside load.

Figure 7.1: Mechanochemical states of myosin II molecular motor used in the three-state model
with possible transitions between them. Adapted from [27].
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Chapter 7: Three state model of myosin II

Figure 7.2: Scheme of mechanochemical states of myosin II molecular motor as springs. The
unbound state is denoted as 1, the weakly-bound state as 2, and the post-power-stroke as 3.
Adapted from [27].

This Erdmann's model [27] serves as an inspiration to this thesis. From this model, only the

myosin head movement's discretisation is taken (including the irreversible transition from the

post-power stroke state to the unbound one). I base my model on the Fokker-Planck equation

(3.31) which is in a set with its two clones (one equation for each state) connected via transition

rates kij and kji as follows

∂ρi
∂t

=
D

kBT

∂

∂x

(
∂Vi
∂x
− FLoad

)
ρi +D

∂2ρi
∂x2

+

3∑
j=1

kjiρj −
3∑

j=1

kijρi . (7.2)

The myosin head movement is controlled by an action potential, Vi(x), and applied load

force, FLoad, and the amplitude ∆G in kBT units representing the energy derived from one ATP

hydrolysis [16], in the Fokker-Planck framework. This is adjusted according to the meaning of

each state considered in the model. The unbound state is represented by a constant potential,

which equals zero in the model. The other potentials are given by the Fourier series FS,

V FS
2 (∆G, x) = ∆G

(
sin

2πx

L
− 0.5 sin

4πx

L
+ 0.3 sin

6πx

L

)
, (7.3)

The Fourier series is often used for ratchet models in the Fokker-Planck framework [16, 133].

There are only two states models (constant and pure Fourier series). For this reason, I add

the third potential. Its de�nition comes from an idea of the myosin head moving with actin

�lament, which changes the actin-binding site position. This assumption allows me to de�ne the

post-power stroke potential in two way.

The easiest way is only to reverse the potential for the weakly-bound state, i.e.

V FS
3 (−∆G, x) = −∆G

(
sin

2πx

L
− 0.5 sin

4πx

L
+ 0.3 sin

6πx

L

)
(7.4)

This set of potentials is in Figure 7.4.

The second version of the post-power stroke potential in this thesis as well. It uses the

stroke-distance d

V FS
3 (∆G, x+ d) = ∆G

(
sin

2π(x+ d)

L
− 0.5 sin

4π(x+ d)

L
+ 0.3 sin

6π(x+ d)

L

)
. (7.5)

This set is shown in Figure 7.5
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Chapter 7: Three state model of myosin II

(a) The unbound state (b) The weakly-bound state (c) The post-power stroke state

Figure 7.3: A schematic representation of three-state model of the myosin head (red ellipse) in
relation to the actin �lament (long black line). In unbound state, Figure 7.3a, the myosin head
is detached from the actin �lament, and the myosin neck (spring) is relaxed. In the weakly-bound
state, Figure 7.3b, the myosin head is touching actin �lament. The myosin neck is stretched. In
the post-power state, Figure 7.3c, the myosin moved together with the actin �lament.
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Figure 7.4: The potentials for the unbound state (V1), the weakly-bound state (V2) and the post-
power stroke (V3), respectively.
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Figure 7.5: The potentials for the unbound state (V1), the weakly-bound state (V2) and the post-
power stroke (V3), respectively. The potential V3 has its alternative form according to Equation
(7.5).
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Chapter 8

Condensation of states

In Section 2.3, I describe some possibilities of how to myosin continuous cycle divide into several

chemo-mechanical states. It makes comparable results with di�erent models harder. It also

makes putting experimentally obtained data as an input to the model more di�cult.

The solution of putting experimental data to the model is by condensation of model states.

Ref. [136] introduced condensation of �ve states into two. I innovate the procedure for obtaining

the three-state model of myosin head movement. Thus, it can be considered as the method

modi�cation.

The most elementary procedure's assumption is to have more states for the experimental

data than for the numerical model.

Let's assume to have myosin cycle, see Figure 8.1, as follows [136]. As the �rst step is

considered myosin bounded to actin �lament in the presence of adenosine diphosphate and free

phosphorus (AMDP). In the next phase, the phosphorus is released (AMD). The third step is

bounding adenosine triphosphate molecule (AMT), which causes releasing from actin �lament

(MT). The molecule of ATP hydrolyses to adenosine diphosphate (ADP) and free phosphorus

(P) and the state is AMDP again. It means the cycle is over.

AMDP AMD AMT MT MDP AMDP

Figure 8.1: Myosin chemo-mechanical cycle according to [136]. A stands for actin, M for myosin,
D for adenosine diphosphate and T for triphosphate, respectively. P denotes free phosphorus.
Arrows are representing transitions rates between states. The notation is inspired by [44].

I chose the three states model as the myosin head cycle in my thesis, see Chapter 7. The

states are the unbound, the weakly-bound and the post-power stroke. Figure 8.2 shows the

connection between these two models.

The procedure's key point is to determine helpful ending points in the original cycle to

condensed one. In this case, they are the states denote in Figures 8.1 and 8.2 as MDP (2′) and

AMD (5′). In the mathematical description, they are coded only by numbers. Transition rates

k have its index according to the lower number of the state. In anticlockwise cases, there is in

upper index sign minus moreover.

These approximations give the transition rates between the unbound state and weakly-bound

state, k12 and k21
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Unbound

Weakly
 bound

MT

MDP

AMDP

AMDAMT

Post-
-power
stroke

1'

2'3'

4'
5'

Figure 8.2: The connection between the original �ve states model from [136], see Figure 8.1 and
the three states model, see Figure 7.1 is denoted by green ribbons. Dark red ribbons stands for
transitions rates in the three states model and dark blue in the �ve states model, respectively.

1

k12
≈ 1

k5′
+

1

k1′
(8.1)

1

k21
≈ 1

k−5′
+

1

k−1′
. (8.2)

Similar relations is possible to obtain for transitions between the post-power stroke and

unbound state, but there is a small catch. The transition rate k13 is forbidden. To solve this

issue, the transition k31 is de�ned by a di�erence of these condensed rates

1

k31
≈
(

1

k3′
+

1

k4′

)
−
(

1

k−3′
+

1

k−4′

)
(8.3)

This di�erence is not shown in the article [136] and thus this is an innovation.

Due to the identi�cation AMT state as the post-power stroke state the rates between AMD

and AMT states are kept as they are.

k23 = k2′ , (8.4)

k32 = k−2′ . (8.5)

This condensation process allows including dependences of di�erent ion concentrations from

the literature to the model. These relations were not found in the available sources for the

three-state model.
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Chapter 9

Position determination

The Fokker-Planck equation predicts chemo-mechanical state and position via probability density

ρ(x, t). Imagine, that a control mechanism, which is in the muscle cell [73] (the demon), needs

to locate "precise" position (and state of the myosin head) in time t = tm. Here, I present a

simple numerical prediction of the localisation of the head. However, this prediction in�uences

the next evolution of the system, and it is connected with mutual information production and

generation of relative entropy as well.

I presume in this localization model, the prediction is in�uenced by an error in Gaussian form

ρe(x|x̃) ∝ exp

[
−(x− x̃)2

σ2

]
, (9.1)

where x̃ is mean value of the distribution and σ is called standard deviation1. The Gaussian

form is normalised to 1, i.e. ∫
ρe(x|x̃)dx = 1 . (9.2)

Random number generator provides the mean value of the error (if not said otherwise). The

used generator is in MATLAB software. The precise algorithm of the determination is as follows.

The generator provides a number in interval <0;1> with a uniform distribution. This interval

comes from the de�nition of probability [141]. This generated number corresponds with the

cumulative probability distribution value, see Figure 9.1. Then, there is a crucial step to assign

the position along axis x (actin �lament). The inversion of the cumulative probability function

does it. The generator's single number determines the mean value of the error distribution and

the actual chemo-mechanical state precisely due to the normalisation condition for all three

chemo-mechanical states.

The prediction allows to continue in the evolution according the Fokker-Planck equation with

a new initial condition. I determine the new initial condition ρini proportional to intersection

of the output of the Fokker-Planck equation in time tm, i.e. ρ(x, tm), and the prediction error

ρe(x|x̃), see Figure 9.2. Thus,

ρini(x) ∝ ρ(x, tm) ∩ ρe(x|x̃) . (9.3)

The sign of proportionality is here because of the assumption of certainty of the presence of the

1Many forms how to express Gaussian distribution exists. Some of them have in denominator inside the
exponential function "2σ2".
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Figure 9.1: Illustrative total cumulative probabilities density distribution function (blue line).
The dashed black line denotes border between two chemo-mechanical states. The red lines stands
for the probability density.

ρe(x|x)
ρ(x,tm)

ρ(x,tm)∩ρe(x|x)~

~

x [nm]x~ 360

Figure 9.2: The intersection of prediction ρ(x, tm) and "measured" probability density ρ(x|x̃),
respectively. Their intersection serves as a shape to next initial condition of a new simulation
of measurement. To have initial condition itself, it is necessary to multiply it by its partition
function due to keeping the total probability equal to 1.
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myosin head in the interval. It requires normalization condition∫
ρini(x)dx = 1 . (9.4)

Hence, it is necessary to multiply it by its partition function.

This approach corresponds with the Bayes theorem where ρini and ρe(x|x̃) serves as con-

ditional probabilities and partition function can be called marginal probability in statistical

terminology. Moreover, in Bayesian theory ρ(x, tm) is called prior [17].

This change from ρ(x, tm) to ρini(x) provides a opportunity to calculate relative entropy

(Kullback-Leiber distance) and mutual information.

Relative entropy between two distributions is generally de�ned as follows [21].

D(q1||q2) =

∫
q1 ln

q1

q2
dx. (9.5)

To this de�nition belongs conditions:

0 ln
0

q2
= 0 ∀q2 (9.6)

q1 ln
q1

0
=∞ . (9.7)

It quanti�es ine�ciency of assumption q2 if the true distribution is q1. Relative entropy is

always positive [111], non-symmetrical function. It means D(q1||q2) 6= D(q2||q1), in general case.

If D(q1||q2) = D(q2||q1), it indicates relative entropies are equal to zero and q1 = q2 [21]. Relative

entropy of ρ(x, tm) and ρini(x) is

D(ρini(x)||ρ(x, tm)) =

∫
ρini(x) ln

ρini(x)

ρ(x, tm)
dx. (9.8)

Mutual information I, on the other hand, is symmetrical function. It de�nition is as follows

I =

∫∫
ρ(x, y) log

ρ(x, y)

ρ(x)ρ(y)
dxdy (3.40)

With assumption of independence of variables ρ(x, tm) and ρini, the de�nition equation be-

come

I =

∫∫
(ρ(x, tm) ∩ ρini(y)) ln

ρ(x, tm) ∩ ρini(y)

ρ(x, tm)ρini(y)
dxdy . (9.9)

This de�ned mutual information describes relation between the distribution given by �nal time

step of evolution according the Fokker-Planck equation ρ(x, tm) and new initial condition given

by ρini(y). This de�nition can be modi�ed to characterise relation between other probability

densities as well.
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Chapter 10

Comparison of the analytical and the

numerical solution of the Fokker-Planck

equation and di�usion equation

The comparison between analytical and numerical solution helps with veri�cation process. When

the data are close to each other it is possible to say, the model working in the desired way. Because

an analytical solution of the Fokker-Planck equation is not trivial [23], two simpli�ed forms of

the equation
∂ρ

∂t
=

D

kBT

∂

∂x

(
∂V

∂x
− FLoad

)
ρ+D

∂2ρ

∂x2
(3.31)

were chosen.

The �rst one is the stationary version

0 =
D

kBT

∂

∂x

∂φ

∂x
ρ+D

∂2ρ

∂x2
. (5.5)

The second version of the Fokker-Planck equation is with "turn o�" e�ective potential φ.

This case is called the di�usion equation

∂ρ

∂t
= D

∂2ρ

∂x2
. (5.3)

Their analytical solution is in Chapter 5.

The di�erence between analytical ρana(x) and numerical ρnum(x) solution is shown by pa-

rameters ea for absolute error

ea = |ρana(x)− ρnum(x)| (10.1)

and er for relative error. It is determined as

er = max
ea
ρana

· 100 . (10.2)

The numerical solution of the Fokker-Planck equation is made by the WPE algorithm (see

Chapter 6) and MATLAB solver ode15s (time evolution) or the method of the Lagrange multi-

pliers (stationary solution).
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Lagrange multipliers extends the equation produces by the WPE algorithm M · ps = 0 by

condition to sum of stationary probability ps to equal 1 and by a Lagrange multiplier λ [106] to

set of equations (
M 1

1T 0

)
= 0 (10.3)

where 1 is a matrix of ones with size of ps and T denotes transposition of matrix.

For all simulations results shown in this chapter, it is necessary to determine parameters D

and kBT . The di�usion coe�cient is set D = 5.47 ·107 nm2/s. The value is set according to Refs

[16, 136], which studies myosin II molecular motor. The parameter kBT is taken from Ref. [136],

too. Thus, it is kBT = 4.1 pN/nm. Parameter L corresponds to characteristic length between

two actin bounding places, which is L = 36 nm.
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10.1 Stationary Fokker-Planck equation

The analytical solution of stationary Fokker-Planck equation is according to Section 5.1

ρana =

exp

(
−V − x · Fload

kBT

)
∫

exp

(
−V − x · Fload

kBT

)
dx

. (5.11)

Here, I use periodic boundary condition for analytical and numerical approach. I work with

two di�erent load forces FLoad = 0 and 10 pN to show behaviour of the system.

The chemical potential V is the same for both cases. The Fourier series determine the used

chemical potential as follows

V = ∆G

(
sin

2πx

L
− 0.5 sin

4πx

L
+ 0.3 sin

6πx

L

)
. (7.3)

The resulting e�ective potentials φ = V −x ·FLoad for FLoad = 10 pN as well as FLoad = 0 pN

are shown in Figure 10.1.

Figure 10.1: E�ective potential φ with FLoad = 0 pN (left) and FLoad = 10 pN (right), respectively.

For both cases, numerical solution are almost identical to the analytical one, see Table 10.1

and Figure 10.2. The di�erences are numerical errors, which is a good result.

Table 10.1: Maximum absolute (max ea) and maximum relative errors (er) between analytical
and numerical solution of stationary Fokker-Planck equation for loads FLoad = 0 pN and 10 pN.

0 pN 10 pN

max ea [nm−1] 1.37·10−14 1.73·10−14

er [%] 2.74·10−12 2.22·10−12
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Chapter 10: Comparison of the analytical and the numerical solution

Figure 10.2: The di�erence between the stationary analytic solution and numerical solution ea
with FLoad = 0 pN(left), and FLoad = 10 pN (right), respectively. The maximum di�erence in in
order of 1 · 10−14 nm−1. The agreement is very good.
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10.2 Di�usion equation

The di�usion equation is here as a time-dependent simpli�cation of the Fokker-Planck equation

(without the term of the e�ective potential) to verify the model ability to describe the Fokker-

Planck equation correctly.

Here, I use the di�usion equation with zero Neumann boundary conditions

∂ρ(0, t)

∂x
= 0

∂ρ(L, t)

∂x
= 0

∀t . (10.4)

I compare this analytical solution with the di�usion equation numerical solution given by

re�ecting boundary conditions described in Chapter 6.1. Both kinds of boundary conditions do

not allow any transition from the domain.

The initial condition in the comparison is given by

ρ(0, x) =

(
1− cos

2πx

L

)
/L . (10.5)

It produces solution as follows

ρ(t, x) = 1/L−

{
exp

[
−
(

2π

L

)2

Dt

]
cos

πx

L

}
/L . (10.6)

The result of the analytical solution is in Figure 10.3. Due to low errors between the numerical

and analytical solution, the numerical solution is not shown. These errors are visible in Figures

10.4 and 10.5. Figure 10.4 shows the maximum error in each time step. The maximum of the

absolute error ea in all computed times is slightly higher than 1.2 · 10−4 nm−1. The maximum

of relative error in all time is slightly lower than 2.5%. Figure 10.5 shows whole evolution of

the relative error. It helps to �nd where these methods produce di�erent results. The biggest

di�erence is in the �rst time step of the evolution close to the boundaries.

Figure 10.3: Analytical solution of di�usion equation with re�ecting boundaries.

All found errors are small enough to say the numerical method provides su�ciently good

results.
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Chapter 10: Comparison of the analytical and the numerical solution

Figure 10.4: The maximum absolute max ea and the relative error er between analytical and
numerical solution of di�usion equation with re�ecting boundaries, respectively.

Figure 10.5: The time and spatial evolution of relative error er between analytical and numerical
solution of di�usion equation with re�ecting boundaries.
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In�uence of boundary conditions and

barriers

The absorbing boundary condition's in�uence is studied in [13] and of barriers in [9], respectively.

The �rst Ref. focuses on the transition path time statistics, and the second on �nding exact

solutions of distribution of several di�erent properties with symmetric barriers and wells. For

example, one of the properties is the �rst-time passage. These recent articles prove this is one

of the current science problems in the nanoscale world.

In this chapter, I study the in�uence of di�erent boundary conditions (re�ecting, absorbing)

on the total probability in di�erent times to the classical three states model described in Chapter 7

by solving the WPE algorithm, see Chapter 6, and MATLAB solver ode15s. Thus, it is necessary

to omit the normalising condition to the Fokker-Planck framework's simulation results. Moreover,

the e�ect of the energy barrier is studied, as well. The energy barrier has a meaning of the spring

energy in the myosin neck. The energy prevents the myosin head to go out of the domain. The

de�nition of the energy Em is de�ned as follows

Em =
1

2
km(δx)2 . (11.1)

where km is the spring sti�ness. Its value is 2.5 · 10−3 Nm−1 [27]. The parameter δx is

δx = x− L/2 (11.2)

where x is spatial variable and must obey x ∈ [0;L]. Thus, this is a standard de�nition of the

energy in a spring [140].

I test several variants of potential described in details in Chapter 7. All potentials can be

written as a sum of Fourier series FS and myosin neck energy Em.

FS(∆G, x) = ∆G

(
sin

2πx

L
− 0.5 sin

4πx

L
+ 0.3 sin

6πx

L

)
, (11.3)

The Fourier series FS has two main parameters: x ∈ [0;L] nm, where L = 36 nm [44]. The

spatial variable x can be shift by constant d which is the stroke distance. According to [44], it

is d = 8 nm. The second parameter, ∆G = 12 kBT, is produced energy by ATP hydrolysis. Its

value is set based on article [16]. There it is set ∆GChen = 25 kBT. However, this article is

not concerning experimental articles [57, 58], where is said one ATP molecule provides energy
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enough to several myosin steps. Every used options of potentials are written in Table 11.1. Their

visualisation is shown in Appendix C.

Table 11.1: Di�erent cases of potentials. The Fourier series FS is written in Equation (11.3).
Em is myosin neck energy de�ned in Equation (11.1). Parameter d is the stroke distance. Energy
produced by ATP hydrolysis is denoted as ∆G.

V1 V2 V3

case 1 0 FS(∆G, x) FS(−∆G, x)

case 2 Em FS(∆G, x) + Em FS(−∆G, x) + Em

case 3 0 FS(∆G, x) + Em FS(−∆G, x) + Em

case 4 0 FS(∆G, x) FS(∆G, x+ d)

case 5 Em FS(∆G, x) + Em FS(∆G, x+ d) + Em

case 6 0 FS(∆G, x) + Em FS(∆G, x+ d) + Em

The model has three states. Thus, there are some transition rates between these states. They

are well-described in Chapter 7. For a better overview, I summarise them in Table 11.2.

Canonical distribution (see Section 3.3.2) is used as a base of initial condition for the com-

putation. For purposes of the Fokker-Planck equation framework, it is necessary to make a

transition from one given particle r to one given state i. Moreover, the probability of the given

particle pr is in equation

pr = Z−1 exp(−βEr) (3.7)

replaced by probability density function ρi, where the index i stands for state of myosin molecular

motor according to Chapter 7. The state energy Ei is given by potential Vi, which is determined

as

Vi = V FS
i + Em, (11.4)

where the myosin neck energy is applied. Otherwise, Em = 0 kBT. Thus,

Vi = V FS
i . (11.5)

The initial condition has a form of if kBT units are applied for the potentials

ρi(0, x) = Z−1 exp(−βVi) . (11.6)

Table 11.2: Transition rates of the three-state model. States written in rows are starting ones
i. The ending states j are written in columns. State 1 stands for the unbound state, state 2
for the weakly bound state and state 3 for the post-power stroke state, respectively. The values
of transition rates kij are in s−1 units. Values are based on article [27]. N/A means "Not
Available".

i \j state 1 state 2 state 3

state 1 N/A 40 forbidden

state 2 2 N/A 1000

state 3 3.32 · 10−16 1000 N/A

65



Chapter 11: In�uence of boundary conditions and barriers

The partition function is set to ful�l the total probability equals to 1, i.e.∫
(ρ1(0, x) + ρ2(0, x) + ρ3(0, x)) dx = 1 . (11.7)

Some other parameters are used as well. They are di�usion coe�cient D = 5.47 · 107 nm2/s

[16, 136] and product of thermodynamic temperature and Boltzmann constant kBT = 4.1pN/nm

[136]. There is also possibility of an external load FLoad. However, all shown results in this

chapter have the load �xed to zero pico-Newtons.
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11.1 Re�ecting boundary condition

The re�ecting boundary conditions should keep the total probability density equal to 1 by its

de�nition. However, the results show (see Table 11.3) that the decrease can happen, and an

additional condition is good to keep the value of total probability density normalised to one. It

seems the only adding energy barriers to the edge for attached states (weakly-bound and post

power stroke) is su�cient for keeping the simulation stable even longer than shown results �

more than 10−2 s. Adding barriers to the unbound state does not a�ect the total probability of

the simulations' maximum time. However, the change in potentials for the post-power stroke

state can in�uence the decrease of the probability.

Table 11.3: The obtained total probability in di�erent time steps with re�ecting boundary condi-
tions and with di�erent potentials Vi. The description of single potentials for each case is shown
in Table 11.1.

Total probability obtained by numerical
simulation in di�erent times [10−4 s]

Case of potential 5 15 30 50 75 100

Case 1 1.000 0.984 0.982 0.981 0.981 0.980

Case 2 1.000 1.000 1.000 1.000 1.000 1.000

Case 3 1.000 1.000 1.000 1.000 1.000 1.000

Case 4 1.000 0.996 0.994 0.992 0.992 0.992

Case 5 1.000 1.000 1.000 1.000 1.000 1.000

Case 6 1.000 1.000 1.000 1.000 1.000 1.000
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11.2 Absorbing boundary condition

Absorbing boundary conditions cannot hold the total probability equal to 1 by its very nature.

They allow myosin head to go out of the domain. However, the barriers added to the domain

ends can prevent leaking out of the domain. Results are shown in Table 11.4.

Case 1 and Case 4, having no barriers, serve as a limit situation for absorbing boundaries.

The post-power states' potential for these two cases are plot in Figure 11.1. This state is the

only di�erence between these cases. Moreover, the change is su�cient to slow down the decrease.

The biggest in�uence has adding barriers to the unbound state. In this variant, the probability

keeps stable, and further research suggests these cases are very good at keeping non-zero total

probability density for times longer than shown in Table 11.4. The e�ect continues longer than

10−2 s. Without these barriers for the unbound state (Cases 3 and 6), the sum of probability

densities decreases equally.

Table 11.4: The obtained total probability in di�erent time steps with absorbing boundary condi-
tions and with di�erent potentials Vi. The description of single potentials for each case is shown
in Table 11.1.

Total probability obtained by numerical
simulation in di�erent times [10−4 s]

Case of potential 5 15 30 50 75 100

Case 1 1.000 0.314 0.148 0.054 0.015 0.004

Case 2 1.000 1.000 1.000 1.000 1.000 1.000

Case 3 1.000 0.666 0.665 0.664 0.662 0.661

Case 4 1.000 0.606 0.550 0.483 0.411 0.350

Case 5 1.000 1.000 1.000 1.000 1.000 1.000

Case 6 1.000 0.666 0.665 0.664 0.662 0.661

Figure 11.1: Potential V3 for post-power stroke state in cases 1 and 4.
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Re�ecting boundary conditions provides a more stable sum of the total probability than

absorbing ones. Thus, absorbing boundary conditions are not used to much in this thesis.
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Chapter 12

Transition rates according to Arrhenius

type equation and concentration of

ATP

In this chapter, I modify the three-state model to accept ATP molecules' concentration with the

Arrhenius equation's help. Other muscle contraction models often use the concentration of ATP

[16, 84, 107]. However, this kind of three-state model of myosin head with irreversible transition

is rare and with a lack of data concerning transition rates dependent on ATP concentration.

Thus, I modify a procedure shown in [136], where a �ve-state model is simpli�ed to a two-state

model, and I produce the three-state model as shown in Chapter 8.

The Arrhenius equation describes how to evaluate transition rates in di�erent temperatures

or with di�erent potential barriers. It is given by [44]

k = k0 exp

(
−∆Gab

kBT

)
(12.1)

where k0 is pre-exponential factor, and ∆Gab is

∆Gab = Gactivated state −Gbase state. (12.2)

The energy Gbase state is in the initial state, and Gactivated state is the peak of the �nal state's

energy barrier. Thus, ∆Gab is Gibbs energy between the initial and �nal states.

This equation provides a standard means of how to deal with transition rates. Here, it allows

to include the in�uence of the ATP concentration into the model. The concentration is vital for

the muscle contraction [44].

An alternative version of the evaluation exists. It is by the external load FLoad which is

applied to the myosin [136]. The equation is as follows

k = k0 exp

(
−dFLoad

kBT

)
, (12.3)

where d is the power-stroke distance. This equation is used for states AMDP (the myosin head is

connected to actin �lament in presence of ADP and free phosphorus; in Chapter 8 denotes as 1')

and AMD (the myosin head is connected to actin �lament in presence of ADP only; in Chapter
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concentration of ATP

8 denotes as 2') in the �ve-state model. The transition rate for the state AMT (myosin head is

connected to the actin �lament in presence of ATP; in Chapter 8 denotes as 3') is set according

to Equation [136]

k′3 = k30[ATP ] . (12.4)

It means this transition rate depends on [ATP ], i.e. the ATP concentration. I determine the

backward transitions according to detail balance condition1 [136]. The equation is as follows

[133]

kij
kji

= exp

(
Gi(x)−Gj(x)

kBT

)
. (12.5)

Barriers Gi were set according to article [69], see Figure 12.1. However, these values are for a

much more complicated model, which takes into account even some less probable states. There

are eight states. Thus, I recommend experimental checking of the barrier values considering only

three states of myosin head � unbound, weakly bound and post-power states.

AMDP

AMD

AMTMT

MDP

k0'1 = 10000

k0'2 = 1000

k0'3 = 2000

k0'4 = 100

k0'5 = 2000

 G1 = 0.0

G2 = -11.5 

G3 = 8.5G4 = 0.0 

G5 = -2.3 

Figure 12.1: Transition rates between states of the �ve-state model of myosin and energy barriers
these state. Values are taken from [136] and [69].

This modi�cation of the �ve-state model produces transition rates values in the three-state

model, depending on the ATP concentration parameter. Its value is [ATP ] ∼ 0.1mMol. Values

of transition rates are written in Table 12.1. These values vary from the three-state model's

original values; see Table 11.2. The biggest di�erence is in the transition rate from the post-

power stroke state (3) to the unbound state (1). The original model has this value in order

of 1 · 10−16 s−1. However, my model increases this value to 71.44 s−1. This value variates for

1The di�erence between detail balance and classical balance is described in Appendix's Chapter B.
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di�erent [ATP ]. It is increasing with a higher ATP concentration. This transition rate contains

the ability to break the force that keeps the myosin head connected to the actin �lament [78].

The dependence of the transition rate k31 on ATP concentration is shown in Figure 12.2. The

increasing is very rapid for lower values of [ATP ], and it slows down for higher values of [ATP ].

The growth reminds the saturation curve. It is logical that the next ATP concentration increase

does not in�uence the rate and has to exist.

Table 12.1: Transition rates of the from �ve-state model modi�ed to the three-state model without
any external load. States written in the �rst rows are starting one i. The ending states j is written
in columns. State 1 stands for the unbound state, state 2 for the weakly bound state and state 3
for the post-power stroke state, respectively. The concentration of ATP [ATP ] = 0.1mMol. The
values of transition rates kij are in s−1 units. The transition rates are also dependent on the the
amplitude of amplitude of the the potential barriers ∆G and Fload, respectively. Here, it is set be
equal to ∆G =12 kBT and Fload = 0 pN.

i \j state 1 state 2 state 3

state 1 N/A 1666.67 forbidden

state 2 200.52 N/A 1000.00

state 3 71.44 0.34 N/A

0 2 4 6 8 10

[ATP] [mMol]
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31
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Figure 12.2: The dependence of transition rate from the post-power stroke state to the unbound
one on ATP concentration.

The time evolution of the probability densities in all three states and its sum is shown in

Figure 12.3. For these results, periodic boundary conditions are set with potentials denoted as

5 in Table 11.1, i.e. Em for unbound state, FS(∆G, x) + Em for the weakly-bound state and

FS(∆G, x+d)+Em for the post-power stroke state, FLoad = 0 pN. The initial condition is given

by these potentials as

ρi(x, 0) = Z−1 exp (−Vi + x · FLoad) (12.6)
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where Z−1 is the normalisation factor to ful�l normalizing condition∫ ∑
i

ρi(x, 0)dx = 1 . (12.7)

The transition rates decrease in the unbound state and the weakly-bound state. They increase

in the post-power stroke state. However, the probability density for the unbound state is rising

with higher ATP concentration. The rising is well visible in Figure 12.4a. The weakly-bound

state is rising as well, see Figure 12.4b. A decrease is only in the post-power stroke state, which is

visible in Figure 12.4c. This fact corresponds with the increasing transition rate k31 with rising

[ATP ]. These �gures have di�erent scales on vertical axes for better visibility of probability

densities distributions.
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(a) Unbound state (b) Weakly-bound state

(c) Post-power stroke state (d) Total probability density (the unbound state,
the weakly-bound state and the post-power stroke
state summed together)

Figure 12.3: Probability densities distribution for the unbound state (a), the weakly-bound state
(b),the post-power stroke state (c) and the total probability density (d) (normalized in every time
step) for ATP concentration [ATP] ∼ 0.1mMol. The shape is mainly in�uenced by potential for
given state. The potential is given by Em for unbound state, FS(∆G, x) + Em for the weakly-
bound state and FS(∆G, x + d) + Em for post-power stroke state. The function FS stands for
Fourier series given by the Equation (11.3).
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(a) Unbound state (b) Weakly-bound state

(c) Post-power stroke state

Figure 12.4: The probability density for the three-state model with di�erent ATP concentrations
(in mMol) in time t = 3 ms.
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12.1 Dependence on an external load

The probability density distribution is depended on an external load as well. As was mention

before, some transition rates are determined with help of Equation

k = k0 exp

(
−dFLoad

kBT

)
. (12.3)

This is included to transition rates k12, k21, k23 and k32. These dependences are shown in Figure

12.5. Minimum di�erence for small loads is observable in case of k21 (weakly-bound state to

unbound state). This is caused by barriers which prevents entering to the considered state Gi

given by balance condition, see Equation (12.5).

The time evolution is in Figures 12.6 and 12.7, where the FLoad is set to 0 and 5 pN, respec-

tively. The di�erent external load causes big changes in the shape and evolution of probability

densities.

(a) k12 (b) k21

(c) k23 (d) k32

Figure 12.5: Dependence of di�erent transition rates given by the Arrhenius equation: (a)unbound
to weakly-bound, b) weakly-bound to unbound, c) weakly-bound to post-power stroke and d) post-
power stroke to weakly-bound) on the external load force FLoad with [ATP ] ∼ 1mMol [44] and
∆G = 12 kBT.
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(a) Unbound state (b) Weakly-bound state

(c) Post-power stroke state (d) Total probability density (the unbound state,
the weakly-bound state and the post-power stroke
state summed together)

Figure 12.6: Probability densities with di�erent transition rates de�ned by the external load force
FLoad. Probability densities distribution for the unbound state (a), the weakly-bound state (b),
the post-power stroke state (c) and the total probability density (d) (normalized in every time
step) with respect of ATP, ADP and P concentrations. These parameters are set as follows:
[ATP ] ∼ 1mMol, ∆G = 12 kBT and with external load force FLoad = 0 pN. The potential is given
by Em for unbound state, FS(∆G, x) +Em for the weakly-bound state and FS(∆G, x+ d) +Em

for post-power stroke state. The function FS stands for Fourier series given by Equation (11.3)
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concentration of ATP

(a) Unbound state (b) Weakly-bound state

(c) Post-power stroke state (d) Total probability density (the unbound state,
the weakly-bound state and the post-power stroke
state summed together)

Figure 12.7: Probability densities with di�erent transition rates de�ned by the external load force
FLoad. Probability densities distribution for the unbound state (a), the weakly-bound state (b),
the post-power stroke state (c) and the total probability density (d) (normalized in every time
step) with respect of ATP, ADP and P concentrations. These parameters are set as follows:
[ATP ] ∼ 1mMol, ∆G = 12 kBT and with external load force FLoad = 5 pN. The potential is given
by Em for unbound state, FS(∆G, x) +Em for the weakly-bound state and FS(∆G, x+ d) +Em

for post-power stroke state. The function FS stands for Fourier series given by Equation (11.3)
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12.2 Amplitude of state potential as a function of ATP concen-

tration

Transition rates are not the only things that depend on ATP concentration. The potential of

the given state depends as well. More precisely, the amplitude of the Fourier series is relying on

the concentration according to Equation [44]

∆G′ = −∆G0 − kBT ln
[ATP ]

[ADP ][P ]
, (12.8)

where ∆G0 = 54 · 10−21 J [44]. However, the previous simulations have ∆G > 0, which is in

correspondence with papers [16, 136]. This leads to the decision to keep this convention for

better results comparison. So, the amplitude is computed as

∆G = ∆G0 + kBT ln
[ATP ]

[ADP ][P ]
. (12.9)

Parameters [ADP ] and [P ] are the concentration of ADP and P, respectively. The dependence

of ∆G in kBT units is visible in Figure 12.8.

Δ

Figure 12.8: Increasing dependence of ∆G on concentration of ATP.

Results of probability density distribution are in Figures 12.9 and 12.10. The biggest visible

di�erences due to increasing of [ATP] value are between 12.9b and 12.10b, and 12.9c and 12.10c,

respectively. The weakly bound state is increased with a higher concentration of ATP and the

post-power stroke state is decreasing.
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(a) Unbound state (b) Weakly-bound state

(c) Post-power stroke state (d) Total probability density (the unbound state,
the weakly-bound state and the post-power stroke
state summed together)

Figure 12.9: Probability densities in the three state model with ∆G = ∆G([ATP ]), i.e. ∆G =
17.46 kBT for the unbound state (a), the weakly-bound state (b), the post-power stroke state (c)
and the total probability density (d) (normalized in every time step) with respect of ATP, ADP and
P concentrations. These parameters are set as follows: [ATP ] ∼ 1mMol, [ADP ] ∼ 10·10−3 mMol
and [P ] ∼ 1mMol with external load force FLoad = 0 pN. The potential is given by Em for unbound
state, FS(∆G, x)+Em for the weakly-bound state and FS(∆G, x+d)+Em for post-power stroke
state. The function FS stands for Fourier series given by Equation (11.3)
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(a) Unbound state (b) Weakly-bound state

(c) Post-power stroke state (d) Total probability density (the unbound state,
the weakly-bound state and the post-power stroke
state summed together)

Figure 12.10: Probability densities in the three state model with ∆G = ∆G([ATP ]), i.e. ∆G =
19.76 kBT for the unbound state (a), the weakly-bound state (b), the post-power stroke state
(c) and the total probability density (d) (normalized in every time step) with respect of ATP,
ADP and P concentrations. These parameters are set as follows: [ATP ] ∼ 10mMol, [ADP ] ∼
10 · 10−3 mMol and [P ] ∼ 1mMol with external load force FLoad = 0 pN. The potential is given
by Em for unbound state, FS(∆G, x) +Em for the weakly-bound state and FS(∆G, x+ d) +Em

for post-power stroke state. The function FS stands for Fourier series given by Equation (11.3)
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Chapter 13

Velocity of the myosin head

Mechanical properties serve as a validation of the model. Here, I focus on the molecular motor's

velocity, which is studied in many Refs. [4, 16, 26, 27, 91, 92, 116, 117, 133, 136]. Refs. [16, 27,

133, 136] focus on theoretical studying of the molecular motor's velocity, and Refs. [26, 91, 92,

116, 117] are devoted to experimental studying. Refs. [4, 91] review this topic.

However, a large scattering of values and characteristics are in these papers. In Refs. [26,

92, 116, 117], the di�erence is given by di�erent kinds of myosin (rabbits' vs algas' vs frogs'),

see Figures 13.1a and 13.1b and di�erent experimental settings. Moreover, some experiments

suggest that velocity dependence is not only linear, but it can be deformed to double-hyperbolic

for small loads[4].

(a) Rabbit muscle �bers. Adapted from [116]

(b) Algae myosin II. Adapted from [92].

Figure 13.1: Experimental measurements of myosin II force-velocity dependence.

Refs. [16, 133, 136] de�ne velocity of a molecular motor as an average velocity ν in each state

ν(x) =
1

N

N∑
i=1

LJi(x) , (13.1)
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Chapter 13: Velocity of the myosin head

where N is number of states (i.e. N = 3), L is characteristic length � it is for myosin 36 nm,

and �ux J in i-th state.

The �ux is obtained from the Fokker-Planck equation's properties

Ji = − D

kBT

(
∂Vi
∂x
− FLoad

)
ρi −D

∂ρi
∂x

. (3.34)

According to Ref. [16], the velocity is evaluated in a stationary state. Thus, the Fokker-

Planck equation is reduced to

0 =
D

kBT

∂

∂x

∂φ

∂x
ρ+D

∂2ρ

∂x2
(5.5)

where φ is the e�ective potential φ = V − x · FLoad. In terms of �ux, Equation (5.5) can be

reformulated for one state to

0 =
∂J

∂x
. (13.2)

However, the model is created by three mechanochemical states which allows transitions

between them (with exception of direct transition between unbound to post-power stroke, see

Chapter 7). It requires additional terms which describe these transitions

0 = −∂Ji
∂x
−
∑
i

kjiρi +
∑
j

kijρj ∀ acceptable combinations of i, j (13.3)

Nevertheless, the transition rates kij are set in the model to provide balance, see Chapter 7

and Appendix B. Thus, there cannot be any non-zero total �ux among all three states. It means

the average velocity is zero. However, the molecular motor is still moving in one direction of

chemo-mechanical states. In this direction the velocity can be obtain as

∂J+
i

∂x
=
∑
j

kjiρj , . (13.4)

The index + means that �ux Ji is given only by transition probability densities between states

coming to state i.

Equation (13.4) can integrated to

J+
i =

∫ ∑
j

kjiρjdx (13.5)

The right side of the equation can be modi�ed by the Levi theorem [54] (kijρj is non-negative

integrable function).

J+
i =

∑
j

∫
kjiρjdx . (13.6)

Taking into account that transition rates kij are constant with respect to x, it changes into

J+
i =

∑
j

kji

∫
ρjdx . (13.7)
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Chapter 13: Velocity of the myosin head

The integral can be evaluated by de�nition of probability

p =

∫
ρdx . (13.8)

Thus,

J+
i =

∑
j

kjipj . (13.9)

The relation expands to possible variations

J+
1 = k31p3 + k21p2 , (13.10)

J+
2 = k12p1 + k32p2 , (13.11)

J+
3 = k23p2 . (13.12)

The average velocity along x is expressed as follows

ν(x) =
1

N

N∑
i=1

νi(x) =
1

N

N∑
i=1

L
∑
j

kjipj(x) . (13.13)

It means, the velocity is still dependent on the position along the x axis (actin �lament). Thus

(based on derivation in Ref. [16]), the total velocity is its sum, i.e.

v =
∑
x

ν(x) . (13.14)

This summation does not require any normalisation condition, because all variables except pj
are constant and pj is already normalised by its de�nition

∑
j

∑
x pj = 1.

The �ux J+
i is function of the probability pj . To obtain pj , the WPE algorithm (see Chapter

6) is applied to Equation (13.3). It provides simple matrix equation

0 = Mp (13.15)

where M is matrix given by �uxes F and B along x axis (actin �lament). For inner nodes, the

matrix M is given as follows

M(n, n) = −(Bn−1/2 + Fn+1/2) (13.16)

M(n− 1, n) = Fn−1/2 (13.17)

M(n+ 1, n) = Bn+1/2 (13.18)

where n is a node position in the computation grid length N . Thus, (n − 1, n) is bellow M

diagonal and (n + 1, n) is above the diagonal. The precise form of M is dependent on added

boundary conditions.

Equation (13.15) provides a very important information based on singularity or regularity of

matrix M [89]. If the matrix is singular, the only solution is the trivial one, i.e. vector of zeros.

If the matrix is singular, a non-trivial solution exists.

The Lagrange multipliers method provides the same results for singular matrices as the

Singular Value Decomposition method, which is in MATLAB software.
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Chapter 13: Velocity of the myosin head

Various boundary conditions provide di�erent singularity or regularity of the matrix M . In

the case of absorbing boundary condition, the matrix is regular, and thus, the only solution

of Equation (13.15) is the trivial one. On the other hand, re�ecting and periodic boundary

conditions provide singular matrix M . Hence, these two boundary conditions are proper to

obtain non-zero myosin head velocity.

As the above procedure of calculating the myosin head velocity shows, this motor velocity is

not identical with muscle contraction velocity.
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Chapter 13: Velocity of the myosin head

13.1 Velocity dependence on the load

The velocity dependence on the load is not linear for my three-state model. It is closer to

double hyperbolic trend, see Figure 13.2. This dependence is identical for periodic and re�ecting

boundary conditions and even for all six variants of potentials.

However, in closer look along x-axis (actin �lament), the �uxes and thus velocity ν(x) changes

with di�erent potentials and boundary conditions, respectively. These velocities ν(x) for periodic

boundary condition and FLoad = 0 pN are in Figures 13.3, 13.4, and 13.5.

Figure 13.2: Velocity dependent on the load. The result is identical for all 6 cases of potential.

Figure 13.3 contains velocities ν(x) in the unbound state. Some potential cases redraw the

other one. In the �rst (left) peak, potential denoted as 3 redraws potential 2, and potential 6

goes over potential 5. For the second (right) peak, potential 4 is identical to potential 1; potential

6 hides others.

In Figure 13.4, it is possible to �nd all six �uxes. Only two potentials produce zero �uxes

at the boundary region. There denoted as cases 2 and 5. These two potentials are special due

to energy Em in the unbound state. This de�ned unbound state produces zeros probabilities

in boundary regions. Otherwise, it is bigger than zero and multiplying by high transition rates

causes a clear di�erence in these regions.

In Figure 13.5, only two peaks are visible. The �rst one covers potentials 2, 3, 5 and 6. he

second one is created by identical potentials 1 and 4.

The obtained results are similar to velocity published in Ref [136], see Figure 13.6. The

absolute values are not �tting. The di�erent number of used states causes the change, three in

my model in comparison with two in Yin's model[136]. However, there is a good agreement in

the velocity order between these two models. In Yin's model, velocity also closes to zero for

higher load force.
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Chapter 13: Velocity of the myosin head

Figure 13.3: Velocity ν(x) in the unbound state along actin �lament.

Figure 13.4: Velocity ν(x) in the weakly-bound state along actin �lament.
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Chapter 13: Velocity of the myosin head

Figure 13.5: Velocity ν(x) in the post-power stroke state along the actin �lament. There is some
overlapping of plotted lines. The left peak covers �uxes for cases 2,3,5 and 6. The right peak
covers cases 1 and 4.

Figure 13.6: Velocity dependent on external load force with several ATP concentrations. Adapted
from [136].
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13.2 Velocity dependence on the ATP concentration

The molecular motor's velocity is dependent on the available amount of fuel (ATP) in the sur-

roundings. In Figure 13.7 is shown several lines, which corresponds to di�erent loads (0 pN, 1 pN,

2 pN, 3 pN, 4 pN). All these lines are rising. The load damps the growth. This correlates with a

presumption about the motor.

Figure 13.7: Velocity v dependence on ATP concentration for di�erent external load force FLoad.

The velocity goes to zero for FLoad > 4 pN. The potential and relatively big external load

have the in�uence. Even rough estimation shows that a limit value, where the velocity closes to

zero, must exists. The crucial equation for the estimation is a simple de�nition of external work

Wext = FLoadL . (13.19)

Mechanical work W is created by potentials. Its mean value, which is around 40kBT. It

approximately corresponds to 1.6 · 10−19 J. L is as usual 36 · 10−9 m. From Figure 13.8 is clear,

the velocity closes to zero between 4 pN and 5pN. It is 4(or 5)·10−12 N. So, for these two values

the estimation is as follows:

• FLoad = 4 pN

Wext = 4 · 10−12 N · 36 · 10−9 m = 1.4 · 10−19 J

Thus, the W > Wext and the system should produce enough energy to have non-zero

velocity.

• FLoad = 5 pN

Wext = 5 · 10−12 N · 36 · 10−9 m = 1.8 · 10−19 J

It implies, the W < Wext and the system produces not enough energy to have non-zero

velocity.

To �nd a precise value of FLoad, where the motor has zero speed is possible by this simple

equation. However, the model produces a non-zero velocity (tiny one) at higher external loads.

For this reason, the load which stops the motor is not determined by analytical means (it is an

estimation only).
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Chapter 13: Velocity of the myosin head

Figure 13.8: Velocity dependence on ATP concentration for di�erent loads and di�erent concen-
tration of ATP. The higher concentration increases the myosin head velocity to a certain limit.
The e�ect vanishes with higher loads.

Figure 13.9 contains comparison with experimental data. As was mentioned earlier in this

chapter, a large scattering of experimentally obtained data exists in the literature. The compari-

son is in Figure 13.10. There are experimental results of velocity dependence on a force measured

on sarcomere. The di�erence between sarcomere and single myosin head causes some di�erences

in values. Thus, I compare the shape only. The next di�erence is in used units (N/mm2) for

experimental data.

Both data show a kind of double hyperbolic behaviour. In my model, the change to the

second hyperbole happens around 0.3 of relative load (FLoad/maxFLoad). In the experimental

data, the second hyperbole starts later, around 0.2 (N/mm2). The length of the �rst hyperbole

ratio is increasing for higher ATP concentration in my model. It is easy to presume the next

increasing ATP concentration (to a certain limit) will cause more similar simulated data to the

measured in Ref. [26].

Some similarities are also visible in comparison between 13.9 and 13.1b. The algae experiment

does not show so clear double-hyperbolic behaviour like the frog one, but seeing a beginning of

the second hyperbole around 0.8 relative force is possible. For very low relative loads (<0.5), the

shape is very similar.

Both experimental data start the second hyperbole later than my model.
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Chapter 13: Velocity of the myosin head

Figure 13.9: Normalised velocity dependence on ATP concentration for di�erent loads and di�er-
ent concentration of ATP. Each increase of ATP concentration causes a shift in doublehyperbolic
shape.

Figure 13.10: Double-hyperbolic experimental data of velocity dependence on external load from
frog muscle �bres (a sarcomere). Continues line is a double-hyperbolic �t, and the dashed line is
a single-hyperbolic �t. The force is normalized on 1 mm2. Adapted from [26]
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Chapter 14

Numerical prediction of the myosin II

head position

This chapter is devoted to describing the observing mechanism's behaviour in the living system,

which is akin to Maxwell's demon. It focuses on how much relative entropy and mutual infor-

mation are obtained with di�erent parameters values � standard deviation, position, load � and

how a random prediction of position and state changes the distribution. The prediction follows

Chapter 9 in Methodology part (Part III).

Shown results are with potential denoted as case 6, i.e. V1 = 0 kBT , V2 = FS(∆G, x) +Em,

V3 = FS(∆G, x + d) + Em, where FS is Fourier series and Em is energy of the myosin neck.

ATP concentration is set as 1mMol, ADP = 1µMol, P = 1mMol [44].

The non-symmetry of relative entropy complicates results description. It is crucial to focus

on which probability density is compared to another.

On the contrary, mutual information is a symmetric variable, which makes things easier.

92



Chapter 14: Numerical prediction of the myosin II head position

14.1 Value of standard deviation

For this simulations, I �x the x̃ position to 18 nm, and the myosin head is in the unbound state.

The prediction assumes the error as a Gaussian one. It means information is strongly de-

pendent on standard deviation value σ, which has a meaning of the prediction precision. If the

precision is low, the standard deviation is big, which produces a small amount of relative entropy.

If the precision is high, the reasoning is similar. A small standard deviation brings a signi�cant

amount of relative entropy. I obtain it by my model too, see Figure 14.1.

The situation for mutual information is more complicated than for relative entropy. It says

that the most similar probability density distribution given by the evolution of the Fokker-

Planck equation and the new initial condition obtained by the Bayes theorem is for σ = 5 nm.

For this value of σ, mutual information has its maximum value. Even at this point, the mutual

information is still low, i.e. I = 1.7 · 10−3 bit.

Figure 14.1: Relative entropy and mutual information in the dependence on value of standard
deviation.

In other states, relative entropy and mutual information are very qualitatively similar. How-

ever, they are quanti�ed di�erently.
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14.2 Di�erent position of myosin head on actin �lament

In this section, standard deviation σ is set to 5 nm (where is the maximum of mutual information

for the unbound state, see Section 14.1) and localized position x̃ is varying. It produces results

shown in Figure 14.2. Here, the state is not playing any role.

Maximum mutual information is for x̃ = 18.3 nm. The area between peaks corresponds to

the most probable value given by the distribution after the Fokker-Planck equation solution. At

the same point, there is the minimal value of relative entropy (x̃ = 15.5 nm).

Figure 14.2: Relative entropy and mutual information in dependence on position x̃ along action
�lament.

94



Chapter 14: Numerical prediction of the myosin II head position

14.3 Load in�uence on obtained information

In this section, I assume the prediction has standard deviation σ = 5 nm and the myosin head is

located with the highest probability on x̃ = 18 nm. It corresponds to half of the studied interval.

Here, the predicted state do not have in�uence again.

The e�ect of increasing load is in Figure 14.3. The limitation of movement by the load force

causes increasing in relative entropy. The situation with mutual information is more di�cult

to describe. The minimum and thus, the biggest di�erence between distribution is for FLoad =

1.9 pN. If any other value of x̃ is set, the minimum moves to a di�erent position.

Figure 14.3: Information and mutual information in dependence on value of standard deviation.
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14.4 Repeated prediction

Repeated prediction is a designation for simulation running from the initial condition evolving

according to the Fokker-Planck equation. The state where the simulation ends, I call before

measurement. Then, the prediction procedure is performed, which takes 0.001ms. It brings a

new initial condition (localisation outcome) which develops in the Fokker-Planck framework. The

interval of solving is the same as in the �rst part (0.5ms). The repeated prediction procedure

ends before the second prediction process. However, it is possible to extend it to more iterations.

The position and state predictions are random. Standard deviation is set to σ = 5 nm.

All importing probability densities are in Figure 14.4. Moreover, there is visible the second

evolution middle step ρtot(t = 0.751ms). It is there due to visualisation of the second evolution

from the predicted probability density.

Figure 14.4: Information and mutual information in dependence on value of standard deviation.

Table 14.1 shows relative entropy for four probability density distributions (initial condition,

before measurement, measurement outcome and the end of the second evolution) and all possible

variants. The results are in a matrix, which has on its diagonal zeroes only. It is caused by

evaluating identical probability densities. The comparison of measurement outcome with others

produces in�nite relative entropy. It is caused by the state of the myosin head determined

without any mistake (zero probability densities in undetermined states), and the denominator of

the logarithms equals zero in this area. According to the relative entropy de�nition, the matrix

is non-symmetrical.

On the other hand, mutual information has its maximum on the diagonal; see Table 14.2. Due

to the intersection of two di�erent probability densities, it is smaller than if they are identical;

hence, mutual information is lower. Furthermore, the matrix is symmetric.

Thus, the results are in agreement with theoretical assumptions.
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Table 14.1: Relative entropy in bits for di�erent probability densities � initial condition, evalua-
tion of the Fokker-Planck equation in the �rst interval (before localization), localization outcome,
evaluation of the Fokker-Planck equation in the end of second interval

initial
condition

before
localization

localization
outcome

end of
the second evaluation

initial condition 0.00 0.28 0.92 0.74

before measurement 0.34 0.00 0.39 0.25

measurement outcome ∞ ∞ 0.00 ∞
end of the second evolution 1.05 0.43 0.04 0.00

Table 14.2: Mutual information for di�erent probability densities � initial condition, evaluation
of the Fokker-Planck equation in the �rst interval (before localization), localization outcome,
evaluation of the Fokker-Planck equation in the second interval

initial
condition

before
localization

localization
outcome

end of
the second evaluation

initial condition 2.34 1.09 0.38 0.47

before measurement 1.09 1.54 0.65 0.76

measurement outcome 0.38 0.65 0.94 0.91

end of the second evolution 0.47 0.76 0.91 1.13
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Conclusion
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Chapter 15

Conclusion and Summary of the thesis

This thesis focuses on an essential biology topic: interaction of myosin and actin in muscle

�laments. It is a crucial mechanism of muscle working process in all eukaryote organisms. The

topic is exciting for biologist, physiologist, and even medical doctors for many reasons. It is

fascinating for the newly developing �eld of arti�cial nanorobots as well.

The interaction between myosin head and actin �lament occurs at petite length, time scales

and small forces � lengths in tens of nanometers, time in milliseconds, and forces in picoNewtons.

Thus, the typical energy exchange is in kBT units (1 Joule corresponds to 4.11 · 10−21 kBT

in standard temperature conditions). It means that interactions, described here, cannot be

characterised by mechanical models (Hill's, Huxley's, respectively [107]) only. There is a need to

consider that interaction happens in a thermal environment; in other words, the energy is indeed

in kBT units. It means that models cannot neglect the thermal environment in�uence. Hence,

its deterministic description is very complicated or even impossible.

Therefore, I choose a stochastic description, where the probability density function, ρ(x, t),

characterised the position of the myosin head on actin �lament at given time t.

In the current statistical physics, the concept of information, i.e. what we know about

the information, have a signi�cant role. Hence, a short description of modern statistical physics

approaches, including information, is in the thesis. These approaches are examined in the context

of Maxwell's demon, signi�cantly. This imagined "being" serves as a system model that controls

the whole structure via a feedback control which uses the information gain. This point of view

allows analysing a lot of dynamic problems in living organisms.

The interaction between myosin head and actin �lament is a complex process, which I simplify

to three states. The �rst one is called the unbound state. In this state, there is no physical

connection between the head and the actin �lament. The second one is the weakly-bound state,

in which the myosin head weakly attaches to the actin. The last state is called the post-power

stroke one. It happens after the contraction of the muscle.

Probability densities ρi; i = 1, 2, 3, in one of the above-de�ned state denotes particular

probability density in a given state, where i stands for the given state. Transition rates between

two allowed states kij(reversibly from unbound to weakly bound, from weakly bound to post-

power stroke and irreversibly from post-power stroke state to unbound) are obtained by the

method of condensation of state from a more detailed description. Their precise values obey

detail balance condition and the Arrhenius equation.

The Fokker-Planck equation describes the stochastic system, including deterministic interac-

99



Chapter 15: Conclusion and Summary of the thesis

tions (realised by internal and external potential forced), di�usion decay and chemical reactions.

∂ρi
∂t

=
D

kBT

∂

∂x

(
∂Vi
∂x
− FLoad

)
ρi +D

∂2ρi
∂x2

+

3∑
j=1

kjiρj −
3∑

j=1

kijρi , (7.2)

whereD is the di�usion coe�cient, Vi internal potential in the given state including actin �lament

con�guration. Other parameters are mentioned above.

I solve this equation by so-called WPE algorithm [132] in several simulation cases:

• in full generality as express in Equation (7.2),

• when describing one state alone without transition rates k and transportation term
D

kBT

∂

∂x

(
∂Vi
∂x
− FLoad

)
ρi,

• the stationary form of the equation without transition rates.

The model uses three kinds of boundary conditions. Periodic, absorbing (myosin head may

leave the studied 36 nm wide domain), and re�exing, where boundary conditions re�ect (mirror)

myosin head back to the domain.

In this thesis, I calculate the whole process during its 3ms evolution in which the myosin

head is attached and detached to the actin �lament. Results are in the form of the probability

density distribution of myosin head in each state and each time. I study the in�uence of ATP

(adenosine triphosphate) and external load on this process.

Moreover, I simulate transition rates dependency on the external load. The results show that

external load higher than 2 pN signi�cantly complicates transition between states.

Next, I study how the amplitude of the potentials depends on ATP concentration. In these

results, it is possible to see that a given transition happens with a certain probability, con�rming

the whole process's stochastic character.

An essential parameter for validation with an experiment is myosin head velocity dependent

on the external load. Chapter 13 describes it. There is an extensive scattering of velocity values

found in the literature. The results show that myosin head velocity is 5000 nm/s (i.e. 5 nm/ms,

which corresponds with timescale in Figures 12.3, 12.4, 12.6, 12.9 and 12.10). Velocity decreases

with increasing load rapidly. The explanation is related to that higher load limit transition rates,

and the head movement is more restricted.

From a modern statistic perspective, it is fascinating to see the whole process as an informa-

tion interchange. Due to this reason, I study this simple model where I describe space localisation

of myosin head as an information process, in which the information obtained by measurement

with an inevitable error. Probability methods are demonstrated, and relative entropy with mu-

tual information is de�ned in this illustrative example. I show di�erent in�uences of various

system parameters on information �ux. Repeated measurement procedure provides an interest-

ing comparison of how the relative entropy and mutual information change with reverse order of

arguments and how in single steps of measurement.

By completing all these results, it is possible to say I ful�lled all objectives.

The topic of the thesis is very interdisciplinary. Except for the necessary knowledge of biologic

phenomena, there is a need to combine mechanics, statistical physics and information theory.

This thesis is unique by using many various science �elds. Results may inspire anatomists,

biologists and experimenters, who work with these structures. Designers who develop working
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mechanisms and smart systems working on feedback control in nanoscale may use these results,

too. I believe the thesis is valuable even from a pedagogic point of view. It provides a primary

picture of new, rapidly evolving topics, and it is possible to continue on this by many applications.
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Resume [Czech language]

P�redkl�adan�a pr�ace je v�enov�ana mikromechanice na molekul�arn�� �urovni. V dne�sn�� dob�e jde o

velice aktu�aln�� t�ema. B�ehem posledn��ch p�eti let (v r. 2016 a v r. 2017) byly ud�eleny 2 Nobelovy

ceny na toto t�ema. Jedn�a se o velmi �sirokou v�edeckou oblast, proto jsem se zam�e�rila p�redev�s��m

na molekul�arn�� motor myosinu II.

Tento molekul�arn�� motor (kr�atce jen myosin) je zodpov�edn�y za svalovou kontrakci. Myosinov�a

hlavi�cka mus�� b�yt p�ripojena na aktinov�e vl�akno, aby zp�usobila kontrakci. Hlavi�cka je tak mal�a,

�ze podl�eh�a Brownovo pohybu. V tomto p�r��pad�e nen�� mo�zn�e tento vliv zandedbat (pokud se ne�re�s��

jen �cist�e mechanick�y model typu Hilla, nebo Huxleyho a podobn�e). Pro dosa�zen�� statistick�ych

predikc�� polohy myosinov�e hlavi�cky je pou�zit Fokker-Plank�uv popis.

Pohyb myosinu je �r��zen mnoha mechanismy. Lze jej zjednodu�sit jako
”
bytost“, kter�a ovli�nuje

pohyb jen jako prost�redn��k. Na prvn�� pohled je tedy tato
”
bytost“ pouze pozorovatelem a d�a se

p�ripodobnit k Maxwellovu d�emonu.

Numerick�e �re�sen�� Fokker-Planckovy rovnice poskytuje algoritmus WPE (Wang, Peskin, El-

stone) a funkce v MATLABu ode15s. Zjednodu�sen�e verze Fokker-Planckovy rovnice (stacion�arn��

Fokker-Planckova rovnice a dif�uzn�� rovnice) byly porovn�any s jejich analytick�ym �re�sen��m. To

poskytlo lep�s�� n�ahled do problematiky.

D�ale byla provedena studie vlivu okrajov�ych podm��nek a potenci�alov�ych bari�er. K tomu

bylo pou�zito 6 r�uzn�ych druh�u bari�er, kter�e m�en�� chov�an�� hlavi�cky myosinu. Studie ukazuje

ztr�atu jistoty p�r��tomnosti myosinov�e hlavi�cky ve sledovan�e oblasti. Hlavn�� v�yhodou t�eto studie

je uk�azka d�ule�zitosti normaliza�cn��ch podm��nek v simulaci (sou�cet v�sech pravd�epodobnost�� v

dan�em �case je roven 1).

Pot�e byl model modi�kov�an p�rid�an��m vlivu koncentrace adenosintrifosf�atu (kr�atce ATP) a

rychlost�� p�rechodu mezi stavy de�novan�ych pomoc�� Arrheniovy rovnice. ATP slou�z�� jako palivo

pro molekul�arn�� motory. Arrheniova rovnice je jednou ze z�akladn��ch rovnic fyzik�aln�� chemie.

Zde slou�z�� k zaji�st�en�� toho, aby model spl�noval podm��nku detailn�� rovnov�ahy, co�z je d�ule�zit�e pro

algoritmus WPE.

Mechanick�e vlastnosti jsou d�ule�zit�e pro zp�etnou vazbu o realistick�em v�ystupu modelu. Jako

z�astupce byla zvolena rychlost, kterou je mo�zn�e m�e�rit v re�aln�em experimentu. Model produkuje

dvojit�e hyperbolick�e rozlo�zen�� rychlosti na vn�ej�s��m zat���zen��, co�z odpov��d�a z�av�er�um z literatury.

Nakonec byl do simulace p�rid�an
”
pozorovatel“, kter�y zjist��, kolik relativn�� entropie a vz�ajemn�e

informace je produkov�ano numerickou predikc�� polohy hlavi�cky myosinu. Predikce ov�sem nen��

p�resn�a. Je ovlivn�ena chybou m�e�ren��, kter�a je d�ana Gaussovo rozd�elen��m. Pr�av�e tato chyba

umo�z�nuje stanovit relativn�� entropii a vz�ajemnou informaci.
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Resume [English language]

The presented thesis is devoted to micromechanics on a molecular level. This topic is an actual

one. It is proven by 2 Nobel Prizes granted in the last �ve years (2016 and 2017) which are

touching the molecular level. This thesis focuses on myosin II molecular motor.

Myosin II molecular motor (myosin shortly) is responsible for muscle contraction. The myosin

head needs to attach actin �lament to cause the contraction. The myosin head is so small that

it obeys Brownian motion. In such a case, the in�uence cannot be omitted (if the objective is

not a purely mechanical model, like Hill's or Huxley's). Statistical predictions of myosin head

are obtained by using the Fokker-Planck framework.

The movement of myosin is controlled by many mechanisms. They can be simpli�ed as

"being", who is not interfering to the motion itself, but serves only as a mediator. So,it is only

an observer at �rst look. This "being" has close to the Maxwell demon hypothesis.

The numerical solution of the Fokker-Planck equation is provided by WPE algorithm and

MATLAB function ode15s. The simpli�ed version of the Fokker-Planck version (stationary

Fokker-Planck equation and di�usion equation) were compared with their analytical solution to

have better insight.

Next, a study of the in�uence of boundary conditions and potential barriers were performed.

There are 6 di�erent cases of a barrier which change the behaviour of the myosin head. The study

shows loss of certainty of the myosin head presence in the watched interval. Its main bene�t is

showing the importance of normalisation condition in the simulation (sum of all probabilities in

a given time is equal to 1).

Then, I changed the model by adding the in�uence of adenosine triphosphate (ATP shortly)

concentration and transition rates de�ned via the Arrhenius equation. ATP serves as a fuel for

molecular motors. The Arrhenius equation is one of the base equation of physical-chemistry.

Here, it ensures the model ful�ls the detail balance condition, which is important for the WPE

algorithm.

Mechanical properties are important to have feedback about the realistic output of the model.

As a representative, I chose the velocity because it is possible to measure in a physical experiment.

The model produces double hyperbolic velocity distribution on an external load, which agrees

with some literature �ndings.

At last, the "observer" was added to the simulation to �nd out how much relative entropy

and information is produced by numerical prediction of the myosin head. The prediction is not

a precise one. It is in�uenced by a measurement error (gaussian distribution). The error brings

an in�uence to the myosin head movement which is also studied.
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Resummen [German language]

Die vorliegende Arbeit widmet sich der Mikromechanik auf molekularer Ebene. In den letzten

f�unf Jahren (2016 und 2017) gab es zwei Nobelpreise, die die molekulare Ebene ber�uhren. Das

Thema ist weit gefasst, im folgenden konzentrieren wir uns auf den molekularen Motor von

Myosin II. Der molekulare Motor von Myosin II (kurz Myosin) ist f�ur die Muskelkontraktion ve-

rantwortlich. Myosinkopf muss ein anderes Filament (Actin) anbringen, um eine Kontraktion zu

verursachen. Der Myosinkopf ist so klein, dass er der Brownschen Bewegung folgt. Da diese Be-

wegung nicht weggelassen werden kann (um ein rein mechanisches Modell zu erhalten), muss eine

statistische Beschreibung verwendet werden. Hier ist es das Fokker-PlanckFramework. Die Bewe-

gung von Myosin wird durch viele Mechanismen gesteuert. Sie k�onnen als "Sein" vereinfacht wer-

den, das die Bewegung selbst nicht st�ort, sondern nur durch einen Mediator. Auf den ersten Blick

ist das "Sein" also nur ein Beobachter. Dieses "Wesen" kommt der MaxwellDamonenhypothese

nahe. Die numerische L�osung der Fokker-Planck-Gleichung wird durch den WPE-Algorithmus

und die MATLAB-Funktion ode15s bereitgestellt. Die vereinfachte Version der Fokker-Planck-

Version (station�are Fokker-Planck-Gleichung und Diusionsgleichung) wurde mit ihrer analytis-

chen L�osung verglichen, um bessere Einblicke zu erhalten. Als n�achstes wurde eine Untersuchung

des Ein�usses von Randbedingungen und m�oglichen Barrieren durchgefuhrt. Es gibt 6 ver-

schiedene F�alle einer Barriere, die das Verhalten des Myosinkopfes ver�andern. Die Studie zeigt

einen Verlust der Sicherheit der Myosinkopfpr�asenz im beobachteten Intervall. Sein Hauptvorteil

besteht darin, die Bedeutung der Normalisierungsbedingung in der Simulation aufzuzeigen (die

Summe aller Wahrscheinlichkeiten in einer bestimmten Zeit ist gleich 1). Dann wurde das Mod-

ell ge�andert, indem der Ein�uss der Adenosintriphosphat (kurz ATP) -Konzentration und der
�Ubergangsraten hinzugef�ugt wurde, die �uber die Arrhenius-Gleichung bestimmt wurden. ATP

dient als Kraftsto� f�ur molekulare Motoren. Die Arrhenius-Gleichung ist eine der Grundgleichun-

gen der physikalischen Chemie. Hier dient es dazu sicherzustellen, dass das Modell die Detailaus-

gleichsbedingung erf�ullt, die f�ur den WPE-Algorithmus wichtig ist. Mechanische Eigenschaften

sind wichtig, um Feedback zur realistischen Ausgabe des Modells zu erhalten. Als Vertreter

wurde die Geschwindigkeit gew�ahlt, die in einem realen Experiment gemessen werden kann.

Das Modell erzeugt eine doppelte hyperbolische Geschwindigkeitsverteilung auf einer externen

Last, was mit einigen Literaturergebnissen �ubereinstimmt. Zuletzt wurde der "Beobachter" zur

Simulation hinzugef�ugt, um herauszu�nden, wie viel relative Entropie und Information durch

numerische Vorhersage des Myosinkopfes erzeugt wird. Die Vorhersage ist nicht pr�azise. Es wird

durch einen Messfehler (Gaußsche Verteilung) beein�usst. Der Fehler beein�usst ebenfalls die

untersuchte Myosinkopfbewegung.
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List of Symbols

[X] Concentration of X, if X is a variable

α E�ective potential divided by kBT

β Thermodynamic beta; coldness; β = (kBT )−1

∆ϕ Di�erence ϕ(xn+1)− ϕ(xn)

∆G Amplitude of Fourier series

∆Gab Gibbs energy between the initial and �nal states

∆x Space step

γ Path

γdrag Drag coe�cient

A Starting point

B Ending point

H Hamiltonian of the system

N Total number of states

T Transposition of matrix

V Volume

p Momentum

Ω actual number of all possible microstates

φ E�ective potential

ψ E�ective force;
∂V

∂x
− FLoad

ρ Probability density

ρ1 Random (arbitrary) distribution

ρ2 Random (arbitrary) distribution

ρe "Measurement" error
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LIST OF SYMBOLS

ρana Analytical solution of ρ

ρnum Numerical solution of ρ

ϕ E�ective potential φ in a given node xn, i.e. ϕ = φ(xn)

A Arbitrary parameter

abs Absorbing

B Backward �ux

C Integration constant

c1 Integration constant

c2 Integration constant

D Di�usion coe�cient

E Energy

ea Absolute error

Em Myosin neck (spring) energy

Er Energy of particles in state r

er Relative error

F Forward �ux

f Distribution function

FB Brownian force

FH Helmholtz free energy

FT Total force

Fdrag Drag force

FLoad External load force

Fspring Force in a spring

G Free enthalpy

g Weight function

H Boltzmann H-function, Shannon entropy

H In Appendix enthalpy

J Flux

k0 Pre-exponential factor in Arrhenius equation
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LIST OF SYMBOLS

kB Boltzmann constant

km Myosin neck (spring) sti�ness

L Distance between two actin bounding sites, i.e. 36 nm

M Matrix produced by the WPE algorithm

m Mass

N Total number of nodes

n Index number of a node

nr Number of particles in state r

p Probability

ps Stationary probability

pm Probability in microcanonical ensemble

Q Heat in the system

r Index of given particle

refl Re�exing

S Entropy

s Given degenerated state

T Thermodynamic temperature

t Time variable

Tm Temperature of m-th process of the system

U Internal (mean) energy

V Potential in�uencing movement of molecular motor

W Work

x Independent variable, space variable

xe Location of the maximal absolute error on x axis

y Dependent variable

Z Partition function

AAA protein ATPases Associated with diverse cellular Activities

ADP Adenosine diphosphate
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LIST OF SYMBOLS

AMD State of the actin-myosin complex � myosin in presence adenosine diphosphate is attached

to the actin

AMDP State of the actin-myosin complex � myosin in presence adenosine diphosphate and free

phosphorus is attached to the actin

AMT State of the actin-myosin complex � myosin in presence adenosine triphosphate is attached

to the actin

APD Avalanche photodiode

ATP Adenosine triphosphate

BS Beam splitters

C Capacitor

D Dimension

Da Dalton; 1 Dalton ≡ 1 Atomic mass unit

DNA Deoxyribonucleic acid

MDP State of the actin-myosin complex � myosin in presence adenosine diphosphate and free

phosphorus is not attached to the actin

MT State of the actin-myosin complex � myosin in presence adenosine triphosphate is not

attached to the actin

PID Proportional Integral Derivative controller

WPE Wang-Peskin-Elstone
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Appendix A

Termodynamic potentials

A.1 Entropy

The most complex parameter in thermodynamics is for sure the system entropy S. It is de�ned

by the second law of thermodynamics [142] as follows

1. S is single-valued function of the system state

2. S is additive

3. The entropy di�erential dS has to obey relationship

dS ≥ δQ

T
, (A.1)

where δQ is the received heat to the system. The sign of equality is applied only for

reversible processes. For a thermally insulated system, δQ = 0,

dS ≥ 0. (A.2)

So the entropy of an insulated system cannot decrease. It increases at irreversible processes

and it is a constant at reversible processes.

In statistical physics, the entropy is usually expressed by the Boltzmann formula

S = −kB log Ω, (A.3)

where Ω is the actual number of all possible microstates and kB is Boltzmann constant. Although

the formula carries Boltzmann's name, the �rst one who derivated it was Planck [94].

There is also one important relationship for the entropy. It is

S = −kB〈log p〉. (A.4)

About its importance is written in [94]: "It shows that the entropy of a physical system is solely

and completely determined by the probability value p." It is also a good relation to a derivation

of the other thermodynamic potentials.

122



Chapter A: Termodynamic potentials

A.2 Internal energy

In the statistical equilibrium point of view is the internal energy U the same as the mean energy

of the system 〈E〉. It means the internal energy can be evaluated in relation to expected value

(see equation (3.11)), i.e.

U = 〈E〉 = Z−1
∑
r

Er exp(−βEr). (A.5)

This can be also simply modi�ed to receive the internal energy directly from the partition function

U = − ∂

∂β
lnZ. (A.6)

A.3 Enthalpy

If volume V is a constant during a process, it is useful to de�ne a kind of energy called the

enthalpy H as

H = U + PV, (A.7)

where P is a pressure. In that case, a di�erential of enthalpy dH is equal to an amount of a

received heat δQ.

This thermodynamic potential cannot be simply (and generally) expressed by the partition

function. The term PV is dependent on a state equation, but it has to be determined according

to which one of the system behaves, i.e. the ideal gas state equation, the van der Waals equation

and so on.

A.4 Helmholtz free energy

The work made by external forces during an isothermal reversible process is the Helmholtz free

energy FH de�ned in thermodynamics as

FH = U − TS, (A.8)

which can be rewritten with help of equations (A.4) and (A.6) to a statistical relation

FH = −kBT lnZ. (A.9)

A.5 Free enthalpy

As the name suggests, it has something in common with the Helmholtz free energy and with the

enthalpy. It is very simply shown by its de�nition

G = H − TS, (A.10)

where G is free enthalpy. It is formally the same relation as equation (A.8).

The Free enthalpy, also known as the Gibbs potential, cannot be rewritten in a statistical

mean due to its dependency to the enthalpy, see above to section A.3.
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Appendix B

Balance

Balance is used in many �elds. Here, it is important for a better understanding of algorithms

which are used in statistical physics. However, the concept of balance is used even for studying

social behaviour. Such an example serves article [7]. They use the balance for studying alliances

in online computer games and compare it with the real political network during the cold war.

The de�nition of balance between two nodes is intuitive � what is going from one node to

the second one must be equal to the amount going from the second node to the �rst one.

This fact can be extended for a system with three nodes. The �ux among these nodes going

"clockwise" must be equal to "anti-clockwise" �ux.

Moreover, if the balance can be found between every pair of nodes, the system is in detailed

balance [32]. This condition is very important in molecular dynamics, especially, in Monte Carlo

simulations. In this model, there is a used algorithm (the WPE algorithm, see Chapter 6) which

holds the condition of the detail balance [132].

The mathematical de�nition of the detail balance is as follows

kj→j+1(x)

kj+1→j
= exp

(
Gj(x)−Gj+1(x)

kBT

)
, 1 ≤ j ≤ N − 1 (B.1)

kN→1(x)

k1→N
= exp

(
GN (x)− (G1(x) + ∆G)

kBT

)
, j = N . (B.2)

The property of ful�lling detail balance is very important for systems in thermodynamic

equilibrium. If this condition is not obeyed in the algorithm itself, it produces arti�cial velocities

[132].

Conditions of detailed balance are similar to conditions which constrain transition rates for

molecular motors [133].

In Ref. [66], the detail balance is disobeyed.
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Potentials

In this thesis, 6 di�erent potentials are used as an input parameters to the model. They are

described in Table 11.1. However, sometimes it is more useful to see graphs instead of mathe-

matical formulas. Each section in this chapter contains a graph and its formula. The shortcut

FS still refers to

FS(∆G, x) = ∆G

(
sin

2πx

L
− 0.5 sin

4πx

L
+ 0.3 sin

6πx

L

)
, (11.3)

C.1 Case 1

This case is generated by zero function for the unbound state, FS(∆G, x) for the weakly-bound

state and by FS(−∆G, x) for the post-power stroke state.

Figure C.1: Case 1

125



Chapter C: Potentials

C.2 Case 2

This case is generated by Em for the unbound state, FS(∆G, x) + Em for the weakly-bound

state and by FS(−∆G, x) + Em for the post-power stroke state.

Figure C.2: Case 2

C.3 Case 3

This case is generated by zero function for the unbound state, FS(∆G, x) +Em for the weakly-

bound state and by FS(−∆G, x) + Em for the post-power stroke state.

Figure C.3: Case 3
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C.4 Case 4

This case is generated by zero function for the unbound state, FS(∆G, x) for the weakly-bound

state and by FS(∆G, x+ d) for the post-power stroke state.

Figure C.4: Case 3

C.5 Case 5

This case is generated by Em for the unbound state, FS(∆G, x) + Em for the weakly-bound

state and by FS(∆G, x+ d) + Em for the post-power stroke state.

Figure C.5: Case 5
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C.6 Case 6

This case is generated by zero function for the unbound state, FS(∆G, x) +Em for the weakly-

bound state and by FS(∆G, x+ d) + Em for the post-power stroke state.

Figure C.6: Case 6
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