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disertačńı práce
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and scientific leadership.

Next, I would like to thank all my colleagues from the VP-5 research programme, especially
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Abstrakt

Tato práce si klade za ćıl shrnout naše výsledky v oblasti modelováńı visutých most̊u, konkrétně
se zabývá řešitelnost́ı a bifurkacemi periodických řešeńı v několika vybraných modelech. Text
je uspořádán chronologicky podle pořad́ı, ve kterém jsme se jednotlivými tématy zabývali. Nej-
prve se soustřed́ıme na jednodimenzionálńı model s tlumeńım a přináš́ıme revizi dosavadńıho
výsledku týkaj́ıćıho se jednoznačnosti řešeńı. K tomu využ́ıváme standardńıch nástroj̊u, jako je
např. Banachova věta o kontrakci, ovšem tentokrát s použit́ım přesněǰśıho geometrického zk-
oumáńı polohy vlastńıch č́ısel odpov́ıdaj́ıćıho lineárńıho operátoru. To nám umožnuje dosáhnout
značného rozš́ı̌reńı intervalu př́ıpustné tuhosti mostńıch lan.

Dále zkoumáme model visutého mostu s prostorově proměnnou tuhost́ı, která přináš́ı možnost,
jak do modelu zahrnout informaci o odděleném rozložeńı připojeńı lan k mostovce. Zaměřujeme
se na kvalitativńı a kvantitativńı vlastnosti tohoto modelu, které srovnáváme s klasickým mode-
lem s konstatńı tuhost́ı. Zjǐsťujeme, že pro některá nastaveńı tuhosti a odpov́ıdaj́ıćıho profilu
rozložeńı lan docháźı v modelu k bifurkaćım periodických řešeńı. V neposledńı řadě se také
zabýváme významem Fuč́ıkova spektra pro možnost existence tzv. blow-up̊u.

Poté se věnujeme tématu, které př́ımo souviśı se zkoumáńım vlivu prostorově proměnné
tuhosti, a sice hledáńı postačuj́ıćıch podmı́nek pro (striktně) inverzńı pozitivitu lineárńıho difer-
enciálńıho operátoru čtvrtého řádu, který odpov́ıdá př́ıslušné rovnici nosńıku s proměnnou
tuhost́ı. Pomoćı rozš́ı̌reńı technik uvedených J. Schröderem v rámci teorie redukce operátor̊u,
ukazujeme, že minima a maxima prostorově proměnné tuhosti mohou značně překročit meze
stanovené dř́ıvěǰśımi výsledky.

Závěrem poznamenejme, že tato práce je rozdělena do dvou hlavńıch úsek̊u. Prvńı část slouž́ı
jako přehled a kompilace našich výsledk̊u, uvedených v kontextu souvisej́ıćı literatury, př́ıpadně
předchoźıch výsledk̊u v dané oblasti. Druhá část je reprezentována př́ılohou, která zahrnuje tři
naše výzkumné články, v nichž jsou k dispozici detailněǰśı informace a také d̊ukazy všech našich
tvrzeńı.

Kĺıčová slova

Visutý most, nelineárńı rovnice nosńıku, mudely s tlumeńım, existence slabého řešeńı, jed-
noznačnost slabého řešeńı, skákaj́ıćı nelinearita, proměnný koeficient, bifurkace, rovnice čtvrtého
řádu, kladné řešeńı, inverzńı pozitivita



Abstract

This thesis brings an overview of our work concerning solvability and bifurcation in various
models of suspension bridges. Our efforts are presented in chronological order. At first, we
focus on a one-dimensional damped model of a suspension bridge. We bring a revision of the
so far known uniqueness result, by employing standard techniques, such as Banach Contraction
Theorem. However, we use more precise geometrical arguments connected to the position of
eigenvalues of the corresponding linear operator, and therefore we obtain a significant extension
of the allowed interval for the stiffness parameter.

Next, we study a model with a spatially variable stiffness parameter. This is an attempt
to take into account the discrete nature of the placement of suspension bridge hangers. We
investigate qualitative and quantitative properties of this model, especially in comparison to the
standard model with constant stiffness. We also show that bifurcation of periodic solutions oc-
curs for certain combinations of the stiffness parameter and the corresponding hanger placement
profile. Additionally, there are also blow-ups to be expected. The existence of those depends on
the structure of the so called Fuč́ık spectrum of the corresponding linear operator.

And finally, we search for sufficient conditions for the (strict) inverse-positivity of the lin-
ear fourth order operator associated with the one-dimensional beam equation with a spatially
variable coefficient. Hence, this topic is very close to our previous work. We incorporate an
evolution of techniques, such as the results of operator reduction introduced and developed by
J. Schröder, which allows us to show, that the extrema of the coefficient can significantly breach
the originally derived bounds.

Let us point out, that this text is divided into two main blocks. The first one serves as the
introduction and a brief compilation of our work in the context of related literature and previous
results of other authors. Since our main results have been split into three research papers, we
add them to this text as appendices, which we consider to be the second main part. There it is
possible to find all the proofs and technical details, which were for the sake of brevity omitted
from the first part.

Keywords

Suspension bridge, nonlinear beam equation, models with damping, existence of a weak solution,
uniqueness of a weak solution, jumping nonlinearity, variable coefficient, bifurcation, fourth order
operator, positive solutions, inverse-positivity



Zusammenfassung

Diese Dissertation gibt einen Überblick über unsere Arbeit zur Lösbarkeit und Bifurkation in
verschiedenen Modellen von Hängebrücken. Unsere Ergebnisse sind in der chronologischen Rei-
henfolge dargestellt. Zuerst konzentrieren wir uns auf ein eindimensionales gedämpftes Mod-
ell einer Hängebrücke. Wir bringen eine Revision des bisher bekannten Ergebnisses der Ein-
deutigkeit. Wir verwenden klassische Techniken wie z. B. den Banach-Kontraktionssatz, aber
mit genaueren geometrischen Argumenten, die mit der Position der Eigenwerte des entsprechen-
den linearen Operators verbunden sind. Daher erhalten wir eine signifikante Erweiterung des
Intervalls der erlaubten Werte für den Steifigkeitsparameter.

Dann untersuchen wir ein Modell mit einem räumlich variablen Steifigkeitsparameter. Es
ist ein Weg, wie die diskrete Art der Anordnung von Hängebrückenhängern zu berücksichtigen.
Wir untersuchen qualitative und quantitative Eigenschaften dieses Modells, insbesondere im
Vergleich zu dem klassischen Modell mit konstanter Steifigkeit. Für bestimmte Kombinationen
des Steifigkeitsparameters und des entsprechenden Profils der Hängerplatzierung, können wir
die Bifurkation periodischer Lösungen beobachten. Wir diskutieren auch über die Existenz der
“Blow-ups”, die mit der Struktur des sogenannten Fuč́ık-Spektrums des entsprechenden linearen
Operators verbunden ist.

Und schließlich suchen wir hinreichende Bedingungen für die Inverspositivität des linearen
Operators vierter Ordnung, der mit einer eindimensionalen Balkengleichung mit einem räumlich
variablen Koeffizienten verbindet ist. Dieses Thema ist sehr nah an unserer bisherigen Arbeit.
Wir präsentieren eine Entwicklung von Techniken, die von J. Schröder eingeführt worden. Die
Ergebnisse seiner Theorie der Operatorreduktion erlauben uns zu zeigen, dass die Extrema des
Koeffizienten viel weiter von Null können sein.

Dieser Text ist in zwei Hauptblöcke geteilt. Der erste Teil dient als Einführung und eine kurze
Zusammenstellung unserer Arbeit, die im Kontext der verwandten Literatur und Ergebnisse
anderer Autoren präsentiert wird. In dem zweiten Teil stellen wir unsere Forschungsartikeln zur
Verfügung, wo man alle Beweise und technischen Details finden kann.

Schlüsselwörter

Hängebrücke, nichtlineare Differentialgleichung, Modelle mit Dämpfung, Existenz der schwachen
Lösung, Eindeutigkeit der schwachen Lösung, springende Nonlinearität, variabler Koeffizient,
Bifurkation, Operator vierter Ordnung, positive Lösung, Inverspositivität
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Chapter 1

Introduction and model overview

In 1940, the Tacoma Narrows Bridge in the northwestern US collapsed into the Puget Sound
after being hit by a slightly above average wind storm. During and after the federal investi-
gation, much effort has been spent into finding an explanation what precisely caused the wild
and eventually fatal oscillations of the bridge, since it appeared that the wind itself was not
strong enough to cause such a disaster. The federal investigation and following research began
with a detailed report (see [2]) written by O. H. Amman, T. von Kármán and G. B. Woodruff.
Since then, the research has still been going on, while bringing many approaches, techniques and
results in the process. Some branches of research are based on the nonlinearity assumption, i.e.,
that the bridge’s hangers have no restoring force when being compressed. A simple way how to
describe the behaviour of such a structure is to consider the bridge as a one-dimensional bending
beam with simply supported ends connected to an unmovable object by a set of nonlinear hang-
ers (see Fig. 1). Here, we would like to point out, that the term “hangers” is not universally
used and does not appear in a significant part of the cited literature. There are other frequently
seen descriptions for this part of the bridge, such as cables and ropes. See the discussion in [21]
for further details. The bridge hangers act as linear springs when being streched, however, as
mentioned before, when being compressed, they have no restoring force.

In this thesis, we deal with such one-dimensional beam models. Practically all of them can
be traced back to the original model, which appeared in the work of A. C. Lazer and P. J.
McKenna (see [28]) and has the following form:

mutt + EIuxxxx + but + κu+ =W (x) + εf(x, t),

u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0,

u(x, t+ T ) = u(x, t), −∞ < t < +∞, x ∈ (0, L),

(1.1)

see e.g. [39]. An overview explaining the meaning of all the coefficients is provided here:

m mass per unit length
E Young’s modulus
I moment of inertia of the cross section
b damping coefficient
κ cable stiffness
W weight per unit length
εf external periodic force
L length of the center-span of the bridge.

For a more convenient way of examining the model’s properties, it is suitable to rescale it by
dividing with the mass m and normalizing the length and time period with the corresponding
spatial variable x and time variable t, respectively (cf. [39]). Note that we again use the same
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symbols for rescaled functions, however, the new parameters get a new notation. Specifically,
α2 := EIT 2π2

4mL4 , β := T
2πmb and k = T 2

4π2m
κ. That is, (1.1) takes the form

utt + α2uxxxx + βut + ku+ =W (x) + εf(x, t),
u(0, t) = u(π, t) = uxx(0, t) = uxx(π, t) = 0,

u(x, t+ 2π) = u(x, t), −∞ < t < +∞, x ∈ (0, π).
(1.2)

Here, the displacement u(x, t) of the roadbed is measured as positive in the downward direc-
tion. Parameters α2, β and k represent elastic forces inside the beam, viscous damping and
the hangers’ stiffness, respectively. The term W (x) stands for the weight per unit length of
the roadbed, whereas the external forces affecting the bridge are represented by εf(x, t). The
already discussed nonlinear behaviour of the hangers is described by the positive part function,
where

u+(x, t) := max {u(x, t), 0} .

unmovable object

hangers

beam

Figure 1.1: Abstract idealization of a suspension bridge.

Although such models are a simplification and omit many real world properties, their be-
haviour actually shows patterns encountered when observing structures such as the Golden Gate
Bridge or, in the past, even Tacoma Narrows Bridge itself. Specifically, we have in mind solutions
of large amplitude or multiplicity of solutions, see [10, 13, 16, 23, 28, 29]). This suggests that
even simple nonlinear models can reveal some potentially dangerous movement of the roadbed.

Before we continue, let us point out that these models can be relatively simply modified
by introducing additional terms, equations (e.g. for more realistic models which consider the
bridge hangers connected to a flexible main cable) and/or changing corresponding boundary
conditions. For further details, see, e.g., [13, 15, 16] or [28].

However, for the remainder of this text, let us return to simpler one-dimensional models.
Before we discuss the results of our work in this field, let us present an overview of standard
models and corresponding results in this chapter. This part will also serve not only for better
understanding of the basic theory and used mathematical toolset, but also for explaining our
general motivation.

From the technical and also historical point of view, the focus on modelling suspension
bridges has been split into several branches. We try to follow this trend in making the structure
of this text similar, i.e., we treat the damped and non-damped models separately. In addition,
in both these branches, further simplifications can be made and, by assuming certain spatial
profile of the solution, reduce the corresponding PDE problem to an ODE case.
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1.1 PDE models without damping

More than thirty years ago, during the 1980s, A. C. Lazer, P. J. McKenna and W. Walter were
studying multiplicity of solutions for various types of equations without damping. These were
thought to be a possible tool for modelling suspension bridges (see, eg. [27] or [29]). Their
work was followed by Q. H. Choi and T. Jung (see [7]) and also L. Humphreys, who obtained
some corresponding numerical results in [23]. These results were extended later by P. Drábek
and G. Holubová in [10] by employing global bifurcation theory. Generally, the results of all
mentioned authors suggest that the more eigenvalues of the corresponding linear beam operator
are crossed by the stiffness parameter k, the more solutions appear.

In order to be more specific, let us concentrate on these PDE models without damping, such
as

utt + α2uxxxx + ku+ =W (x) + εf(x, t) in
(
−π

2 ,
π
2

)
× R,

u
(
±π

2 , t
)
= uxx

(
±π

2 , t
)
= 0, u(x, t) = u(x, t+ 2π).

(1.3)

In the above mentioned literature, models of this type were studied and the first results concern-
ing multiplicity of solutions were obtained. For simplification, the right-hand side was considered
in a more specific form by putting W (x) = 1. However, such simplification is rather realistic,
since one expects that the weight per unit length is (more or less) constant for real structures
(see e.g. [29]). After adding the symmetry conditions (again, a logical step for the studied struc-
tures) and normalizing by changing the variables, the authors of [7, 10, 23] and [29] investigated
the following version of (1.3):

utt + uxxxx + ku+ = 1 + εf(x, t) in
(
−π

2 ,
π
2

)
× R,

u
(
±π

2 , t
)
= uxx

(
±π

2 , t
)
= 0,

u(x, t) = u(−x, t) = u(x,−t) = u(x, t+ π).
(1.4)

First of all, according to McKenna and Walter (see [29]), if k ∈ (3, 15) then at least two solutions
of (1.4) exist. However, for k ∈ (−1, 3), the problem (1.4) admits a unique solution.

More details were proved by Choi et al. in [7] by a variational reduction method. The authors
revealed more information concerning the number and quality of solutions for k ∈ (3, 15). By
their result, under this assumption on k, (1.4) has at least three solutions, two of them being
large amplitude ones. The underlying idea that “more solutions appear when k crosses more
eigenvalues of the corresponding linear beam operator” was later numerically supported by
L. Humphreys in [23]. Again, also the qualitative properties of solutions were discussed, since
the author also presented a large-amplitude numerical solution, obtained by a mountain pass
algorithm (cf. [8]).

In contrast to previous works, the paper [10] comes with a different approach, studying the
problem (1.4) with ε sufficiently small, or with ε = 0, i.e.,

utt + uxxxx + ku+ = 1 in
(
−π

2 ,
π
2

)
× R,

u
(
±π

2 , t
)
= uxx

(
±π

2 , t
)
= 0,

u(x, t) = u(−x, t) = u(x,−t) = u(x, t+ π)
(1.5)

with the global bifurcation theory tools in mind. This has brought even more qualitative infor-
mation about the solution set. Namely, the authors of [10] proved, that each eigenvalue of the
corresponding linear problem with odd multiplicity is a point of global bifurcation and there
exists a continuum of solutions, which is either unbounded, or reaches another eigenvalue. More-
over, for k < −1, the problem (1.5) has no solution, for k ∈ (−1, 3) it has a unique, positive
and stationary solution and for k ∈ (3, 15) there exist at least two solutions, one of them being
positive and stationary and the other one sign changing (see Corollary 2.1 in [10]).

Although there remain some unanswered questions, e.g., whether for any k > 3 there exist
multiple solutions of (1.5), we decided that it would be more appropriate to concentrate on a
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model, which would be in some sense more general, however, it would be possible to at least
partially use some of the techniques and results from [10] as a background. As an advantage,
we would also have some clues, what type of behaviour to expect. That is indeed what we did,
since we started the investigation of a generalized model

utt + uxxxx + k(x)u+ = h(x, t) in (0, 1)× R,
u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, (1.6)

u(x, t) = u(x, t+ 2π) = u(x,−t)

with non-constant hanger stiffness. This assumption, that is, k = k(x), allows us to reflect the
fact, that the bridge hangers are not arbitrarily close to each other, in a relatively simple way.
A summary of our results concerning this model can be found in Chapter 3 and [21].

On the other hand, if we would like to obtain more precise results for the price of having
a far less general model to work with, we can, under specific circumstances, “reduce” the PDE
models into ODE ones. Let us look into this process in more detail.

1.2 ODE models without damping

If we assume that the loading and the external forces have the largest impact in the middle of the
whole structure, we can consider the terms of the right-hand side in (1.4) being W (x) = cosx
and εf(x, t) = εf(t) cosx and look for no-nodal solutions u(x, t) = y(t) cosx (see [10] or [28]).
These modifications allow to transform (1.4) into an ODE problem

y′′ + y + ky+ = 1 + εf(t),
y(t) = y(−t) = y(t+ π).

(1.7)

Similar model has been dealt with in more detail in [28] and, again, the authors came to the
conclusion that more crossed eigenvalues (by k) of the corresponding linear problem means more
solutions of (1.7). Later, by taking ε sufficiently small or even ε = 0 in (1.7) and thus studying
the model

y′′ + y + ky+ = 1,
y(t) = y(−t) = y(t+ π),

(1.8)

the authors of [10] obtained a strong bifurcation result, which brings detailed information about
the set of solutions. In particular, there exists a sequence {km} where km = 4m2−1, m ∈ N∪{0},
such that (1.8) has exactly 2m+ 1 solutions whenever k ∈ (km, km+1). Using global bifurcation
theorems, the authors also provided a detailed descriprion of solution branches bifurcating from
the points km, m ≥ 1, which are the negatives of the corresponding linear operator’s eigenvalues
(see [10], Theorem 3.1).

What is also an important observation, is the relation between the periodicity interval of solu-
tions and their boundedness, or unboundedness, respectively. Indeed, P. Drábek and P. Nečesal
showed in [14] that when one considers the solution of (1.8) not only π-periodic, but generally
T -periodic, two behaviour patterns may occur. Specifically, if T ∈ (0, π), the solutions are all
uniformly bounded, whereas if T ≥ π then there exist solutions with an arbitrarily large ampli-
tude. Moreover, there are blow up points if T > π, that is, in such case, there exist nonstationary
solutions with their amplitude approaching infinity.

The appearance of blow up points can be described even more precisely. The authors of [14]
found out that this phenomenon in the general T -periodic problem corresponds to the Fuč́ık
spectrum of

y′′ + αy+ − βy− = 0,
y(t) = y(−t) = y(t+ T )

(1.9)
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such that for a fixed T , the point k is a blow up point if and only if the couple (k + 1, 1)
belongs to the Fuč́ık spectrum of (1.9). Moreover, as T goes to infinity, the number of blow up
points increases. The authors also obtained similar results for small perturbations of 1 on the
right-hand side of (1.8), i.e., being in the form 1+ εf(t) for ε small enough (see [14] for details).

1.3 Damped models

Now, we turn our attention to a one-dimensional model with a viscous damping term. Investi-
gating the properties and multiplicity of solutions for this model is technically more involved,
however, this approach is more realistic. We work with a minor modification of (1.2), which has
its roots in the work of Lazer and McKenna, who introduced it in [28] and takes the form

utt + α2uxxxx + βut + ku+ = h(x, t),
u(0, t) = u(π, t) = uxx(0, t) = uxx(π, t) = 0,

u(x, t+ 2π) = u(x, t), −∞ < t < +∞, x ∈ (0, π),
(1.10)

where α > 0, β > 0 and k ∈ R. The meaning of all parameters remains the same as in (1.2),
however, the right-hand side h(x, t) is considered in a more general form. This model has not
been dealt with in that much detail as e.g. the previously mentioned ones without damping,
but still some existence results have been obtained.

Let us start with the work of J. M. Alonso and R. Ortega, that employed in some sense a
more “out of the ordinary” approach (compared to other cited literature concerning damped
models and our work). However, it is interesting from our point of view, since their result has
much in common with ours. At the beginning of the 1990s, they studied the global asymptotic
stability and uniqueness of a solution of a forced Newtonian system with dissipation (see [1]),
i.e.,

u′′(t) + cu′(t) +Au+∇G(u) = p(t), (1.11)

where u : R → RN , c > 0, A is a symmetric positive semidefinite matrix, G ∈ C2(R,RN ) and the
right-hand side p ∈ C(R,RN )∩L∞(R,RN ). By considering the right-hand side of (1.10) h(x, t)
continuous and bounded, using the spatial discretization and the finite difference approach, the
authors were able to interpret (1.10) in view of (1.11) and obtained a uniqueness and stability
result, which is in the form of a sufficient condition, that is, if k < β2 + 2αβ then (1.10) has
a unique bounded solution that is exponentially asymptotically stable. This specific condition
for k partially coincides with our new set of conditions, that can be seen further in this text
(Chapter 2), or with more details in [19].

In the same time period, P. Drábek also studied the problem (1.10) (see [9]). His results
confirmed the existence of at least one weak solution, even for a more general right-hand side than
the one in [1]. Moreover, under additional assumptions, he showed that with sufficiently small
external forces, there always exists a solution in some sense near to the equilibrium. This idea was
made more clear later in the 1990s, when J. Berkovits, P. Drábek, H. Leinfelder, V. Mustonen and
G. Tajčová proved in [4] that for the right-hand side in the form h(x, t) =W (x)+εf(x, t) > 0, the
problem (1.10) becomes linear and it admits a positive nonstationary solution for an arbitrary
k ∈ R.

The work of [9] was followed also by G. Tajčová in [39]. She realized, that if |k| <
dist (0, σ(L)) then the problem (1.10) has a unique weak solution for an arbitrary right-hand
side h ∈ L2(Ω). The generality of the right-hand side makes this result rather strong, however,
it also has its drawbacks. Indeed, it unfortunately suggests, that the bridge is “safe enough”
if its cables are not really stiff when stretched, which does not often correspond well to reality.
Since the result is formulated as a sufficient condition, there is room for a potentially significant
improvement. It is not necessary to change the whole approach encountered in [39]. Instead
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of that, it is possible, with some minor updates, to get new, less strict sufficient conditions.
We used the same abstract tools and settings again (cf. [4], [39]), however, by incorporating
some new geometric arguments, we were able to extend the “uniqueness interval” for the stiffness
parameter k. These new conditions have been obtained in [19] and are summarized in Chapter 2.

But for now, let us complete the initial model overview and briefly mention a simplified ODE
model with damping. Since x ∈ (0, π) in (1.10), we now consider the right-hand side of (1.10) in
the form h(x, t) = sinx+εf(t) sinx in order to try to find no-nodal solutions u(x, t) = y(t) sinx.
That is, the process to obtain the model simplification as in Section 1.2 is very similar. In the
end, we get a damped ODE problem

y′′ + βy′ + α2y + ky+ = f(t)
y(t) = y(t+ 2π).

(1.12)

Studying this model was not one of the main topics of our work, however, some information
about the existence of a unique solution based on the mutual relation between the values of k
and β can be found in Chapter 2.

1.4 Motivation and text structure

To conclude the opening chapter, let us explain our motivation to the reader, since it also has
impact on the structure of the following text. At first, our goal was simply to improve the
results concerning the damped PDE model that appeared in [39]. The following chapter and
[19] are devoted to this topic. However, there is more than that in Chapter 2. We also discuss
solvability and/or uniqueness results for simplified models with a specific right-hand side. There
are some relatively standard existence results, which appear neither in [19], nor (to the best of
our knowledge) in the corresponding literature. Therefore, we present them also with proofs.

Later, we decided to study bifurcations in the sense of [10], but for a generalized model of
the (1.6) type, i.e., with the spatially variable stiffness, better reflecting the discrete nature of
the hanger placement. Here, we were able to show, that this assumption actually improves the
bahaviour of the model. For a detailed discussion, see Chapter 3 and [21].

The study of bifucartions of periodic solutions in a weighted model led us to a more theoretical
topic. Establishing the standard bifurcation equation is closely connected to the existence of a
positive stationary solution of (1.6). Searching for conditions, which guarantee this existence
and positivity brought us to the field of (strictly) inverse-positive operators. Again, we could
build our work on previous results, namely those in [11, 12, 26, 38]. Our progress in this field and
new, less strict conditions for inverse-positivity of a linear fourth-order operator are available in
[20] and in Chapter 4.

Further details and proofs of all main theorems can be found in our research articles [19, 21]
and [20]. These are available at the end of this thesis as Appendix A.1, A.2 and A.3, respectively.
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Chapter 2

Models with damping

For now, let us concentrate on the one-dimensional model (1.10) with damping. The aim of this
chapter is to present our existence and uniqueness results considering a relatively general right-
hand side. This was achieved by making some minor improvements of previously introduced
techniques. In order to show the results in the right context, we also provide some important
auxiliary assertions concerning “basic solvability” of (1.10). We use the same abstract setting
as seen in [39] and, for the reader’s convenience, we provide its brief summary.

2.1 Abstract formulation

Speaking about the abstract setting, the involvement of the damping term actually has far
reaching consequences, specifically for choosing the most suitable function space. Let us begin by
denoting Ω = (0, π)× (0, 2π) the considered domain and by H = L2(Ω,R) the real Hilbert space
equipped with the standard scalar product ⟨u, v⟩ =

∫
Ω uv dx dt, u, v ∈ H and the corresponding

norm. Further, we denote by D the set of all smooth functions which satisfy the boundary and
periodic conditions from (1.10).

Definition 1. We call a function u(x, t) ∈ H a weak solution of the problem (1.10) if and only
if the integral identity

∫

Ω
u(vtt + α2vxxxx − βvt) dx dt =

∫

Ω
(h− ku+)v dx dt (2.1)

holds for all v ∈ D.

However, because of the considered damping, the whole situation becomes slightly more
complicated and we need a more general space. Under the term complexification of H, we
understand the space HC = H + iH = L2(Ω,C) with the scalar product ⟨u, v⟩ =

∫
Ω uv̄ dx dt,

u, v ∈ HC, and the usual norm ∥u∥ = ⟨u, u⟩ 1
2 . The set {eint sinmx, m ∈ N, n ∈ Z} forms an

orthogonal basis in HC ([19, 39]) and hence each function u(x, t) ∈ HC has its representation by
the Fourier series

u(x, t) =

+∞∑

n=−∞

+∞∑

m=1

umne
int sinmx. (2.2)

For obvious reasons, we are investigating real valued solutions, so let us point out, that for real
functions u ∈ H there is um(−n) = ūmn.

Let us continue with another abstract object, i.e., we have to introduce a proper replacement
for the derivatives in our space.
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Definition 2. The operator L, such that

L : dom(L) ⊂ HC → HC, Lu =
+∞∑

n=−∞

+∞∑

m=1

(α2m4 − n2 + iβn)umne
int sinmx,

where

dom(L) =
{
u ∈ HC :

+∞∑

n=−∞

+∞∑

m=1

|α2m4 − n2 + iβn|2 |umn|2 < +∞
}
.

is called the abstract realization of the linear beam operator

u 7→ utt + α2uxxxx + βut

with the boundary and periodic conditions from (1.10).

Again, what is important for our interest in real solutions, is the fact, that L maps real-
valued functions to real-valued ones, i.e., u ∈ dom(L) ∩H ⇒ Lu ∈ H.

Some basic proofs concerning necessary conditions for solvability (which we discuss later in
this chapter) require the usage of an adjoint operator L∗. Luckily, it is relatively straightforward
to find the formal adjoint for our operator L.

Remark 1. The operator

L∗ : dom(L∗) ⊂ HC → HC, L∗u =

+∞∑

n=−∞

+∞∑

m=1

(α2m4 − n2 − iβn)umne
int sinmx.

is the adjoint of L on HC. It is also a real operator and its domain is considered in the same
sense as for L.

Now it is finally possible to recast the original boundary value problem from (1.10) as an
abstract operator equation in L2(Ω,R). Hence we get

Lu+ ku+ = h. (2.3)

The spectrum of L consists only of points σ(L) = {λmn, m ∈ N, n ∈ Z}, with

λmn = α2m4 − n2 + iβn, m ∈ N, n ∈ Z (2.4)

being the eigenvalues of L, see [4, 19] of [39]. Now, for any real parameter λ, such that λ /∈ σ(L)
and for an arbitrary right-hand side f ∈ H, the non-homogeneous equation

Lu− λu = f (2.5)

has a unique weak solution u ∈ H. Speaking about solutions, let us summarize the last important
piece of information in the following lemma (see, e.g., [4, 19] or [39]):

Lemma 3. The resolvent operator, corresponding to L and denoted by L−1
λ , such that

L−1
λ : H → H, L−1

λ : f 7→ u

is linear, compact and

∥L−1
λ ∥ ≤ 1

dist(λ, σ(L))
. (2.6)
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After this preliminary discussion with establishing the operator equation (2.3), and before
discussing the improved uniqueness condition from [19], let us, for now, turn our attention to
some auxiliary results. Indeed, we can get elementary information about the damped model
(1.10), such as conditions for its solvability (either necessary, or sufficient). Note that the
existence of at least one weak solution for positive values of the stiffness parameter k is a
natural requirement. Fortunately, we are able to prove the existence result for an arbitrary L2

right-hand side with k > −α2. As a side quest, we can reduce (1.10) in view of Section 1.2 into
a periodic ODE problem and thus extract more detailed information (see Section 2.3 below).
But let us start with the original damped model (1.10).

2.2 Basic solvability - PDE case

Our first task is to establish the necessary condition for the solvability of the equation from
(1.10). With our abstract setting in mind, we may safely continue with the operator formulation
of (1.10). Also, we use the fact, that the normed first eigenfunction of L, which corresponds
to the smallest real eigenvalue λ10 = α2 and is denoted by v10, is just the sine half-wave, i.e.,
v10 = sinx on (0, π).

Lemma 4. Let u(x, t) be a weak solution of (1.10) and let

∫

Ω
h v10 > 0. Then k > −α2.

Proof. Since the problem (1.10) can be viewed as (2.3) in HC, then also

((
Lu+ ku+

)
, v10

)
= (h, v10)

holds and hence
(Lu, v10) + k

(
u+, v10

)
= (h, v10) .

Now, we can continue by employing the adjoint operator L∗ (see Remark 1). Note that for
sufficiently differentiable functions, L∗ has the form L∗u = utt + α2uxxxx − βut. Thus we get

(u, L∗v10) + k
(
u+, v10

)
= (h, v10) .

Since L∗v10 = α2v10 and u = u+ − u−, we obtain

α2
(
u+ − u−, v10

)
+ k

(
u+, v10

)
= (h, v10) ,

which reads (
α2 + k

) (
u+, v10

)
= (h, v10) + α2

(
u−, v10

)
.

The eigenfunction v10 = sinx is strictly positive for x ∈ (0, π) and thus the inequalities

(
u+, v10

)
≥ 0 and

(
u−, v10

)
≥ 0

hold. Hence, under the assumption, that

∫

Ω
h v10 > 0, we have

k > −α2.

Remark 2. The positivity assumption on the integral
∫
Ω h v10 is quite natural, since it is

satisfied for all in the literature considered right-hand sides of the form h(x, t) =W (x)+εf(x, t)
with ε being small enough (see e.g. [10]). Our assumption means that the external force
h(x, t) consisting of the roadbed’s weight combined with some external perturbation can be even
negative for some sufficiently small parts of the roadbed, which actually allows the perturbation
εf(x, t) to be quite large.
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After dealing with the necessary condition for the solvability of (1.10), it seems logical to
proceed with a sufficient solvability condition. Before we formulate this condition, we present
the following technical lemma (for more information and the proof, see [4], Lemma 3.3 and
Remark 3.1), which will find its use in the proof of the main assertion.

Lemma 5. Let k > −α2. If h ∈ L2 (Ω) does not depend on the time variable, then also the
weak solution u = u(x) is time independent and the estimate

∥u∥ ≤ 1

min {α2, α2 + k}∥h∥ (2.7)

holds.

Remark 3. The proof of Lemma 3.3 in [4] is done for a more general nonlinearity g(·), for
which the estimate

|g(ξ)| ≤ c1 + c2|ξ|, c1, c2 > 0 (2.8)

holds for any ξ ∈ R, and under additional assumption, that g, after the abstract formulation of
the problem, leads to a monotone operator. Note that in case of g(u) = ku+, the estimate (2.8)
holds for an arbitrary k ∈ R, but the monotonicity assumption is valid only for values k > 0.
However, if we consider the nonlinearity in the proof of Lemma 3.3 ([4]) specifically in the form

g(u) = ku+, k < 0,

we can complete the proof without the corresponding nonlinear operator being monotone and
obtain the estimate from Lemma 5 also for k ∈

(
−α2, 0

]
.

Remark 4. Since h ≡ 0 is time-independent, we have h ≡ 0 ⇒ u ≡ 0 for any k > −α2, i.e., in
such case, Lu+ ku+ = 0 has only a trivial solution.

Following these preparatory observations, we can show the most important assertion of this
section. In its proof, we use the Leray-Schauder degree theory. The proof naturally splits into
rather standard blocks, i.e., we set the correct operator formulation in the form “identity plus
a compact mapping”, and, after that, we construct an admissible homotopy, which makes a
connection to a mapping with a known degree.

Theorem 6. Let k > −α2 and h ∈ L2(Ω) be arbitrary. Then (1.10) admits at least one weak
solution.

Proof. We start from the inverse operator formulation of (1.10)

u = L−1
0 (h− ku+)

and put every nonzero term on the left-hand side. Note that L−1
0 (h− ku+) is a composition of

a bounded map (·)+ and a compact operator L−1
0 . Hence we have

u− L−1
0 (h− ku+) = o. (2.9)

Now we construct a homotopy which connects the mapping in (2.9) to the identity mapping and
is in the following form

H(t, u) = u− t
(
L−1
0 (h− ku+)

)
, t ∈ [0, 1] . (2.10)

If there exists a ball B (o, r) in L2 (Ω), such that the considered homotopy is admissible, then
the values of the degree are

deg
(
I − L−1

0 (h− k(·)+) , B (o, r) , o
)
= deg

(
H(1, u), B (o, r) , o

)
=

= deg
(
H(0, u), B (o, r) , o

)
= deg

(
I,B (o, r) , o

)
= 1 ̸= 0
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and therefore, we have at least one weak solution of (1.10). So, the main task is the admissibility
check, i.e., showing that there really exists this sufficiently large ball B (o, r), where

H(t, u) ̸= o

for all u = ∥r∥ and all t ∈ [0, 1]. Let us assume by contradiction, that there exist sequences
(un), (tn), such that

∥un∥ → +∞, tn → t ∈ [0, 1]

and for all n ∈ N we have

H(tn, un) = un + tnkL
−1
0 (u+n )− tnL

−1
0 (h) = o.

Assuming ∥un∥ ≠ 0 for all n ∈ N, we get

un
∥un∥

+ tnk
L−1
0 (u+n )

∥un∥
− tn

L−1
0 (h)

∥un∥
= o,

which is, by linearity of L−1
0 , equal to

un
∥un∥

+ tnkL
−1
0

(
u+n
∥un∥

)
− tnL

−1
0

(
h

∥un∥

)
= o.

Let us denote vn :=
un
∥un∥

. Then

vn + tnkL
−1
0

(
v+n

)
− tnL

−1
0

(
h

∥un∥

)
= o. (2.11)

For n → +∞, the term tnL
−1
0

(
h

∥un∥

)
goes to the zero element. Since L2 (Ω) is a Hilbert

(and hence a reflexive Banach) space, we are by Eberlein-Shmulyan’s Theorem able to find a
weakly convergent subsequence in every bounded sequence. The sequences (vn) and v

+
n are both

bounded and thus there exist elements v ∈ L2 (Ω) and y ∈ L2 (Ω) such that

vn ⇀ v and v+n ⇀ y.

Note that we may pass to a subsequence if necessary. The compactness of L−1
0 implies the

existence of an element z ∈ L2 (Ω) which is a strong limit of the sequence
(
L−1
0 (v+n )

)
, i.e.,

v+n ⇀ y ⇒ L−1
0

(
v+n

)
→ z.

By going back to (2.11) and proceeding to corresponding limits, we obtain the equality

v = −tkz. (2.12)

Let us recall that v is a weak limit of (vn) and tkz is a strong limit of the product tnkL
−1
0 (v+n ).

But since v is equal to −tkz, it is necessarily not only weak, but also a strong limit of (vn).
Hence (2.12) is the strong limit case of (2.11) for n→ +∞. We have

vn → v ⇒ v+n → v+

and thus
L−1
0

(
v+n

)
→ L−1

0

(
v+

)
, (2.13)

since the operator (·)+ is continuous. Hence, z = L−1
0 (v+) and the limit version of (2.11) has

the form
v + tkL−1

0

(
v+

)
= o, (2.14)

or
Lv + tkv+ = o. (2.15)

For every n ∈ N, the norm ∥vn∥ =
un
∥un∥

= 1. The strong limit of such sequence has the same

norm, i.e., ∥v∥ = 1. But for k > −α2, the problem (2.15) has only a trivial solution (Lemma 5,
Remark 4), which is a contradiction. Hence the considered homotopy is admissible and (1.10)
has at least one weak solution.
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2.3 Solvability - ODE case

In the previous chapter, we talked about the simplified ODE models. They are obviouly not
as accurate and realistic as the PDE ones, however, can bring useful insights and suggest what
phenomena to look for in more complex models. So, let us now take a side step in some sense,
and investigate an ODE version of (1.10). If we consider the right-hand side of (1.10) in the
form h(x, t) = sinx+ εf(t) sinx, try to find no-nodal solutions u(x, t) = y(t) sinx and put this
information into (1.10), we get similar model simplification as in Section 1.2, that is, a damped
ODE problem

y′′ + βy′ + α2y + ky+ = f(t)
y(t) = y(t+ 2π),

(2.16)

where y+ := max {y(t), 0} and f(t) is generally an L2 function. Notice that for this problem,
we can get the same results as in the PDE case, however, due to the simplified nature of it, we
are able to obtain much more.

Let us very briefly go through the abstract setting for dealing with this problem. It is
actually a reduction of the setting from Section 2.1 and hence it contains many similarities.
Because of that, we take the liberty to use the same notation for the corresponding objects, e.g.,
the linear part of the equation is again represented by a linear operator denoted by L etc. Since
the damping is present, we generally work in complex spaces, however, similarly to the PDE
situation, we use the real Hilbert space (this time H = L2 ((0, 2π),R)) as a starting point for
a suitable complexification. This space is equipped with the standard scalar product and the
corresponding norm. Again, we denote by D the set of all smooth functions which satisfy the
periodic condition from (2.16).

Definition 7. We call a function y(t) ∈ H a weak solution of the problem (2.16) if and only if
the integral identity

∫ 2π

0
y(v′′ − βv′ + α2v) dt =

∫ 2π

0
(f − ky+)v dt (2.17)

holds for all v ∈ D.

In order to continue the same way as before, let us introduce the complexification HC =
H + iH = L2 ((0, 2π),C) of H with the scalar product ⟨y, v⟩ =

∫ 2π
0 yv̄ dt, y, v ∈ HC, and the

usual norm ∥y∥ = ⟨y, y⟩ 1
2 . The set {eint, n ∈ Z} forms an orthogonal basis in HC and thus each

function y(t) ∈ HC can be represented by the Fourier series

y(t) =

+∞∑

n=−∞
yne

int, (2.18)

where for real functions y ∈ H we have y−n = ȳn. Next, we define the “abstract derivatives”
through the following linear operator.

Definition 8. The operator L, such that

L : dom(L) ⊂ HC → HC, Ly =

+∞∑

n=−∞
(α2 − n2 + iβn)yne

int,

where

dom(L) =
{
y ∈ HC :

+∞∑

n=−∞
|α2 − n2 + iβn|2 |yn|2 < +∞

}
,

is called the abstract realization of the second order differential operator y 7→ y′′ + βy′ + α2y
(together with the associated periodic condition).
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Again, L is a real operator, i.e., y ∈ dom(L) ∩H ⇒ Ly ∈ H. And finally, there also exists
an adjoint operator L∗ such that

L∗ : dom(L∗) ⊂ HC → HC, L∗y =
+∞∑

n=−∞
(α2 − n2 − iβn)yne

int.

It is also a real operator (cf. Section 2.1) and its domain is considered in the same sense as it
has been done for the operator L.

Remark 5. As in the PDE case considered in Section 2.1, the spectrum σ(L) of the operator
L consists only of eigenvalues, which now have the form λn = α2 − n2 + iβn. Notice that
λn = λ1n from the PDE case. Further, for all λ /∈ σ(L), the corresponding resolvent operator
L−1
λ , L−1

λ : H → H, is linear, compact and the estimate (2.6) holds.

Now, with the slightly revisited setting, we are able to bring the solvability conditions for
the problem (2.16). Note that this time, the first normed eigenfunction of L, denoted by v0,
corresponds to the only real eigenvalue λ0 = α2 and is in the form v0 ≡ 1. Concerning the text
structure, we keep the ordering from Section 2.2 and start with the necessary condition.

Lemma 9. Let y(t) be a weak solution of (2.16) and let

∫ 2π

0
f dt > 0. Then k > −α2.

Proof. The proof is similar to the PDE case (cf. Lemma 4). We start with the operator
formulation and obtain the equation

(Ly, v0) + k
(
y+, v0

)
= (f, v0) .

Again, as in the PDE case, we proceed with application of the adjoint operator L∗, which, for
sufficiently differentiable functions, can be considered in the form L∗y = y′′ − βy′ + α2y. Hence
we obtain (cf. the proof of Lemma 4)

(y, L∗v0) + k
(
y+, v0

)
= (f, v0)

and consequently (by the decomposition of u and using the equality L∗v0 = α2v0)

(
α2 + k

) (
y+, v0

)
= (f, v0) + α2

(
y−, v0

)
.

Since v0 = 1 and thus (
y+, v0

)
≥ 0 and

(
y−, v0

)
≥ 0,

we get k > −α2 whenever

∫ 2π

0
f v0 dt > 0, i.e., whenever the mean of the function f is positive,

since v0 ≡ 1.

Next on our list is the sufficient solvability condition. We aim to use the Theorem 6-type of
proof, i.e., using the degree theory. That is why we again need a technical lemma in the sense
of Lemma 5. This time, however, the assertion is more advanced, since it is combined with the
standard regularity result and incorporates a much weaker assumption on the right-hand side,
as only continuity is needed.

Theorem 10. Let f(t) ∈ C0
(
[0, 2π]

)
. Then y(t) ∈ C2

(
(0, 2π)

)
∩ C0

(
[0, 2π]

)
and

∥y∥ ≤
1 +

√
1 + 4 γ

β2

2γ
∥f∥, (2.19)

where

γ =

{
α2 for k ≥ 0,

α2 + k for k ∈
(
−α2, 0

)
.

(2.20)
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Proof. Due to standard regularity arguments, the weak solution y(t) is also the classical one in
the class C2

(
(0, 2π)

)
∩ C0

(
[0, 2π]

)
. Next, if we multiply the equation from (2.16) by y′ and

integrate with respect to t over the interval of periodicity, we get

∫ 2π

0
y′′y′ + β

∫ 2π

0

(
y′
)2

+ α2

∫ 2π

0

1

2

(
y2
)′
+ k

∫ 2π

0
y+y′ =

∫ 2π

0
fy′

If we use the information, that

∫ 2π

0
y′′y′ =

1

2

[(
y′
)]2π

0
= 0,

∫ 2π

0

(
y2
)′
=

[
y2
]2π
0

= 0 (2.21)

and, finally, that also ∫ 2π

0
y+y′ = 0, (2.22)

we obtain ∫ 2π

0

(
y′
)2

=
1

β

∫ 2π

0
fy′.

Hölder inequality guarantees, that the estimate

∥y′∥2 ≤ 1

β
∥f∥∥y′∥

holds and thus

∥y′∥ ≤ 1

β
∥f∥. (2.23)

Next, we multiply the equation from (2.16) by y and integrate with respect to t over [0, 2π]
again, i.e., ∫ 2π

0
y′′y + β

∫ 2π

0
y′y + α2

∫ 2π

0
y2 + k

∫ 2π

0
y+y =

∫ 2π

0
fy

By applying similar arguments, we obtain

−
∫ 2π

0

(
y′
)2

+
β

2

∫ 2π

0

1

2

(
y2
)′
+ α2

∫ 2π

0
y2 + k

∫ 2π

0
y+y =

∫ 2π

0
fy (2.24)

It follows from (2.21) and (2.22), that (2.24) actually reads

−
∫ 2π

0

(
y′
)2

+ α2

∫ 2π

0
y2 + k

∫ 2π

0
y+y =

∫ 2π

0
fy (2.25)

Further, for k ≥ 0, we have k
∫ 2π
0 y+y ≥ 0 and thus we can reformulate (2.25) as the following

inequality.

α2

∫ 2π

0
y2 ≤

∫ 2π

0
fy +

∫ 2π

0

(
y′
)2

After employing the Hölder inequality, it can be seen that

α2∥y∥2 ≤ ∥f∥∥y∥+ ∥y′∥2.

Now we can finally use the inequality (2.23) and obtain the final relation

α2∥y∥2 ≤ ∥f∥∥y∥+ 1

β2
∥f∥2,

which can be viewed as a quadratic inequality with respect to ∥y∥. This finally yields

∥y∥ ≤
1 +

√
1 + 4α2

β2

2α2
∥f∥.

14



For k ∈
(
−α2, 0

)
, the inequalities

α2

∫ 2π

0
y2 + k

∫ 2π

0
y+y ≥ α2

∫ 2π

0
y2 + k

∫ 2π

0
y2

and
(
α2 + k

) ∫ 2π

0
y2 ≤

∫ 2π

0
fy +

∫ 2π

0

(
y′
)2

hold. Using the same arguments, we obtain a slightly changed quadratic inequality, i.e.,

(
α2 + k

)
∥y∥2 ≤ ∥f∥∥y∥+ 1

β2
∥f∥2.

Hence we get that for k ∈
(
−α2, 0

)
the estimate

∥y∥ ≤
1 +

√
1 + 4α2+k

β2

2 (α2 + k)
∥f∥

holds.

Remark 6. Obviously, f ≡ 0 is a continuous function. Hence, we get f ≡ 0 ⇒ y ≡ 0 whenever
k > −α2. That is, for such values of k, the equation Ly + ky+ = 0 has only a trivial solution.

Finally, let us provide the ODE equivalent of Theorem 6. The proof is technically the same
and thus we only point out the main parts of it.

Theorem 11. Let k > −α2 and f ∈ L2(0, 2π) be arbitrary. Then (2.16) admits at least one
weak solution.

Proof. Again, we use the Leray-Schauder degree theory and start with an operator formulation

y − L−1
0 (f − ky+) = o

The considered homotopy has the same form as in the previous section, i.e.,

H(t, y) = y − t
(
L−1
0 (f − ky+)

)
,

so we only check the admissibility of it for a sufficiently large ball B (o, r) in L2 (0, 2π). This
is again done by contradiction (cf. the proof of Theorem 6), i.e., we work with sequences (yn),
(tn), such that ∥yn∥ → +∞ and tn → t ∈ [0, 1]. For all n ∈ N, we assume that

yn
∥yn∥

+ tnkL
−1
0

(
y+n
∥yn∥

)
− tnL

−1
0

(
h

∥yn∥

)
= o.

In the end, after denoting wn :=
yn
∥yn∥

and w := lim
n→+∞

wn, we once more obtain the “limit”

equality
w + tkL−1

0

(
w+

)
= o, (2.26)

or
Lw + tkw+ = o. (2.27)

For every n ∈ N, the norm ∥wn∥ =
yn
∥yn∥

= 1. The strong limit of such sequence has the same

norm, i.e., ∥w∥ = 1. But for k > −α2, the problem (2.27) has only a trivial solution (see the
estimates in Theorem 10 and Remark 6), which is a contradiction. Therefore, the considered
homotopy is admissible and thus (2.16) has a nontrivial weak solution for every k > −α2.

15



Let us end this section with a bonus paragraph, where we can fully utilize the simplified ODE
nature of (2.16). In contrast with Section 2.2, we can relatively easily obtain information about
positivity of the solution in this case. Namely, if we consider the right-hand side in a specific
form, we may formulate the following necessary and sufficient condition for the existence of a
positive solution with respect to the sign properties of the right hand side.

Lemma 12. There exists a strictly positive solution y > 0 of (2.16) with f(t) = 1 + ε sin t if

and only if ε2 ≤ (α2−1+k)2+β2

(k+α2)2
.

Proof. The linear problem corresponding to (2.16) has a solution in the form

yLin(t) = A+B sin (t+ φ) ,

where

A =
1

α2 + k
, k > −α2 and |B| = ε√

(α2 − 1 + k)2 + β2
.

Next, for k ̸= −α2 + 1,

φ = arctan

(
− β

α2 − 1 + k

)
.

Notice that k = −α2 + 1 implies cosφ = 0, i.e., this case corresponds to the shift φ =
π

2
. Now,

if ε2 ≤ (α2 − 1 + k)2 + β2

(k + α2)2
, then for all t in the periodicity interval we have yLin(t) > 0. The

positivity of a linear solution implies
y+Lin = yLin,

hence such a solution satisfies also problem (2.16).
On the other hand, if there exists a positive solution y of (2.16), then it satisfies the corre-

sponding linear problem, since
y+ = y = yLin.

But that implies ε2 ≤ (α2 − 1 + k)2 + β2

(k + α2)2
.

For the visual interpretation of the condition on k and ε from Lemma 12 for α = 1 and
certain values of β, see Figure 2.1.

Remark 7. Let f(t) = 1 + ε sin t and |ε| < 1. Then the right-hand side of (2.16) is strictly
positive. However, the positivity of it does not guarantee the existence of a positive weak
solution. Indeed, if e.g. k = β = 1

2 and α2 = 1, then there exists a positive weak solution if

and only if |ε| <
√
2

3
< 1. This means that there are values of ε such that

√
2

3
< ε < 1 or

−
√
2

3
> ε > −1, for which f(t) > 0, however, the corresponding solution y(t) changes sign. On

the other hand, if e.g. k = β = 3 and α2 = 1, there exists a positive weak solution for every

|ε| < 3
√
2

4
, which means, that there are values of ε, with the absolute value 1 < |ε| < 3

√
2

4
, such

that the corresponding solution y(t) is positive, even though f(t) changes sign.

2.4 Uniqueness for a general right hand side

At last, let us deal with the uniqueness of a weak solution. Since we tried to improve the previous
results from [39] by using the (in the corresponding literature) standardized abstract setting (see
Section 2.1), however with some fine-tuned discussion concerning the model parameters, it was
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(d)

Figure 2.1: The area between the curves c1 and c2 represents points [k, ε] which correspond to
the existence of a positive solution for a specific right hand side f(t) = 1 + ε sin t. In all cases,
α = 1. The picture (a) corresponds to the value β = 0, whereas in (b), β = 0.2, in (c), β = 1
and in the picture (d), β = 2. The dashed line represents the limit value k = −α2 = −1.

crucial to interpret the eigenvalues (2.4) geometrically in the complex plane. Fortunately, it was
possible, since they could be viewed as intersections of parabolas pm and lines ln parallel to the
real axis (see Fig. 2.2 for illustration), where

pm =

{
(x, y) : x = α2m4 − y2

β2

}
, m ∈ N

and
ln = {(x, y) : y = βn, }, n ∈ Z.

This geometric interpretation makes the manipulation with the eigenvalues much more “visual”
and thus it is possible to work with the concept of distance of parameter λ from the spectrum of L
more easily. Just based on this visualisation, our first improvement is increasing the readability
of the uniqueness condition from [39]. Indeed, it is now easier to verify for specific parameter
values. The key step is to determine the type of ordering relation between the parameters α
and β and when does it guarantee the smallest real eigenvalue λ10 to be the closest one to the
point of origin, i.e., when

dist (0, σ(L)) = |λ10| = α2. (2.28)

In other words, the open disc D0 = {z ∈ C : |z| < α2} does not contain any other eigenvalue
λmn. Since these eigenvalues can be identified as parabola-line intersections, it is sufficient to
check if the first parabola p1, or the first pair of lines, that is, l1, l−1, is outside D0. With this
approach, we can observe the following behaviour (see Fig. 2.3 for illustration and [19] for more
information).
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C

Figure 2.2: Illustration of the eigenvalues λmn in the complex plane.

Remark 8. The mutual position of the parabolas, lines and D0 has these consequences:

1. If β ≥ α2, then no horizontal line ln, n ∈ Z, intersects D0.

2. If β ≥
√
2α, then no parabola pm, m ∈ N, intersects D0.

3. If α > 1 and
√
2α2 − 1 ≤ β <

√
2α, then the only parabola intersecting D0 is p1, but

λ1n ̸∈ D0 for all n ∈ Z.

Hence, if one of these relations holds then (2.28) is true, we obtain (in view of the result from
[39]) uniqueness of a weak solution for any k ∈

(
−α2, α2

)
. Now, let us summarize all discussed

facts.

Proposition 13 ([19]). Let β ≥ α2 for α < 1 and β ≥
√
2α2 − 1 for α ≥ 1. Then the problem

(1.10) has a unique weak solution u ∈ H for an arbitrary right-hand side h ∈ H whenever
k ∈ (−α2, α2).

-

6

x

y
C

D0

(a)

-

6

x

y
C

D0

(b)

Figure 2.3: Spectrum σ(L) and disc D0 for (a) α = 1.1, β = 1.1, (b) α = 1.1, β = 1.25. Here,
σ(L) ∩D0 = {λ1±1} in (a), whereas σ(L) ∩D0 = ∅ in (b).

In this place, we would like to point out the fact, that Proposition 13 allows just the more
straightforward usability of the original condition. So far, it is not a “real” improvement - quite
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the opposite, it is in fact weaker. The main issue is that it makes the chain of implications,
which “enable” the general uniqueness condition from [39], longer.

Hence, if we want to achieve a more noticeable improvement of the previous uninequeness
condition, it is desirable to modify the operator equation (2.3). In analysis, there is often a
standard approach of adding and subtracting the same term, which, if handled correctly, brings
a new perspective for the same problem. Indeed, that is why we introduced an ε-shift to the
operator equation, i.e., (2.3) now has the form

Lu− εu+ εu+ ku+ = h

and allows us to consider an equivalent equation, which, however, works with an ε-shifted
operator, that is,

(L− εI)u = −(εu+ ku+) + h. (2.29)

Actually, the main reason for introducing this ε-shift stands out the most, if we look at Figs.
2.2 and 2.3. Checking the distance between the origin and σ(L) is simply too restrictive and
thanks to the parabolical shape of pm, it would be much better to measure the distance between
σ(L) and some other point ε on the real axis, especially for ε < 0. Some limited improvement
is possible also for ε > 0, however this side of zero is not much interesting from the suspension
bridge point of view.

Thus, by considering ε not to be an eigenvalue of L and using the decomposition εu =
εu+ − εu− on the right hand side of (2.29) (note that this decomposition comes as a natural
step, since the equation already contained a positive-part term ku+), we get a fixed point
formulation

u = L−1
ε

(
−(k + ε)u+ + εu− + h

)
, (2.30)

where L−1
ε denotes the resolvent operator (L− εI)−1. Next, in view of [39], we again employ

Banach Contraction Theorem together with the estimate

∥(k + ε)(v+ − u+)− ε(v− − u−)∥ ≤ max{|k + ε|, |ε|}∥v − u∥

(see [19]) and obtain that if

max{|k + ε|, |ε|} < dist (ε, σ(L)) , (2.31)

then the operator L−1
ε (−(k + ε)(·)+ + ε(·)− + h) is contractive.

Apparently, the value |k + ε| expresses the distance between ε and −k and |ε| the distance
between ε and the origin. For now, if we keep the “distance language”, the inequality (2.31)
actually reads

dist (ε, 0) < dist (ε, σ(L)) ∧ dist (ε,−k) < dist (ε, σ(L)) .

In order to have both inequalities under control, it is optimal to consider k = −2ε, which
implies |k + ε| = |ε|. In that case, if we find the maximal positive values εm, εM such that
dist (ε, 0) < dist (ε, σ(L)) holds for any ε ∈ (−εM , εm) then dist (ε,−k) < dist (ε, σ(L)) holds for
any k ∈ (−2εm, 2εM ). This actually means, that the more we can shift ε, the larger interval of
uniqueness for values of the stiffness parameter k we get.

However, finding the values εm, εM is not necessarily simple. The first way how to deal with
this problem is to find their safe (however, not necessarily optimal) estimates, as it can be seen
in the following existence and uniqueness theorem, which brings the above suggested process
into action.

Theorem 14 ([19]). Let εM > 0 and εm > 0 be the maximal real numbers for which

{
z ∈ C : (|z − εm| < εm) ∨ (|z + εM | < εM )

}
∩ σ(L) = ∅. (2.32)
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Then the problem (1.10) has a unique weak solution u ∈ H for an arbitrary right-hand side
h ∈ H whenever k ∈ (−2εm, 2εM ). Moreover, the following estimates hold:

εM ≥ ε̃M =





2αβ + β2

2
for β ≥ 2(1− α),

β for β < 2(1− α),

(2.33)

and

εm ≥ ε̃m =





α2

2
for β ≥ min

{
α, α2

2

}
,

2αβ − β2

2
for β ≤ min {α, 2(α− 1)} ,

β for α < 2 and 2(α− 1) ≤ β ≤ α2

2 .

(2.34)

For the proof, see [19], however, its main idea has already been discussed in the previous
paragraph. If we go back to the visual interpretation of λmn (see Fig. 2.2), i.e., if we have in
mind, that the eigenvalues are in fact intersections of pm, m ∈ N, and ln, n ∈ Z, we realize, that
the safe lower bounds ε̃m, ε̃M for εm, εM are in fact the radii of discs, which are positioned such
that their centers are on the real line, they are touching the origin and, either the first parabola
p1 (see Figure 2.4), or the first pair of lines l−1, l1.

Roughly speaking, the estimates depend only on the mutual position (directly determined
by α and β) of p1 and l±1. It is sufficient (with respect to the nature of the eigenvalues λmn) to
check whether the first parabola or the first pair of lines pass through the corresponding discs
(see Figs. 2.4 and 2.5 for illustration).

x

y

-

6

λ10

λ11

λ1−1

λ12

λ1−2

λ13

λ1−3

p1

−ε̃M ε̃m

C

Figure 2.4: The values ε̃m, ε̃M for 2(1− α) ≤ β ≤ α and the corresponding “safe” discs, where
none of the eigenvalues may appear.

Although these estimates for εm, εM based on this discussion actually bring a significant
improvement, they are geometrically quite basic, since we questioned neither the position of
other parabolas, nor other pairs of lines. Hence, since the room for improvement is generally
still large, let us discuss our possibilities.

Before we suggest another approach in order to deal with this issue, let us briefly mention
the possible ways of improving the estimates ε̃m and ε̃M . By a closer inspection of the parabolas
p1 and p2, we find out that for α2 < 1 and β < 1−α2

(4+
√
15)α

we may construct a disc touching the
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origin and p2 with no eigenvalues lying on p1 in its interior. In this case, we can improve the

estimate, which is then in the form εM ≥ ε̄M = 8αβ+β2

2 .
So, if one would ask, whether it is possible to generate more precise estimates, the general

answer would be “yes”, however, for the price of getting more and more complicated conditions
on α and β, since it is necessary to take into account more parabolas and pairs of lines.

x

y

-

6

−ε̃M ε̃m

−ε̃M,p ε̃m,p

C

λ10

λ1−1

λ11

p1

l1

l−1

Figure 2.5: The values ε̃m, ε̃M and the corresponding “safe” discs, where none of the eigenvalues
may appear, however, now for the case α2

2 ≤ β < 2(1 − α), when the first pair of lines gains
importance. Here, ε̃M,p and ε̃m,p stand for the more restrictive estimates, which would have
been obtained by checking the position of the first parabola p1.

There is, however, another possibility, that is, to avoid the process of finding some “near
optimal” estimates and instead of that to compute the optimal values εm, εM directly via an
algorithm working for specific given values α and β. The suggested algorithm is discussed in
[19] and can be described in four steps.

Remark 9. The value εM can be computed by following this procedure:

1. Put λopt = λ1n0 with n0 = ⌊α + 1⌋, where ⌊·⌋ denotes the integer part of a real number.
(Notice that λ1n0 is the closest eigenvalue to the imaginary axis with a negative real part
on p1.)

2. Find an open disc D with the center on the real axis, whose boundary is going through
an eigenvalue λopt and the origin, i.e., D = {z ∈ C; |z + εD| < εD} with

εD =
|λopt|2

2 |Re (λopt)|
.

3. If there is no other λmn ∈ D, put εM = εD and quit. In the other case find indexes
M = max{m : λmn ∈ D} and N = min{n : λMn ∈ D}, i.e., find the indexes of such an
eigenvalue with a negative real part inside D, which is the closest one to the imaginary
axis and lies on the parabola, whose branches are the furthest from the real axis.

4. Put λopt = λMN and go back to Step 2.

The same algorithm (only with modifications corresponding to the fact, that the constructed
discs find themselves on the other half-plane in C) can be applied in the case of εm.
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So far, we discussed several techniques, which lead to significant improvements of the unique-
ness result from [39]. Now, let us show a pair of examples, which serve as an overview of all
tools presented in [19] and also in this chapter.

Example 1 ([19]). Let α ≥ 2, q ≥
√
2 and put β = qα. Then the assumptions of Proposition 13

are satisfied and the problem (1.10) has a unique weak solution for all k ∈ (−α2, α2). If we
employ Theorem 14 with its estimates (2.33), (2.34), we get

ε̃M =
2αβ + β2

2
, ε̃m =

α2

2

and thus obtain a much larger uniqueness interval

k ∈
(
−α2,

(
q2 + 2q

)
α2

)
,

i.e., the positive part of the interval, which is more interesting from the physical point of view,
is (q2 + 2q)-times larger than the original conditions allow.

Example 2 ([19]). Let s ∈ N be arbitrary and put α = s, β = 1
s . Here, the refining of previous

results, i.e., Proposition 13, gives no information about solvability of (1.10), since α2 ≥ 1 and
β ≤ 1 ≤

√
2α2 − 1. However, since s ∈ N, λ1s = 0 + i, and the open disc

D = {z ∈ C; |z| < 1} (2.35)

contains no other eigenvalue λmn (i.e., minm∈N,n∈Z |λmn| = |λ1s| = 1), the original general result
from [39] guarantees the existence and uniqueness of a weak solution of (1.10) for an arbitrary
right-hand side h ∈ H whenever k ∈ (−1, 1).

By applying Theorem 14, the interval (−1, 1) can be enlarged. It is easy to see, that for
s = 1 the estimates (2.33), (2.34) yield k ∈

(
−α2, 2αβ + β2

)
= (−1, 3), and for s ≥ 2 we obtain

k ∈
(
−2αβ + β2, 2αβ + β2

)
=

(
−2 +

1

s2
, 2 +

1

s2

)
. (2.36)

Note that these uniqueness intervals are twice as large as the original one. Moreover, e.g., for
s = 1, the closest eigenvalue to the imaginary axis with a negative real part on p1 is λ12 = −3+2i
and the discD, whose boundary is passing through it, contains no other eigenvalue in its interior.

Hence, using our algorithm, we get εM = εD = |λ12|2
2|Re (λ12)| =

13
6 and the uniqueness result holds

for any k ∈
(
−1, 133

)
.

Although it may seem a bit adventurous to directly compare results for non-damped and
damped models, we would like to find a good enough confirmation of the general expectation,
that the damping term should guarantee a more stable behaviour, than the similar non-damped
model has (see also [25]).

Remark 10. When we look at Example 2 with using the estimates for s = 1 and at the result
[10] for (1.4) and (1.5), we get the same uniqueness interval (−1, 3). If we utilize our algorithm
from Remark 9, the uniqueness interval is larger: (−1, 13/3). This really suggests, that adding
the damping term into the model may extend its uniqueness behaviour to a larger interval. For
better illustration, we may consider α = 1 and β > 1. By employing our estimates ε̃m, ε̃M from
Theorem 14, we get uniqueness for any k ∈

(
−1, 2β + β2

)
, where 2β + β2 > 3. That yields

another direct comparison, since, as we discussed e.g. in Chapter 1, for 3 < k < 15 without
damping, there are more solutions guaranteed (see also [10]). However, with sufficient damping,
we get a unique solution even for some k > 3.

To conclude this chapter, we should also point out, that our results from [19] are fully
applicable also in the ODE case, which was investigated in Section 2.3.
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Remark 11. Obviously, the extended uniqueness result from Theorem 14 holds also for the
problem (2.16). Moreover, the fact that the eigenvalues λn = λ1n lie on no other parabolas than
p1 (cf. Fig. 2.2), means, that the estimates ε̃m and ε̃M are more accurate (see the discussion
between Theorem 14 and Remark 9). For some appropriate setting of the bridge’s parameters,
it may be even possible to find the precise values εm, εM . Also, the algorithm from Remark 9
for optimal values of εm, εM is easier to go through, and we may realistically expect to compute
εm and εM in reasonable time, since the number of possible eigenvalues in the disc D is lower.
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Chapter 3

Weighted non-damped PDE model

In Chapter 1, we discussed the possibility of introducing a reasonably straightforward general-
ization of (1.2), which would deal more realistically with the problem that the bridge hangers
actually should not be viewed as a “continuous force” acting on the roadbed (cf. (1.6)). Since,
in reality, they are placed with some fixed distance between them, one of the simplest ways to
reflect this is introducing a density (or technically speaking weight) function r(x) into the basic
“constant-stiffness” PDE model. The restoring force is supposed to attain its maximum where
the hangers are connected to the roadbed. On the other hand, it should be considerably weaker
in between.

Hence, in this chapter, we provide the results published in [21], where we study a suitably
modified version of a standard ([28, 29]) one-dimensional nonlinear beam model of a suspension
bridge, i.e.,

utt + uxxxx + k r(x)u+ = h(x, t) in (0, 1)× R,
u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, (3.1)

u(x, t) = u(x, t+ 2π) = u(x,−t).

The restoring force of the bridge hangers, which is considered nonlinear, is represented by the
term k r(x)u+. The stiffness constant is denoted by k and the placement density by r(x). In
almost all cases, we consider r(x) to be a continuous function on (0, 1), such that 0 < r(x) ≤ 1
almost everywhere in (0, 1). This is meant in the standard sense, i.e., the subset of (0, 1), where
r violates this asssumption, is of zero Lebesgue measure. There are a few exceptions in this
chapter, where the weight is considered as a more general function, however, this is always
explicitly noted to avoid confusion.

Let us briefly summarize the work done for the constant density case, i.e., r(x) ≡ 1, which
we somewhat vaguely called a “continuous force” of the hangers. In this field, there are many
results concerning multiplicity of periodic solutions, which served as our motivation: see e.g.
[28, 29] and also [7], [23]. These works provide an excellent example of the problem setting and
consequently also the application of various abstract tools. Their common narrative is reaching
a conclusion, that the more eigenvalues of the corresponding linear beam operator are crossed by
the hanger stiffness k, the more solutions appear. These articles were followed by [10] and [14],
which took a different approach of this problem and utilized a global bifurcation framework.
Specifically, [10] was a major source of inspiration for us, as we tried to keep the same “abstract
setting → bifurcation equation” structure, only repurposed for the variable density r(x).

Speaking about the non-constant hanger placement density, it is in some sense a negative
(however expected) fact, that establishing a standard bifurcation scheme is a more difficult task
when compared to the constant density case. It is necessary to employ some additional results
from [11] and [12], which is documented in more detail in Section 3.2 and of course in [21]. For
illustrations of specific hanger distributions, we are mainly interested in weight functions which
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are similar to a high even power of the cosine function, since, in our opinion, such a density
function is simple enough and sufficiently resembles the discrete placement of the bridge hangers
(see Fig. 3.1).

x

r(x)

Figure 3.1: The maxima of the cosine-type curve (blue), represent the connections of the bridge
hangers and the road-bed. For illustration, we choose r(x) = cos6(x). The red line represents
the constant density r(x) ≡ 1, which omits any spatial difference in stiffness.

When thinking about applications in suspension bridges, we should have in mind, that
from the purely mechanical point of view, only positive stiffness k makes sense. However, we
deal with the problem without this limitation, since it is mathematically interesting also for k
being negative and in many cases, we would have to artificially limit our proofs and would lose
important comparison to previous constant density results.

Warning. In [21], we use the letter b for the stiffness parameter. This is due to historical
reasons, since we considered our paper as a continuation of [10], which also uses this notation.
However, for the notation consistency in this text, we keep the letter k for denoting the stiffness,
as in the previous chapters.

Now, the motivation and background for our work with spatially variable stiffness is clear
and we can present all the details concerning the operator setting of (3.1).

3.1 Weighted space and eigenvalues

The hanger placement density represented by a weight function comes with a challenge concern-
ing the abstract setting of the problem. We have to find the right balance of difficulty, i.e., we
are asking, whether it is better to consider a weighted space with a less complicated abstraction
of the beam operator, or a standard L2 space for the price of a not-so-straightforward abstract
realization of the operator.

Actually, there are less obstacles on the former path, i.e., working in a weighted space.
This is mainly because the use of weighted spaces for fourth-order problems has been at least
partially documented in the work of C. P. Gupta with J. Mawhin [18] and S. A. Janczewsky
[24]. Moreover, working in the weighted space is also beneficial in the sense, that structurally, we
proceed very similarly as in Chapter 2 when formulating the problem as an operator equation.

Let us denote the considerd domain Ω by

Ω = (0, 1)× (0, 2π)

and let h/
√
r be in L2(Ω). As foreshadowed earlier, we consider the weighted space L2

r(Ω) :=
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L2(Ω, r(x)) with the inner product

(u, v)r =

∫

Ω
r(x)u(x, t)v(x, t) dx dt

and the corresponding norm ∥u∥r =
√
(u, u)r. This also has the impact that h/

√
r ∈ L2(Ω)

means h/r ∈ L2
r(Ω).

If we want to establish the notion of a weak solution, we have to consider a space H ⊂ L2
r(Ω)

to be a subspace of functions in L2
r(Ω) being even in the time variable. Further, let D stand for

all C∞-functions ψ : [0, 1] × R → R which satisfy the boundary and periodic conditions from
(3.1).

Definition 15. A function u : (0, 1) × R → R is called a weak solution of the problem (3.1) if
and only if

∫

Ω

u(x, t)(ψtt(x, t) + ψxxxx(x, t)) dx dt =

∫

Ω

(
h(x, t)− k r(x)u+(x, t)

)
ψ(x, t) dx dt

for all ψ ∈ D, and the restriction of u belongs to H. Here, again, u+ denotes the positive part
of u. Let us add that u− stands for the negative part of u and u = u+ − u−.

As the last detail for now, we point out that if u ∈ H, both u+ and u− are also elements of
H. Now, if we want to investigate solvability and bifurcations in (3.1), it is not surprising, that
we have to understand the structure of the spectrum of the operator that represents the linear
part of the equation in (3.1). This time, the introduced density function forces us to deal with
the weighted spectrum of a linear beam operator. That is, we consider the eigenvalue problem
with a weight function r in the form

utt + uxxxx = λ r(x)u in (0, 1)× R,
u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, (3.2)

u(x, t) = u(x, t+ 2π) = u(x,−t).

At this point, we show in [21], that this problem can be investigated in the view of the
so-called regular Sturmian systems. Indeed, we can take advantage of the results from [18] and
[24]. In order to make it possible, we start with a rather standard approach, that is, employing
the separation of variables. Considering the solution in the separated form u(x, t) = X(x)T (t),
there exists µ ∈ R such that

T ′′ + µT = 0
T (t) = T (t+ 2π) = T (−t), (3.3)

and
XIV − µX = λr(x)X

X(0) = X(1) = X ′′(0) = X ′′(1) = 0.
(3.4)

It is easy to see, that (3.3) has a nontrivial solution if and only if µ = n2, n ∈ N ∪ {0} and
Tn(t) = cosnt. Then, for any fixed n, the problem (3.4) has the properties of a regular Sturmian
system with a weight function r. The implications of this procedure with the involvement of
[18] and [24] can be summarized in the following lemma.

Lemma 16 ([21]). All the eigenvalues of the problem (3.2) are real and form an infinite sequence

(λm,n)
+∞
m,n=0

with the following properties.
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1. For any m,n ∈ N ∪ {0}, λm,n ̸= 0.

2. lim
m→+∞

λm,n = +∞, lim
n→+∞

λm,n = −∞.

3. For any fixed n ∈ N ∪ {0}, all the eigenvalues, for which λm,n > −n2, are simple, i.e.,
λm1,n ̸= λm2,n whenever m1 ̸= m2.

4. All the eigenvalues λm,0 are positive.

5. For any m,n ∈ N ∪ {0}
|λm,n| ≥

∣∣(m+ 1)4π4 − n2
∣∣ .

6. For any fixed m ∈ N ∪ {0},

λm,n1 ≥ λm,n2 , whenever n1 < n2.

The eigenfunctions corresponding to λm,n take the form

φm,n(x, t) = Xm(x, n) cosnt

with Xm(x, n) being a nontrivial solution of the ODE problem

XIV − n2X = λm,n r(x)X, (3.5)

X(0) = X(1) = X ′′(0) = X ′′(1) = 0.

All the eigenfunctions φm,n(x, t) form a complete orthogonal system on Ω with the weight r(x),
i.e., ∫

Ω
r(x)φm,n(x, t)φk,l(x, t) dx dt = 0, whenever m ̸= k or n ̸= l.

The eigenfunction φ0,0(x, t) = X0(x, 0) is strictly positive in Ω. Moreover, if r(x) > 0 on (0, 1),
all the functions Xm(x, n) corresponding to λm,n > −n2 have exactly m zero points in (0, 1).

If we would like to extract the most interesting fact, it would most likely be the way of
shifting the weighted eigenvalues. That is, if r(x) decreases, the nonzero eigenvalues do not shift
closer to zero. In other words, for positive weights such that r(x) < 1 almost everywhere in
(0, 1), we can expect the eigenvalues to shift further from zero. As for the constant “maximal”
weight r(x) ≡ 1, the eigenvalues take the form λm,n = (m+1)4π4−n2, m,n ∈ N∪{0}, they are
simple and the corresponding eigenfuctions are in the product form φm,n = sin(m+1)πx cosnt.

This type of results found in Lemma 16, i.e., infinite sequence of real eigenvalues without
a finite cluster point and the corresponding r-orthogonality of the eigenfunctions, hold also for
r ∈ L1 (0, 1) (this is due to J. Mawhin, see [18]). Unfortunately, in such a case it is not possible
to utilize the results from [24], which means that we lose any information concerning the shift
of the weighted eigenvalues.

Let us proceed similarly to the setting in Chapter 2, that is, utilizing Fourier series for
definitions of all needed abstract objects. According to Lemma 16, the eigenfunctions φm,n

form an r-orthogonal basis in H and therefore any function u ∈ H can be expanded into

u(x, t) =
+∞∑

m=0

+∞∑

n=0

um,nφm,n

with the coefficients

um,n =
(u, φm,n)r

(φm,n, φm,n)r
.
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Definition 17. We call L : dom(L) ⊂ H → H,

Lu =
+∞∑

m=0

+∞∑

n=0

λm,num,nφm,n

with

dom(L) =

{
u ∈ H;

+∞∑

m=0

+∞∑

n=0

λ2m,nu
2
m,n <∞

}
,

the abstract realization of the beam operator 1
r(x)(∂tt + ∂xxxx) on H.

Remark 12. Note that L is a linear, closed, densely defined symmetric operator. Its weighted
spectrum consists of real points

σr(L) = {λm,n}+∞
m,n=0

given by Lemma 16. Its resolvent (L− λI)−1 with λ ̸∈ σr(L) is a compact normal operator on
H and its norm is given by

∥L−1
λ ∥r =

1

min
m,n∈N0

|λm,n − λ| =
1

dist (λ, σr(L))
. (3.6)

Before we proceed further, we would like to point out again, that especially the choice of the
weighted space L2

r(Ω) allowed us to build the abstract formulation in a similar way as in the
previous chapter. Hence, u ∈ H is a weak solution of the problem (3.1) whenever it solves the
abstract equation

Lu+ k u+ = g (3.7)

with g = h/r ∈ H.

3.2 Stationary solution

Now, we have enough information about the weighted spectrum and the corresponding eigen-
functions. This allows us to prove two auxiliary existence and/or uniqueness assertions, however
with some limitations for either the values of k, or for the right-hand side, since for an arbitrary
right-hand side g = h/r ∈ H combined with any k ∈ R, the existence of a weak solution of (3.1)
is not generally guaranteed. Let us begin with showing the existence and uniqueness result for
values of stiffness around k = 0. This assertion bears technical similarity to Theorem 14, as its
proof also utilizes an appropriately shifted operator and Banach Contraction Theorem.

Proposition 18 ([21]). Let λq < 0 < λp be such that σr(L) ∩ [λq, λp] = {λq, λp}, and let
g = h/r ∈ H be arbitrary. Then the problem (3.1) has a unique weak solution for any k ∈
(−λp,−λq).

This actually gives us information that for (3.1) there is a bounded, generally asymmetric
interval of non-resonance around zero. Also, notice that λp is the smallest positive eigenvalue
of L, and λq is the largest negative eigenvalue of L. Moreover, we can quantify the statement
of Proposition 18 more precisely. It can be computed, that for r(x) ≡ 1, there is λq = λ0,10 =
π4 − 100 and λp = λ0,9 = π4 − 81. Using the fifth property in Lemma 16 (i.e., the shift of the
eigenvalues for r(x) ≤ 1), we find out, that the problem (3.1) has a unique weak solution for
any k ∈ (81− π4, 100− π4) (see Remark 5 in [21]).

Next, let us restrict ourselves to investigating (3.1) with a positive right-hand side h. It
allows us to obtain the necessary condition for the solvability of (3.1) almost for free, since the
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proof can be done by keeping the structure from Lemma 4, that is, passing to suitable scalar
products (now with the weight r) and thus considering the equation

(Lu, φ0,0)r + k(u+, φ0,0)r = (g, φ0,0)r,

using the symmetry of L with the fact, that Lφ0,0 = λ0,0 φ0,0 and also that u = u+ − u−, we
obtain

(λ0,0 + k)(u+, φ0,0)r = (g, φ0,0)r + λ0,0(u
−, φ0,0)r.

Realizing that φ0,0 is strictly positive in Ω, λ0,0 > 0 and checking the sign properties of all other
functions involved, we get the following condition.

Proposition 19 ([21]). Let g = h/r ∈ H, h(x, t) ≥ 0 a.e. in Ω, h(x, t) ̸≡ 0, and u ∈ H be a
weak solution of (3.1). Then necessarily k > −λ0,0 and u ̸≤ 0.

The detailed proof of Proposition 19 (see [21, Proposition 6 and Remark 7]) suggests that this
assertion is valid also for a more general right-hand side, which satisfies the integral inequality∫
Ω hφ0,0 > 0. However, it is not possible to verify this assumption for a non-constant weight
function r(x), because in such a case, the exact form of φ0,0 is unknown. Hence, for now, it
makes much more sense to use a more restrictive positivity setting for h.

Another fact worth pointing out is, that the two assertions presented in this section hold
also for a more general setting, where the weight r is considered to be an L1 function on (0, 1).
However, in that case, it is impossible to apply the results of Janczewsky from [24], as they
require the continuity of r. Also, when studying stationary solutions of (3.1), it is necessary to
use some results from [11] and [12], which do not hold for L1 weights.

Reminder. From now to the end of Chapter 3, the weight function r is always considered
continous.

Our goal is to build a standard bifurcation equation (as in [10]) with the application of
Rabinowitz Global Bifurcation Theorem (see e.g. [32]) in mind. For that, we need to know,
under which circumstances (3.1) has a positive stationary solution. Hence, let us turn our
attention to a time-independent right-hand side h and introduce some necessary notation.

Definition 20. Let y = y(x) be a continuous function on [0, 1].

1. Let us denote ymin := min
x∈[0,1]

y(x) and ymax := max
x∈[0,1]

y(x).

2. We say that y is strictly positive on (0, 1), if it satisfies y(x) > 0 for any x ∈ (0, 1) with
y′(0) > 0 and y′(1) < 0.

Definition 21. By c0, let us denote the value c0 := 4κ40, with κ0 being the smallest positive
solution of the equation tanκ = tanhκ.

Note that κ0 ≈ 3.9266 and c0 ≈ 950.8843.

The stationary solution of (3.1) (denoted by ust) must solve the stationary problem

u(4) + k r(x)u+ = h(x) in (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0. (3.8)

We employ Lemma 16 in order to find out, that eigenvalues of the stationary eigenvalue problem

u(4) = λ r(x)u in (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0 (3.9)

are equal to the weighted eigenvalues λm,0 of L. Not only that, they are also simple, positive
and form an increasing sequence going to infinity. Also, we have λm,0 ≥ (m + 1)4π4 for any
m ∈ N ∪ {0}. With this knowledge, let us summarize the situation regarding the stationary
solution.
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Proposition 22 ([21]). Let h = h(x) ∈ C([0, 1]). Then for any k > −λ0,0 the problem (3.1) has
a unique classical stationary solution ust = ust(x) ∈ C4([0, 1]). Moreover, if h(x) ≥ 0, h(x) ̸≡ 0
on (0, 1), then there exists λM (depending on h and r) such that u is strictly positive whenever
k ∈ (−λ0,0, λM ], where

− λ0,0 ≤ min
{
km, −π4

}
, λM ≥ min {kM1, kM2} (3.10)

with

km = − 4π2∫ 1
0 r(x) dx

,

kM1 = c0 +
hmin

hmax
2π

√
π4 + c0, (3.11)

kM2 = c0 + 2π
hmin

hmax


π hmin

hmax
rmin +

√
c0rmin +

(
hmin

hmax

)2

π2r2min + π4


 .

The idea of the proof is as follows. Combining the techniques used for the non-stationary
case, i.e., Banach Contraction and Proposition 19, we realize, that for a non-negative right-
hand side, the inequality k > −λ0,0 is actually the necessary and sufficient condition for weak
solvability of (3.8). The standard regularity arguments then imply that for h ∈ C([0, 1]) there
is ust ∈ C4([0, 1]).

The strict positivity of ust is a result of the information from [11], [12] and [41] and the fact,
that a strictly positive stationary solution has to solve also the linear problem

u(4) + k r(x)u = h(x) in (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0. (3.12)

As for the interval of positivity (−λ0,0, λM ], the existence of the finite upper bound is a conse-
quence of [41, Corollary 2.1]. The estimates (3.10), (3.11) come from applying certain inverse-
positivity conditions from [11] and [12]. Their rather complicated structure is a result of checking
that inequalities

k ≤ c0 +
hmin

hmax
2π

√
π4 + c0

and

k ≤ c0 +
hmin

hmax
2π

√
π4 + krmin

hold at the same time. For the complete proof, see [21, Proposition 8].

If we look closely at the value km in (3.11), we realize, that it is actually the estimate of
the principal weighted eigenvalue λ0,0. For r(x) ≡ 1, we have λ0,0 = π4. On the other hand,

when
∫ 1
0 r(x) dx tends to zero, the eigenvalue λ0,0 goes to infinity. Concerning the upper bound,

for r(x) ≡ 1, we get λM = c0. In particular, for an arbitrary h(x) ≥ 0, ust is strictly positive
whenever the stiffness k is between −π4 and c0. In practice, it means, that for any k > c0, we
can find a right-hand side h ≥ 0 such that the stationary solution changes sign (cf. [38]). For
illustration, see Fig. 3.2(a) and 3.2(b).

However, what is an important implication of Proposition 22, is the fact, that the positivity
interval for k is enlarged by the influence of a non-constant weight r, which is demonstrated in
Fig. 3.2(c) and 3.2(d)). There is only a minor drawback, that is, the amplitude of ust is slightly
larger than in the constant r case. For comparison, see Fig. 3.2(b) and 3.2(c).

The last observation in correspondence with Proposition 22 is connected to a constant right-
hand side. According to [29], for r(x) ≡ 1 and h(x) ≡ 1, ust is strictly positive for any
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Figure 3.2: Stationary solutions of (3.8) for the constant stifness k = 800 (a) and k = 1500
(b), and also for the nonconstant stifness k = 1500 r(x) (c) and k = 2500 r(x) (d), where
r(x) = cos4(2πx). In all cases h(x) is a positive, piecewise constant function. In particular,
h(x) = 108 for x ∈ [0, 0.05] and h(x) = 104 for x ∈ (0.05, 1]. Note that the solution u(x) in (b)
and (d) changes sign (see also the zoomed picture in (d) corresponding to the interval (0.8, 1)
on the x-axis).

k > −π4. This shows us that the estimates kM1, kM2 are not optimal and can be improved.
However, extending the bounds of inverse-positivity is not easy in general, as the reader can see
in Chapter 4.

Before we definitively turn our attention to bifurcations, let us look more closely at the
aforementioned paper [41] by M. Ulm, where a much more general setting is used. Specifically,
[41] guarantees the existence of an h, r-independent bound λU ≥ c0, such that for any k ∈
(−λ0,0, λU ] and any nonzero right-hand side h(x) ≥ 0, the corresponding stationary solution is
strictly positive. For a given h and r, the positivity interval can be stretched to the estimated
value λM , however, one loses the “versatility” of λU . So if hanger density or external forces
change, it is necessary to provide new estimates for λM using (3.11).

3.3 Global bifurcation

Finally, let us go through the last few steps on the path to reformulate (3.7) correctly as a
bifurcation equation. So, we again consider the right-hand side h ̸≡ 0 to be time-independent
and ust to be a strictly positive stationary solution of (3.1) and thus also (3.8). Crucially,
we represent u as a perturbation of the stationary solution (a trick encountered in [10]), i.e.,
u := ust + w, where w is also a function from H. Naturally, we also incorporate the standard
decomposition u+ = u+ u−, so that (3.7) can be reformulated as

L(ust + w) + k(ust + w) + k(ust + w)− = g.
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The positivity of ust ensures that Lust + kust = g, which leaves us with

Lw + kw + k(ust + w)− = 0. (3.13)

After that, it only remains to apply the inverse operator L−1 on both sides of (3.13), which
yields

w + kL−1w + kL−1(ust + w)− = 0. (3.14)

So far, it is clear, that there is the identity mapping and the compact operator L−1 in (3.14),
however, it is necessary to check, whether the term kL−1(ust + w)− has a correct behaviour.
Fortunately, this is possible thanks to the structure of the proofs in [10, Lemma 2.3, Lemma
2.4]. Hence, let us define the set E := (−λ0,0, λM )×H and present all the details.

Lemma 23 ([21]). The operator N : E → H defined by N(k,w) := kL−1(ust +w)− is compact.
Moreover, given any compact subinterval J of (−λ0,0, λM ), the limit

lim
∥w∥→0

N(k,w)

∥w∥ = 0

is uniform with respect to k ∈ J .

Now, we have successfully verified, that (3.14) is a proper bifurcation scheme and that it is
suitable for employing Rabinowitz Global Bifurcation Theorem.

Theorem 24 ([21]). Every k = −λm,n ∈ (−λ0,0, λM ) ∩ σr(−L), where λm,n has an odd multi-
plicity, is a point of global bifurcation of (3.14). That is, there exists a continuum of solutions
Cm,n in E, (−λm,n, 0) ∈ Cm,n, such that at least one of the following properties holds:

1. Cm,n is not a compact set in E,

2. Cm,n contains an odd number of points (−λ, 0) ∈ E, where λ ̸= λm,n is an eigenvalue of
L of odd multiplicity.

Moreover,
projRCm,n ⊂ (−λ0,0,−λp] ∪ [−λq,+∞), (3.15)

where projRCm,n := {k ∈ R; (k,w) ∈ Cm,n} and λp, λq are the smallest positive and the largest
negative eigenvalues of L.

In addition, for λm,n simple, Cm,n consists of two subcontinua C+
m,n, C

−
m,n bifurcating from

the point (−λm,n, 0) in the directions of the corresponding eigenfunctions φm,n, and −φm,n,
respectively, such that

C+
m,n ∩ C−

m,n ∩Bϱ(−λm,n, 0) = {(−λm,n, 0)} and C±
m,n ∩ ∂Bϱ(−λm,n, 0) ̸= ∅

for sufficiently small ϱ > 0.

Note that the bounds in relation (3.15) are due to Proposition 18 and 19. Next, let us
discuss the presence of eigenvalues in (−λ0,0, λM ). For r ≡ 1, this can be documented rela-
tively easily (see [21, Remark 12]). Here, λM = c0 and the interval contains, e.g., the points
−λ0,1,−λ0,2, ...,−λ0,32. On the other hand, the set (−λ0,0, c0) contains zero, is relatively small
and bounded. Therefore, it can contain at most one value −λm,n0 for any sufficiently large m.
Here, n0 = ⌊(m + 1)2π2⌋, or n0 = ⌈(m + 1)2π2⌉. Speaking about “sufficiently large”, already
for m = 7, the distance between (m + 1)4π4 − ⌊(m + 1)2π2⌋ and (m + 1)4π4 − ⌈(m + 1)2π2⌉ is
greater than the length of (−λ0,0, c0). The problem with variable density r ̸≡ 1 is, that we do not
have the count of weighted eigenvalues in (−λ0,0, λM ) under precise control, because not only
the eigenvalues, but also the interval bounds shift away from zero. Hence, we cannot specify,
whether there are as many eigenvalues as for r ≡ 1, or significantly less.

Notice that unlike in [10], we cannot be sure, if w ∈ C1(Ω) and therefore we do not have the
information about the possible linear behaviour of the solution branches close to the bifurcation
points (−λm,n, 0) (see [21, Remark 13]).
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3.4 Bifurcation from infinity and the Fuč́ık spectrum

As the last piece of the puzzle in this bifurcation section, let us concentrate on bifurcation from
infinity. For this task, we use the so called Fuč́ık spectrum (see, e.g., [22]).

Definition 25. The set of pairs (α, β) ∈ R2, denoted by Σ(L), such that Lu = αu+ − βu− has
a nontrivial solution u, is called the Fuč́ık spectrum of the operator L.

To obtain a necessary condition for a bifurcation from infinity, we can use some technical
ideas from the proof of Theorem 6. That is, considering a sequence of solutions wn, dividing
(3.14) by the norm of wn, using regularity of ust, compactness of L−1 and continuity of (·)−, we
may pass from weak limits to strong limits and realize, that the existence of the bifurcation is
equivalent to the existence of a non-trivial solution (denoted by v) of

Lv + k0v
+ = 0. (3.16)

Therefore, the pair (−k0, 0) belongs to the Fuč́ık spectrum. All the details are available in the
following assertion.

Proposition 26 ([21]). If a bifurcation from infinity of (3.14) occurs in E, i.e., if there exists a
sequence (kn, wn) ⊂ E such that (3.14) holds with (k,w) = (kn, wn) for any n ∈ N, and kn → k0,
∥wn∥ → ∞, then necessarily (−k0, 0) ∈ Σ(L).

α

β

Figure 3.3: Known parts of the Fuč́ık spectrum for L with r(x) ≡ 1. The red line marks the set
of pairs (−k, 0) in the half-plane α < λ0,0. The intersections of the Fuč́ık curves with the red
line correspond to possible blow-up values, whereas, in the grey inadmissible areas, none of the
curves may appear.

When we stay close to the line α = β, the Fuč́ık spectrum Σ(L) of L consists of a finite number
of decreasing curves, which cross at the points (λ, λ), λ ∈ σr(L) and are symmetric with respect
to the diagonal α = β. The so called trivial part of Σ(L) is the cross (α−λ0,0)(β−λ0,0) = 0. In
contrast, no parts of Σ(L) are located in the squares between two consecutive eigenvalues and in
the area (α−λ0,0)(β−λ0,0) < 0 (see [3] and [22] for further details and Fig. 3.3 for illustration).
Hence, (−k0, 0) ∈ Σ(L) implies k0 > −λ0,0 which corresponds well to Proposition 19.

However, when thinking globally, there is a major problem. The complete global description
is known neither for Σ(L), nor at least for all its intersections with the line β = 0. Hence,
the all possible blow-up values of the stiffness k remain hidden even for the constant weight
r(x) ≡ 1. On, the other hand, at least some partial analytical and numerical results can be
found in [30] and references therein. The lack of the complete description of Σ(L) together with
multiplicities of the eigenvalues means that we cannot determine the topological degree of the
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operator u 7→ u − L−1(αu+ − βu−) between the Fuč́ık curves. The consequence of this is that
for now, it is impossible to confirm the existence of bifurcations from infinity. Also, we are not
able to confirm the general existence of a weak solution of (3.1), when h depends on time.

In conclusion, let us discuss the results shown in this chapter. When we look at Lemma 16,
Proposition 18, 19 and Theorem 24, we see, that the introduced variable hanger placement den-
sity function r eventually improves the behaviour of the model, since, the shift of the eigenvalues
away from zero generates a larger uniqueness interval for k and postpones the appearance of
additional solutions, potentionally dangerous for the suspension bridge. Moreover, variable r
keeps the model’s qualitative bifurcation properties. As examined in Section 3.3 and 3.4, the
bifurcations from the stationary solution and from infinity still occur.

On the other hand, not everything is so positive and straightforward. We would like to
point out, that with non-constant r, we lose the information about regularity of the bifurcating
solutions. As opposed to [10], we cannot use the corresponding embedding results for anisotropic
Sobolev spaces (cf. [4] and/or [42]), since, as far as we have found, none of them are available for
our weighted space setting. Also, the information concerning existence and specially blow-ups
of solutions is incomplete, which is largely the consequence of only local description of the Fuč́ık
spectrum of the corresponding linear beam operator.

However, not all the problems from this chapter remain a mystery. When trying to implement
the standard global bifurcation theory, we realized, that this process relies on the existence of a
positive stationary solution under positive constant loading. For non-constant r, its existence is
not guaranteed for an arbitrary value of k. When we used the results from [11, 12] and [41], we
touched the topic of strictly inverse-positive operators. In that moment, we decided to try and
improve the estimates for −λ0,0 and especially for λM , which would become the main narrative
of the following chapter.
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Chapter 4

Strictly inverse-positive operators

Investigating the bifurcation properties of a weighted model of a suspension bridge led us to
studying the stationary problem, which has the form (cf. (3.12))

u(iv) + c(x)u = h(x),

u(0) = u(1) = u′′(0) = u′′(1) = 0, (4.1)

where c, h ∈ C[0, 1] and h ≥ 0, h ̸≡ 0.
For the purpose of further investigation and discussion, let us consider a differential operator

L of the fourth order in the form

Lc : X ⊂ C4[0, 1] → C[0, 1],

Lcu(x) := u(iv)(x) + c(x)u(x),

(4.2)

where X = {u ∈ C4[0, 1] : u(0) = u(1) = u′′(0) = u′′(1) = 0}. Note that now it is possible to
formulate (4.1) as

Lcu = h. (4.3)

4.1 Method of reduction

Since we are interested in conditions for extremal values of c = c(x), which would guarantee the
positivity of the solution u, we delve in the topic of the so-called strictly inverse-positive (SIP
for short) operators.

Definition 27. We say that Lc is strictly inverse positive on X if any solution u ∈ X of (4.3)
with an arbitrary nonnegative nontrivial right-hand side h ∈ C[0, 1] is strictly positive, i.e., u > 0
in (0, 1) and u′(0) > 0, u′(1) < 0.

The history of this field stretches back to the 1960s, when Johann Schröder published the
pioneering articles [34, 35, 36] (in German). Here he discussed the so called method of reduc-
tion, i.e., a decomposition of a general fourth order differential operator into two second order
operators (see also [37] and [38]). Then he used this theory to derive bounds for either constant
or non-constant coefficient c, which guarantee the SIP property of Lc. It is worth mentioning,
that J. Schröder also discussed this topic from the engineering point of view (see e.g. [33]). The
broad coverage and volume of his work meant that he established himself as a founder of this
field.

There are many authors, who followed Schröder’s steps later. The constant coefficient case
was covered by B. Kawohl and G. Sweers in [26]. These authors basically re-interpreted and
explained the meaning of Schröder’s approach in more detail. On the other hand, M. Ulm in [41],
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obtained the same bounds, however by using a different, more “brute-force” based technique.
This is by no means a pejorative description, as Ulm’s result is a nice verification of previous
efforts by Schröder and/or Kawohl & Sweers. But let us turn our attention to the non-constant
coefficient case. Here, many papers, e.g. [5], or more recently, [6], [11], or [12], brought a
significant progress, since they showed that the extrema of c(x) can in fact cross the bounds
earlier obtained by Schröder’s followers of by himself. Our contribution to this topic is available
in [20].

Now, let us briefly discuss the outcome of the method of reduction. The reason for it is the
appearance of certain functions, which will be used as a tool for determining the SIP property
for Lc. This summary (in much more detail) can be found e.g. in [38]). The key part of the
process is to express the reduction as P (Lc) = A−B, where B is a linear positive operator and
A is, roughly speaking, a second order differential inverse-positive operator. If this is possible,
then P (Lc) is stricly inverse-positive ([38, Proposition 1.4]) and the same holds for Lc itself ([38,
p. 96]). Indeed, by applying a suitably chosen integral operator P on Lcu(x), where

PU(x) :=

∫ 1

0
G(x, s)U(s)ds, G(x, s) =

{
ψ(x)φ(s) for 0 ≤ x ≤ s ≤ 1,
ψ(s)φ(x) for 0 ≤ s ≤ x ≤ 1,

(4.4)

one obtains the required problem structure, since it is possible to verify that there exist operators
A,B with the aforementioned properties, such that PLcu(x) = Au(x)−Bu(x) (see, [38, p. 102]
for details). Note that using the final results of Schröder’s reduction means, that the explicit
form of these reduction operators A,B is actually irrelevant for us. Instead of that, it suffices
to check that the considered functions φ,ψ fulfill several conditions, which are discussed in the
following assertion.

Proposition 28. [38, Proposition 4.3] If there exist functions φ,ψ ∈ C4[0, 1] such that φ,ψ > 0
in (0, 1), with

φ(1) = ψ(0) = 0, φ′′(1) ≥ 0 and ψ′′(0) ≥ 0, (4.5)

φ′(1) < 0, ψ′(0) > 0, (4.6)

φ(iv) + cφ ≤ 0, ψ(iv) + cψ ≤ 0 in [0, 1] (4.7)

and
p := φψ′ − φ′ψ ≥ 0 (4.8)

together with a function z ∈ X such that z ≥ 0 and Lcz ≥ 0, Lcz ̸≡ 0 then Lc is strictly
inverse-positive.

Let us note that [38] uses different notation for order relations, however, our notation is
compatible with the ordering used by Schröder. For further details, see Chapter 1 in [38].
Concerning functions φ,ψ, Schröder used specific ones, which appear as solutions of problems

φ(iv) + kφ = 0,

φ(0) = φ(1) = φ′′(1) = 0, φ′′(0) = −1 (4.9)

and

ψ(iv) + kψ = 0,

ψ(0) = ψ(1) = ψ′′(0) = 0, ψ′′(1) = −1. (4.10)

As for the function z appearing in Proposition 28, it suffices to take z = sinπx, which combined
with φ,ψ yields a relatively well-known sufficient condition, i.e., if −π4 < c(x) < c0, then L is
strictly inverse-positive (see [38, Proposition 4.4]). Just to recall, let us note, that c0 = 4κ4, with
κ being the smallest positive solution of tanκ = tanhκ (see Definition 21 and, e.g., [26, 38, 41]).
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The SIP interval bounds are in fact certain eigenvalues, however, both have a different origin.
The lower threshold value −π4 is the opposite of the first eigenvalue of L0, that is, when c ≡ 0.
For simplicity, let us denote L := L0.

On the other hand, the upper “c0-type” threshold appears as the eigenvalue of the problem

u(iv) + λu = 0,

u(0) = u′(0) = u′′(0) = 0, u(1) = 0, (4.11)

for which the corresponding eigenfunction is positive. In this chapter, we understand such an
eigenvalue to be the principal one.

The reasoning behind the meaning of these SIP bounds is relatively complex. Schröder’s
book [38] provides both technical and physical arguments, that is, the discussion concerning
the positivity of the Green function associated with (4.1) in combination with observations of
the behaviour of a bending beam with the considered boundary conditions. Perhaps even more
straightforward summary of these discussions can be found in [26]. Since we consider the weight
function r ̸≡ 1, we extend this concept and search for the c0-type boundary in a similar way,
however, quite different in one important aspect. Our main idea is, that instead of classical
eigenvalues, we view the SIP bounds as weighted eigenvalues of corresponding problems.

4.2 Beyond the value c0

Since our work is connected to the suspension bridges modelling, let us interpret the variable
coefficient c in a specific form, i.e., c(x) = kr(x) ≥ 0 with k ≥ 0, 0 ≤ r(x) ≤ 1, x ∈ [0, 1], which
reflects the idea of having a “stiffness constant” k times a certain variable function profile r.
This way, it is also easier to compare the extrema of c to corresponding weighted eigenvalues.
Also, let us point out, that in this section, we concentrate purely on the upper bound in the case
of a positive, or positive semidefinite weight, i.e., the assumption c(x) ≥ 0 means that c(x) may
be equal to zero on a subinterval of (0, 1). The negative definite and indefinite weights shall be
discussed in the following section, since they correspond to the lower bound of the SIP interval.

If we look back at Schröder’s functions (4.9) and (4.10), it turns out, that in order to
investigate the possible shift of the upper bound of the SIP interval, we have to work with
auxiliary (3,1) and (1,3) conjugate boundary value problems (see, e.g., [6] and [43]) and the
corresponding operators. Let us define spaces

X3,1 = {u ∈ C4[0, 1] : u(0) = u′(0) = u′′(0) = u(1) = 0},
X1,3 = {u ∈ C4[0, 1] : u(0) = u(1) = u′(1) = u′′(1) = 0},

and consider the standard fourth order differential operators L3,1 : X3,1 → C[0, 1] and L1,3 :
X1,3 → C[0, 1] defined by

L3,1u = L1,3u = −u(iv).
Before proceeding to work with the weighted eigenvalues of these operators, let us begin with

a definition.

Definition 29. We say that λ is a weighted eigenvalue of L3,1 with the weight function r if
there exists a nontrivial solution u ∈ X3,1 of

L3,1u = λru.

Moreover, we call it the principal eigenvalue, if at least one corresponding eigenfunction is
positive in (0, 1).

Now, it is necessary to verify the existence of a principal eigenvalue of both these conjugate
problems and discuss any possible similarities between them. Actually, it is possible to show
that not only they exist, but they are the same, as our following lemma suggests.
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Lemma 30 ([20]). Both the operators L3,1, L1,3 have the same principal eigenvalue with respect
to the weight function r, that is, Λr = Λ′

r, which is positive and it is the smallest eigenvalue in
absolute value. Moreover, it satisfies

Λr ≥ Λ1 = c0

with the equality only for r ≡ 1.

The connection with the (3,1) and (1,3) conjugate problems becomes even more obvious,
when we introduce modifications of Schröder’s functions. Indeed, let φ,ψ be now the solutions
of the problems (cf. (4.9), (4.10))

φ(iv) + kr(x)φ = 0,

φ(0) = φ(1) = φ′′(1) = 0, φ′′(0) = −1, (4.12)

and

ψ(iv) + kr(x)ψ = 0,

ψ(0) = ψ(1) = ψ′′(0) = 0, ψ′′(1) = −1, (4.13)

respectively.
Note that due to symmetry reasons (also cf. Lemma 30), it suffices to deal only with the

eigenvalue problem for ψ(x). Nevertheless, for k ≥ 0, both problems (4.12), (4.13) possess a
unique solution. This can be verified by reformulating them as uniquely solvable boundary value
problems with a nontrivial right-hand side. In the case of ψ, when we put ψ = ψh + h(x) with
h(x) = 1

6(x − x3), then (4.13) is equivalent to Lψh + kr(x)ψh = −kr(x)h(x). This problem is
uniquely solvable for any k > −λ1, which is the first eigenvalue of L. The function φ can be
dealt with the same way. As a consequence, both problems (4.12), (4.13) can be viewed as initial
value problems with unique solutions, which depend continuously on k. For more details, see
[20].

Next, in the two following assertions, we check that the modified functions φ,ψ satisfy the
assumptions from Proposition 28. See [20] for detailed proofs and the influence of the above
suggested continuous dependence on k.

Lemma 31 ([20]). Let Λr be the principal eigenvalue of L3,1 and L1,3, respectively, with the
(semidefinite) weight r. Then for any k ∈ [0,Λr], both the solutions of (4.12), (4.13) satisfy
φ, ψ > 0 in (0, 1). Moreover, ψ′(0) > 0, φ′(1) < 0 for k ∈ [0,Λr), and ψ

′(0) = φ′(1) = 0 for
k = Λr.

Lemma 32 ([20]). Let k ∈ [0,Λr] be arbitrary and φ, ψ be the positive solutions of (4.12),
(4.13), respectively. Then p := φψ′ − φ′ψ is positive in (0, 1) as well, and p(0) = p′(0) = p(1) =
p′(1) = 0.

Even in the case of these modified functions and weighted eigenvalues, it is possible to take
z(x) = sinπx and conclude this section with a theorem dealing with the upper bound of the
SIP interval.

Theorem 33 ([20]). Let Λr be the principal eigenvalue of L3,1 (and L1,3, respectively) with the
weight function r. Then Lc with c(x) = k r(x) is strictly inverse-positive whenever 0 ≤ k < Λr.

4.3 Lower bound of the SIP interval

When explaining the SIP bounds earlier, we discussed one of the original results of Schröder,
that is, the lower bound corresponding to the opposite value of the first eigenvalue of L. Not only
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we expand this concept by (again) introducing the weighted eigenvalues, but also by shifting the
operator whenever the coefficient function c is indefinite. That is, when c changes sign in [0, 1].
Thus we consider

c(x) = kr+(x)− lr−(x) (4.14)

with k, l ≥ 0 and r± being the weight functions (or profiles), i.e., 0 ≤ r± ≤ 1. Notice that if
r+r− ≡ 0, we have kr+ = c+ (the positive part of c) and lr− = c− (the negative part of c).

If the function c is negative or negative semidefinite (i.e., k = 0), we can consider the lower
bound of the SIP interval to be the opposite of the first weighted eigenvalue of L. However, if
both k > 0 and l > 0, we deal with the shifted eigenvalue problem of the type

Lqu = λru.

The operator Lq is considered precisely in the sense of (4.2). The weight r in this eigenvalue
problem is considered semidefinite. We explain its role in decomposing the indefinite coefficient
in a short while. All the weighted eigenvalues of this problem are real and positive (see Section 2
in [20]), and for the first one, we proved (with the help of useful insights from [40]) the following
assertion.

Lemma 34 ([20]). The first (weighted) eigenvalue of Lq with the semidefinite weight r —
denoted by λq,r — satisfies

λq,r ≥ λ0,r ≥ λ0,1 = π4

with equalities only for r ≡ 1 and q ≡ 0.

Note that other spectral properties of Lq are available in [17, 18] and [40].

At last, let us fully turn our attention to the indefinite coefficient c. Using the decomposition
(4.14), the operator equation (4.3) is equivalent to

Lkr+u = lr−u+ h. (4.15)

Now, it is possible to interpret the lower bound of the SIP interval as the opposite of the
eigenvalue of the shifted operator Lkr+ with respect to the weight function r− (cf. Lemma 34).

Theorem 35 ([20]). Let 0 ≤ k < Λr+. Then Lc with c = kr+ − lr− is strictly inverse positive
whenever 0 ≤ l < λkr+,r−.

When proving this theorem, we were inspired by the approach in [12]. The main idea is, that
as long as Lkr+ remains SIP, it is possible to construct monotone increasing successive iterations
in the form

Lkr+un+1 = lr−un + h, u0 ≡ 0

and basically prove the convergence of such iterations under a specific condition. This condition
appears to be none other than 0 ≤ l < λkr+,r− . For all the steps of the proof in detail, see
Theorem 2 in [20].

4.4 Extended SIP interval

We investigated the lower und upper bound of the SIP interval separately, and we showed,
how the weighted eigenvalues of corresponding operators can be incorporated in order to go
beyond the SIP bounds discussed in the literature so far. Now, we combine Theorem 33 and
Theorem 35 to provide an overview, which summarizes the SIP criteria for Lc with a generally
indefinite coefficient c.
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Corollary 36 ([20]). The operator Lc is strictly inverse positive for any c ∈ C([0, 1]) satisfying

−λc+,r− < c(x) < Λr+ ,

where

• c±(x) are the positive and negative parts of c(x),

• r±(x) are their “profiles”, i.e., r±(x) = c±(x)/max[0,1](±c(x))
(or r± ≡ 0, if max[0,1](±c(x)) = 0),

• λc+,r− is the first eigenvalue of Lc+ with respect to the weight r−,

• Λr+ is the principal eigenvalue of L3,1 (and L1,3) with respect to the weight r+.

In theory, the introduction of weighted eigenvalues brings an improvement (see Lemma 30
and Lemma 34), which, however, cannot be quantified independently on the profile of c. That
is why, in the rest of this chapter, we provide estimates for these eigenvalues.

4.5 Eigenvalue estimates

Fortunately, there are tools, which allow us to approximately compute the shift of the corre-
sponding weighted eigenvalues (and thus the SIP bounds) for a particular choice of c. Originally,
we discovered this theory in articles by J. R. L. Webb and K. Q. Lan (see [43, 44]) in connec-
tion with conjugate problems, however, it can be utilized for any eigenvalue problem, which is
suitable for reformulating as a linear Hammerstein equation in the form

λu(x) = Tu(x) :=

∫ 1

0
k(x, y)g(y)u(y) dy, (4.16)

where the integrand has to satisfy the following three assumptions (cf. [43, 44]).

1. The integral kernel k is measurable and for every ξ ∈ [0, 1] : limx→ξ |k(x, y)− k(ξ, y)| = 0
for a. e. y ∈ [0, 1].

2. There exist an interval [a, b] ⊂ [0, 1], a function Φ ∈ L∞[0, 1] and a constant d ∈ (0, 1] such
that

k(x, y) ≤ Φ(y) for x ∈ [0, 1] and a.e. y ∈ [0, 1],

k(x, y) ≥ dΦ(y) for x ∈ [a, b] and a.e. y ∈ [0, 1].

3. The weight function g ≥ 0 a. e., gΦ ∈ L1[0, 1] and
∫ b
a Φ(s)g(s) ds > 0.

We strongly recommend the reader to check the discussion in [31, 43, 44]. Note that the
theory behind the estimates of weighted eigenvalues transcends the topics discussed in this
thesis. In the following paragraph, we only provide a very brief sketch of facts and tools, which
Webb and Lan used in order to prove the existence of the principal eigenvalue of (4.16) and
to show the possibility to compute upper and lower estimates for its reciprocal value. They
utilized the rather standard Krein-Rutman theory. This requires to consider the following cones
of continuous functions in a Banach space Y (especially when Y = C[0, 1]), i.e.,

P = {u ∈ C[0, 1] : u ≥ 0} ,

P̃ =

{
u ∈ P : min

x∈[a,b]
u(x) ≥ d max

x∈[0,1]
u

}
,
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where a, b and d come from the three initial assumptions 1.− 3.
Note that the set K ⊂ Y is called a cone if it is convex, for any a ≥ 0 we have aK ⊂ K

and K ∩ −K = {o}. To show, that the eigenfunction corresponding to the principal eigenvalue
of (4.16) is strictly positive, the authors of [44] worked in more specific cones in Y . The cone
is said to be reproducing or generating, if Y = {x − y : x, y ∈ K}. This is often denoted by
Y = K −K. The possibility to decompose a continuous function u(x) such that u = u+ − u−

shows that the cone P is reproducing in the Banach space of continuous functions. And finally,
a cone K is considered total, if Y is the norm closure of {x− y : x, y ∈ K}.

Webb and Lan proved, that if the assumptions 1.− 3. hold then T from (4.16) is a bounded
linear compact operator, maps P into P̃ and its spectral radius r(T ) := lim

n→+∞
∥Tn∥1/n > 0.

Here, the norm ∥T∥ is the standard linear operator norm, i.e., there exists C ∈ R such that

∥Tu∥Y ≤ C∥u∥Y

for every u ∈ Y , with ∥L∥ = sup
u∈Y

∥Lu∥Y
∥u∥Y . The strict positivity of r(T ) guarantees the existence of

the nontrivial positive eigenfunction corresponding to r(T ), which is the largest eigenvalue. The
last important piece of information is that the weighted eigenvalues of the integral operator T
are in fact reciprocals of the eigenvalues of corresponding differential operators (cf. [44]). This
will become more obvious when we introduce Green functions for our problems and from the
estimates, see e.g. Lemma 37.

Let us return back to the weighted eigenvalues of L3,1, L1,3 and L. Their approximate
position on the real axis can be measured using these “Webb-type” estimates from [43] and
[44]. The considered integral kernels for the general operator, which we denoted above by T are
nothing else than Green functions associated to given problems. The generality of the introduced
framework makes it possible to find such estimates for either the conjugate problems, or the one
with symmetric boundary conditions.

Firstly, let us start with the (3, 1) conjugate problem, since, in the above mentioned literature,
the estimating tools are usually used for this particular case (especially in [43]). Let us present
the Green function corresponding to the (3, 1) conjugate problem (cf. [43]), i.e.,

G3,1(x, y) =





x3(1−y)3−(x−y)3

6 x ≥ y,

x3(1−y)3

6 x < y
(4.17)

and the form of the estimates in the following lemma.

Lemma 37 (Webb, Lan, [43, 44]). Let G3,1 be the Green function of L3,1 given by (4.17). Then
m ≤ Λr ≤M , where

m =

(
sup

0≤x≤1

∫ 1

0
G3,1(x, y)r(y) dy

)−1

,

M = inf
0≤a<b≤1

(
inf

a≤x≤b

∫ b

a
G3,1(x, y)r(y) dx

)−1

.

We show Lemma 37 in a specific form, but again, let us point out, that it holds not only
for L3,1 with G3,1, but also for L1,3 and L, for which there also are suitable Green functions.
Indeed, obviously G1,3(x, y) = G3,1(1 − x, 1 − y). The Green function corresponding to L with
symmetric boundary conditions takes the form (see e.g. [26])

Gsym(x, y) =

{
1
6x(1− y)(1− x2 − (1− y)2) for x ≤ y,

1
6y(1− x)(1− y2 − (1− x)2) otherwise
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where 0 ≤ x, y ≤ 1. It can be verified (see [43] and [20]), that all the presented Green functions
satisfy the assumptions 1.− 3. when considering any semidefinite continuous weight function r.

The estimates from Webb and Lan are actually not the only ones, since there exist also
more precise, iterated estimates, which are built upon them. This improvement was suggested
in [45] by Bo Yang. He considered functions θ0, σ0 to be a priori bounds for the eigenfunction u
corresponding to the appropriate eigenvalue, e.g., Λr. More specifically, we need

σ0 ≤
u

∥u∥C[0,1]
≤ θ0.

Then it is possible to define sequences σn and θn, n ∈ N, by

θn+1(x) =

∫ 1

0
G3,1(x, y)r(y)θn(y) dy, σn+1(x) =

∫ 1

0
G3,1(x, y)r(y)σn(y) dy,

and threshold values

mn :=

(
sup

0≤x≤1
θn(x)

)− 1
n

and Mn :=

(
sup

0≤x≤1
σn(x)

)− 1
n

.

The next lemma from Yang then utilizes these values a provides a more sophisticated estimate
for (in this case) Λr.

Lemma 38 (Bo Yang, [45]). Let θn, σn, mn and Mn be defined as above. Then for each n ∈ N,
we have mn ≤ Λr ≤Mn.

In [45], Yang provided partially optimized bounds, or “initial guesses” σ0, θ0, however, we
did not have to use those and the reason for it is straightforward. Since we aim to enlarge the
SIP interval, we investigate, whether the weighted eigenvalues are further from zero, than their
non-weighted counterparts. That means, we are not particularly interested in values M and
Mn, instead, our goal is to compute m and especially mn. To compute Yang’s iterations θn for
mn, we only need the initial value θ0, which is the a priori upper estimate for u/∥u∥C[0,1]. It
turns out, that the initial guess θ0 ≡ 1 is a good enough option, from the computational point
of view. Obviously, in this case m1 coincides with m given by Lemma 37.

Now, let us present three different types of weights, which we used for computing the either
Webb-Lan based, or Yang based estimates of both Λr and λ0,r. Each type has been chosen for
a different reason, which we discuss separately.

x

rSB(x)

-

6

Figure 4.1: Here, we show the function rSB(x) = cos6(6πx), which illustrates the placement of
hangers of a suspension bridge.

Example 3. Our first example of a weight function, rSB(x) = cos6(6πx), should resemble hanger
placement density of a suspension bridge, i.e., the maxima correspond to the hanger attachment
to the road, whereas the minima correspond to the places precisely in between them.
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Example 4. Our next example is the “hill” function

rH(x) =

{
−16(x− 0.5)2 + 1 for x ∈

[
1
4 ,

3
4

]
.

0 otherwise

We chose this weight function to demonstrate, which types of weights are the most problem-
atic and correspond to smaller gains in terms of the shift of SIP interval bounds. The reason for
it is that the position of λ0,r depends on the product ru sinπx and thus the behaviour of r near
0.5 affects it the most. Hence, every function, which attains its maximum around the centre of
[0, 1] and is close to zero otherwise, leads to relatively small improvements. Also, the eigenvalue
Λr is affected in a similar way, since the product of the corresponding conjugate eigenfunctions
has similar properties as ru sinπx (for details, see our Remark 3 in [20]).

x

rH(x)

-

6

Figure 4.2: Here, we show the function rH(x), which illustrates the type of function correspond-
ing to a less significant improvement of SIP bounds.

Example 5. The last example is the pair of “half-parabolas”

rRP(x) =

{
4(x− 0.5)2 for x ∈

[
1
2 , 1

]
,

0 otherwise,
rLP(x) = rRP(1− x).

This pair of functions is interesting, since it provides a relatively big shift of SIP bounds.
Moreover, the lower estimates m or mn (this time only Λr estimates, not the λ0,r ones) for
rRP(x) are also applicable in the rLP(x) case. Indeed, since rLP(x) = rRP(1−x) and G3,1(x, y) =
G1,3(1− x, 1− y), then also

∫ 1

0
G3,1(x, y)rRP(y) dy =

∫ 1

0
G1,3(x, y)rLP(y) dy,

i.e, mn for rRP and L3,1 are the same as mn for rLP and L1,3. Here, we can utilize the fact, that
both conjugate problems for the same weight have the same principal eigenvalue (see Lemma 30).
Therefore, it is possible to compute lower bounds mn of Λr for L3,1 with both rRP and rLP and
choose the value further from zero. This process is actually possible for any assymetrical weight
r, since we can compute the mn values for both r(x) and r(1− x) and use the larger ones.

4.6 Comparison with previous results

At last, let us provide a summary of computed estimates for the weighted eigenvalues Λr and
λ0,r for all introduced example weights. We used Wolfram Mathematica for all computations.
The tables can be also found in [20].
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Figure 4.3: Here, we show the functions rLP(x) and rRP(x), which illustrate the symmetric
couple of weights with a strong improvement of SIP bounds.

In the first table, we show the Webb-Lan type estimates.

weight m M

1 227.56 2783.13

rSB(x) 741.79 8881.62

rH(x) 502.53 4415.23

rLP(x) 1109.19 114749.00

rRP(x) 11590.90 29153.50

The estimate m for r ≡ 1, is quite far from the non-weighted eigenvalue Λ1 = c0 ≈ 950.884. If
this trend holds, it suggests, that for non-constant weights r, the weigthed eigenvalues Λr could
be far from their computed lower estimate as well. However, the more positive information is,
that we can already see, that m for rLP and especially for rRP are significantly beyond the value
c0.

Hence, let us use the Yang estimates. The next table illustrates the significant improvement
of lower bounds of Λr given by iterations mn. In this table, we show the first value mn such
that mn is significantly larger than c0 and the number of the iteration, which it corresponds to.

weight n mn

rSB 4 1950.29

rH 4 1050.31

rLP 3 6339.80

rRP 1 11590.90

In view of the discussion in Example 5, note that in fact we have Λr > 11590.9 for both rLP
and rRP.

Finally, let us provide the mn estimates for the other eigenvalue, λ0,r. Again, to better
demonstrate the shift, we recall the non-weighted eigenvalue, i.e., for r ≡ 1, λ0,1 = π4 ≈ 97, 409.

weight m1 m2 m3

1 76.80 83.14 87.45

rSB 248.55 267.66 295.80

rH 154.37 156.70 169.96

rLP 808.09 1052.14 1129.67

rRP 808.09 1156.14 1220.50

Here, the first lower estimate m1 is the same for both half-parabolas. This is not an error, but
an expected fact, since both Gsym and θ0 are symmetric. However, that does not hold for the
next iterations of θn, which is the reason why the further iterations of mn do not coincide.
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In the end, let us compare the shift of boundary values of the SIP interval with some
previously achieved results. The original bounds given by Schröder, that is −π4 and c0, have
already been broken in [11] and [12]. The new bounds therein mean a significant improvement
under certain circumstances, however, they omit any details of the profile of c(x) and, for the
upper bound of the SIP interval, depend also on the right-hand side of (4.3). To be more specific,

they depend on the ratio minh(x)
maxh(x) over x ∈ [0, 1]. The best-case scenario here is a constant right-

hand side h. But even in that case, our new estimates bring a significant improvement over [11]
and [12].

In the first comparison table, let us show the estimates of Λr. Note that for a constant
right-hand side, [11] provides the estimate Λr ≥ mold = c0 + 2π3 ≈ 1012.89 regardless of the
profile of r.

weight mold mnew

rSB

1012.89

1950.29
rH 1050.31
rLP 6339.80
rRP 11590.90

To conclude this overview, let us concentrate on the lower bound for λ0,r. The estimate
based on [12] reads

λ0,r ≥ mold =
4π2∫ 1

0 r(x) dx
.

The results are provided in the following table.

weight mold mnew

1 39.48 87.45

rSB 126.33 295.80

rH 118.44 169.96

rLP 236.87 1129.67

rRP 236.87 1220.50

Note that the tested subjects rSB, rH, rLP, rRP can not only be considered as examples of
semidefinite weights by themselves, but also as profiles of positive, or negative parts of an
indefinite coefficient c(x) (cf. Theorem 35 and Corollary 36).

The work of Webb, Lan and Yang allowed us to demonstrate, that the influence of weighted
eigenvalues ensures possibly a several times larger interval of strict inverse-positivity valid for
an arbitrary continuous right-hand side and brings a significant improvement not only over
Schröder’s original bounds, but also over improved ones from a recently published literature
(e.g., [11, 12]).
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of solutions for equations with asymmetric nonlinearities. Proc. Roy. Soc. Edinburgh Sect.
A, 131(2):241–265, 2001.

[4] J. Berkovits, P. Drábek, H. Leinfelder, V. Mustonen, and G. Tajčová. Time-periodic os-
cillations in suspension bridges: existence of unique solutions. Nonlinear Anal. Real World
Appl., 1(3):345–362, 2000.
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[36] J. Schröder. Zusammenhängende Mengen inverspositiver Differentialoperatoren vierter
Ordnung. Math. Z., 96:89–110, 1967.
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confirms, that J. Janoušek’s contribution to research related to each of these papers is approxi-
mately 50%.

.....................................................
Gabriela Holubová
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1. Introduction

We consider a nonlinear one-dimensional model of a suspension bridge introduced by Lazer and
McKenna [1] and studied later in many papers (e.g., [2–8]):

mutt + EIuxxxx + but + κu+ = h(x, t),
u(0, t) = u(L, t) = uxx(0, t) = uxx(L, t) = 0,
u(x, t + 2π) = u(x, t), −∞ < t < +∞, x ∈ (0, L),

(1)

or its rescaled form, respectively,

utt + α2uxxxx + βut + ku+ = h(x, t),
u(0, t) = u(π, t) = uxx(0, t) = uxx(π, t) = 0,
u(x, t + 2π) = u(x, t), −∞ < t < +∞, x ∈ (0, π).

(2)

This model represents the bridge as a damped beam with simply supported ends, subject to a periodic
external force and to the nonlinear restoring force of cables hanging on a solid frame. The displacement
u(x, t) is measured as positive in the downward direction and the cables are taken as one-sided springs
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obeying Hooke’s law, with a restoring force proportional to the displacement if they are stretched, and with
no restoring force if they are compressed. We recall that u+(x, t) = max{0, u(x, t)} is the positive part of
u(x, t) and k (or κ, respectively) can be interpreted as the stiffness of the cables. The meaning of other
parameters can be found, e.g., in [3]. Evidently, only α > 0, β > 0 and k > 0 make sense from the physical
point of view, however, for the sake of generality, we will deal with k ∈ R throughout the text.

The aim of this paper is to revise the original result of [9], which says that for sufficiently small |k|, the
problem (2) admits a unique solution for any right-hand side. Using the same techniques, however with
finer arguments, we provide a significant improvement and extension of the allowed values of k. This means
that even for a more pronounced asymmetry, the system possesses a unique solution for any loading and no
bifurcations can occur.

2. Abstract setting

Let us denote by Ω = (0, π) × (0, 2π) the considered domain and by H = L2(Ω ,R) the real Hilbert space
equipped with the standard scalar product and the corresponding norm. Further, we denote by D the set
of all smooth functions which satisfy the boundary and periodic conditions from (2). We call a function
u(x, t) ∈ H a weak solution of the problem (2) if and only if the integral identity

∫

Ω

u(vtt + α2vxxxx − βvt) dx dt =
∫

Ω

(h − ku+)v dx dt (3)

holds for all v ∈ D.
Now, let us consider the complexification HC = H + iH = L2(Ω ,C) of H with the scalar product

⟨u, v⟩ =
∫
Ω

uv̄ dx dt, u, v ∈ HC, and the usual norm ∥u∥ = ⟨u, u⟩ 1
2 . Since the set {eint sin mx, m ∈ N, n ∈ Z}

forms an orthogonal basis in HC, each function u(x, t) ∈ HC has its representation by the Fourier series

u(x, t) =
+∞∑

n=−∞

+∞∑

m=1
umneint sin mx. (4)

Notice that for real functions u ∈ H there is um(−n) = ūmn.
Finally, we denote by L the abstract realization of the linear beam operator

u ↦→ utt + α2uxxxx + βut

with the given boundary and periodic conditions, i.e.,

L : dom(L) ⊂ HC → HC, Lu =
+∞∑

n=−∞

+∞∑

m=1
(α2m4 − n2 + iβn)umneint sin mx,

where

dom(L) =
{

u ∈ HC :
+∞∑

n=−∞

+∞∑

m=1
|α2m4 − n2 + iβn|2 |umn|2 < +∞

}
.

Notice that L is a real operator in the sense that

u ∈ dom(L) ∩ H ⇒ Lu ∈ H.

Using this setting, the original boundary value problem (2) can be formulated in the abstract way as

Lu = −ku+ + h. (5)
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The spectrum of the operator L consists only of the point spectrum σ(L) = {λmn, m ∈ N, n ∈ Z} with

λmn = α2m4 − n2 + iβn, m ∈ N, n ∈ Z (6)

being the eigenvalues of L. Considering an arbitrary λ ∈ R, λ ̸∈ σ(L), the non-homogeneous equation

Lu − λu = f (7)

has a unique weak solution u ∈ H for an arbitrary right-hand side f ∈ H. Moreover, the corresponding
resolvent operator L−1

λ ,

L−1
λ : H → H, L−1

λ : f ↦→ u

is linear, compact and its norm can be estimated as

∥L−1
λ ∥ ≤ 1

dist(λ, σ(L)) (8)

(see, e.g., [3] or [9]).

Remark 1. If we denote x = Re (λmn) and y = Im (λmn), then the eigenvalues λmn of L can be interpreted
as intersections of parabolas

pm =
{

(x, y) : x = α2m4 − y2

β2

}
, m ∈ N,

with horizontal lines

ln = {(x, y) : y = βn}, n ∈ Z

(see Fig. 1 for illustration and recall that α > 0, β > 0).

3. Revision of previous results

In this section, we recall shortly results of [9] and provide a more detailed analysis of the uniqueness
condition for the solvability of (5) obtained therein.

As α > 0, β > 0 and hence zero is not an eigenvalue of L, the problem (5) can be rewritten into an
equivalent form

u = L−1
0 (−ku+ + h). (9)

To obtain the existence of a unique solution u ∈ H, one can apply the Banach contraction theorem. Since
for any u, v ∈ H we have

∥L−1
0 (−ku+ + f) − L−1

0 (−kv+ + f)∥ = ∥L−1
0 (k(v+ − u+))∥ ≤ ∥L−1

0 ∥|k|∥v+ − u+∥

≤ |k|
dist(0, σ(L))∥u − v∥,

the operator L−1
0 (−k(·)+ + f) is contractive under the condition |k|

dist(0,σ(L)) < 1, or, equivalently, under

|k| < dist(0, σ(L)).
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Fig. 1. Illustration of the eigenvalues λmn in the complex plane.

Since dist(0, σ(L)) = minm∈N,n∈Z|λmn|, we obtain that the sufficient condition for the unique solvability of
(5) (and hence of (2)) reads as

|k| < min
m∈N,n∈Z

|λmn|, (10)

where

min
m∈N,n∈Z

|λmn| = min
m∈N, n∈Z

√
(α2m4 − n2)2 + (βn)2

(cf [9]). Notice that there are only finitely many candidates for the eigenvalue with the minimal modulus: it
is either the smallest real eigenvalue λmn = λ10 = α2, or possibly some complex eigenvalue lying even closer
to the origin, i.e., λmn inside an open disc D0 = {z ∈ C; |z| < α2}. Taking in mind that λmn ∈ pm ∩ ln
(cf. Remark 1), we can do, for example, the following observations:

• If β ≥ α2, then no horizontal line ln, n ∈ Z, intersects D0.
• If β ≥

√
2α, then no parabola pm, m ∈ N, intersects D0.

• If α > 1 and
√

2α2 − 1 ≤ β <
√

2α, then the only parabola intersecting D0 is p1, but λ1n ̸∈ D0 for all
n ∈ Z.

Hence, in all these cases, σ(L) ∩ D0 = ∅, thus minm∈N,n∈Z|λmn| = α2 and we can state the following
refining of the original result of [9].

Proposition 1. Let β ≥ α2 for α < 1 and β ≥
√

2α2 − 1 for α ≥ 1. Then the problem (2) has a unique
weak solution u ∈ H for an arbitrary right-hand side h ∈ H whenever k ∈ (−α2, α2).

4. Main result

Proposition 1 as well as the general condition (10) for the existence and uniqueness of the solution of (2)
can be quite restrictive. We can improve them if we consider an ε-shift in Eq. (5):

Lu + εu − εu = −ku+ + h,
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or equivalently (using the decomposition εu = εu+ − εu−)

(L − εI)u = −(k + ε)u+ + εu− + h. (11)

Considering ε ∈ R not to be an eigenvalue of the operator L and applying the resolvent operator L−1
ε , we

can rewrite Eq. (11) into the form

u = L−1
ε (−(k + ε)u+ + εu− + h). (12)

Now, we are ready to formulate our main result.

Theorem 2. Let εM > 0 and εm > 0 be the maximal real numbers for which
{

z ∈ C; (|z − εm| < εm) ∨ (|z + εM | < εM )
}

∩ σ(L) = ∅. (13)

Then the problem (2) has a unique weak solution u ∈ H for an arbitrary right-hand side h ∈ H whenever
k ∈ (−2εm, 2εM ). Moreover, the following estimates hold:

εM ≥ ε̃M =

⎧
⎨
⎩

2αβ + β2

2 for β ≥ 2(1 − α),

β for β < 2(1 − α),
(14)

and

εm ≥ ε̃m =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α2

2 for β ≥ min
{

α,
α2

2

}
,

2αβ − β2

2 for β ≤ min {α, 2(α − 1)} ,

β for α < 2 and 2(α − 1) ≤ β ≤ α2

2 .

(15)

Proof. We come from the formulation (12) with ε ∈ R, ε ̸∈ σ(L), and use again the Banach contraction
theorem. For arbitrary u, v ∈ H, we have

∥L−1
ε (−(k + ε)u+ + εu− + h) − L−1

ε (−(k + ε)v+ + εv− + h)∥
= ∥L−1

ε ((k + ε)(v+ − u+) − ε(v− − u−))∥ ≤ ∥L−1
ε ∥∥(k + ε)(v+ − u+) − ε(v− − u−)∥.

(16)

If we use the inequality

∥(k + ε)(v+ − u+) − ε(v− − u−)∥ ≤ max{|k + ε|, |ε|}∥v − u∥

and the relation (8), we get the estimate

∥L−1
ε (−(k + ε)u+ + εu− + h) − L−1

ε (−(k + ε)v+ + εv− + h)∥ ≤ max{|k + ε|, |ε|}
dist(ε, σ(L)) ∥v − u∥.

Hence, the operator L−1
ε (−(k + ε)(·)+ + ε(·)− + h) is contractive if

max{|k + ε|, |ε|} < dist(ε, σ(L)). (17)

That is, (17) is the sufficient condition which guarantees the existence of a unique solution of (12) (and
hence of (2)). It reads as

dist(ε, 0) < dist(ε, σ(L)) ∧ dist(ε, −k) < dist(ε, σ(L)). (18)
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Fig. 2. The values ε̃m, ε̃M and the corresponding “safe” discs, where none of the eigenvalues may appear.

Thus, if we find the maximal values εm > 0, εM > 0 such that the first condition in (18) is satisfied for any
ε ∈ (−εM , εm), i.e., (13) holds true, then the latter condition in (18) is satisfied for any k ∈ (−2εm, 2εM ).

Considering the fact that the eigenvalues λmn lie at intersections of parabolas pm, m ∈ N, and horizontal
lines ln, n ∈ Z (see Remark 1), we can determine the “safe” lower bounds ε̃m, ε̃M for εm, εM as the radii
of discs with centers on the real line and touching the origin as well as the first parabola p1 (see Fig. 2), or
the first pair of lines l−1, l1. Depending on α, β (and hence on the mutual position of p1 and l±1), we obtain
the estimates (14), (15) and the required assertions.

5. Final remarks and examples

Remark 2. Notice that εM = ε̃M if β = n2−α2
α for some n ∈ N or β = 1 − α2m4 (i.e., there exists an

eigenvalue λ1n or λm1 coinciding with the corresponding tangent point, cf. Fig. 2). Similarly for εm. If this
is not the case, the allowed interval for k can be further enlarged.

For example, if α2 < 1 and β < 1−α2

(4+
√

15)α
, then the disc which touches the origin from the left and the

second parabola p2 contains no eigenvalues located on p1. Hence, in this case, we can estimate

εM ≥ ε̄M = 8αβ + β2

2 .

Instead of improving the estimates ε̃m and ε̃M , we can gain the optimal values εm, εM in a similar way
as in Section 3. Namely, we can find some suitable candidates for the “first” eigenvalues in the left and right
half-planes, construct the discs passing through these eigenvalues and decrease them until they contain no
eigenvalue in their interiors. In particular, we can proceed via the following algorithm.

1. Put λopt = λ1n0 with n0 = ⌊α + 1⌋. (Here, ⌊·⌋ denotes the integer part of a real number, and λ1n0 is
the “first” eigenvalue with a negative real part on the parabola p1.)

2. Find an open disc D with the center on the real axis, whose boundary circle is going through an
eigenvalue λopt and the origin, i.e., D = {z ∈ C; |z + εD| < εD} with

εD = |λopt|2
2 |Re (λopt)|

.
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3. If there are no eigenvalues inside D, put εM = εD and quit, in the other case find indexes
M = max{m : λmn ∈ D} and N = min{n : λMn ∈ D}, i.e., find the indexes of the “first” eigenvalue
with the negative real part on the “highest” parabola inside D.

4. Put λopt = λMN and go back to Step 2.

In the case of εm we proceed similarly, starting from the “first” eigenvalue with the positive real part.

Remark 3. It is worth mentioning that the condition k < β2 + 2αβ = 2ε̃M for = β ≥ 2(1 − α) agrees
with a result presented by Alonso and Ortega in [2], however, they obtained it by a different approach using
spatial discretization of the problem (2) and its reduction to a finite system of ODEs.

The following examples demonstrate the rate of improvement given by the estimates (14) and (15).

Example 1. Let α ≥ 2, q ≥
√

2 and put β = qα. Then the assumptions of Proposition 1 are satisfied and
the problem (2) has a unique weak solution for all k ∈ (−α2, α2). If we employ Theorem 2 with its estimates
(14), (15), we get

ε̃M = 2αβ + β2

2 , ε̃m = α2

2
and thus obtain a much larger uniqueness interval

k ∈
(

−α2,
(
q2 + 2q

)
α2

)
,

i.e., the positive part of the interval, which is more interesting from the physical point of view, is (q2 + 2q)-
times larger than the original conditions allow.

Example 2. Let s ∈ N be arbitrary and put α = s, β = 1
s . Proposition 1 gives no information about

solvability of (2), since α2 ≥ 1 and β ≤ 1 ≤
√

2α2 − 1. However, the sufficient condition (10) (cf. the original
result in [9]) in its generality allows us to state that the existence and uniqueness of the weak solution of
(2) is guaranteed for an arbitrary right-hand side h ∈ H whenever k ∈ (−1, 1).

Indeed, since s ∈ N, λ1s = 0 + i, and the open disc D = {z ∈ C; |z| < 1} contains no other eigenvalue
λmn. Hence, minm∈N,n∈Z|λmn| = |λ1s| = 1.

However, the interval (−1, 1) can be enlarged by applying Theorem 2. It is easy to see, that for s = 1 the
estimates (14), (15) provide us

k ∈
(
−α2, 2αβ + β2)

= (−1, 3) ,

and for s ≥ 2 we get

k ∈
(
−2αβ + β2, 2αβ + β2)

=
(

−2 + 1
s2 , 2 + 1

s2

)
.

In all cases, these “safe” uniqueness intervals are twice as large as the original one. Moreover, e.g., for s = 1,
the “first” eigenvalue with a negative real part is λ12 = −3 + 2i and the disc D passing through contains no
other eigenvalue in its interior (cf. the algorithm in Remark 2). Hence, εM = εD = |λ12|2/ (2 |Re (λ12)|) =
13/6 and the uniqueness result holds for any k ∈ (−1, 13/3) .
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[8] J. Maĺık, Mathematical modelling of cable stayed bridges: existence, uniqueness, continuous dependence on data,
homogenization of cable systems, Appl. Math. 49 (1) (2004) 1–38.
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Abstract. We consider a modified version of a suspension bridge model with a spatially variable stiffness parameter to reflect
the discrete nature of the placement of the bridge hangers. We study the qualitative and quantitative properties of this
model and compare the cases of constant and non-constant coefficients. In particular, we show that for certain values of
the stiffness parameter, the bifurcation occurs. Moreover, we can expect also the appearance of blowups, whose existence is
closely connected with the so-called Fuč́ık spectrum of the corresponding linear operator.
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1. Introduction

We study a modified version of a standard [12,13] one-dimensional nonlinear beam model of a suspension
bridge

utt + uxxxx + b r(x)u+ = h(x, t) in (0, 1) × R,

u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0,

u(x, t) = u(x, t + 2π) = u(x,−t). (1)

Here, the term b r(x)u+ represents the nonlinear restoring force due to the bridge hangers (sometimes
called suspender cables in the literature) with the constant stiffness b and a variable hanger placement
density r(x). Unless stated otherwise, we consider r(x) to be a continuous function on (0, 1) such that
0 < r(x) ≤ 1 almost everywhere in (0, 1).

For r(x) ≡ 1, there are several results concerning multiplicity of periodic solutions: see [12,13] and also
[2,10] as an example of the problem setting and the application of various tools leading to a conclusion,
that when the hanger stiffness b crosses eigenvalues of the corresponding linear beam operator, more
solutions appear. These works were followed by [4] and [7], which approached this problem from a different
perspective through utilizing a global bifurcation framework.

In this paper, we use some of the basic ideas appearing in [4] and implement them in (1) with a
generally non-constant function r(x) �≡ 1. The reason for introducing the density (or weight) function
r(x) is to interpret more realistically the fact that the hangers are actually not a uniformly distributed
force acting on the roadbed, but they are “distinctly distributed.” That is, the restoring force should
attain its maximum where the hangers are connected to the roadbed, whereas being considerably weaker
in between. Such phenomenon can be described, e.g., with r(x) being a high even power of the cosine
function.

We show that making the stiffness parameter spatially variable actually improves the behavior of
the considered model while not changing its qualitative properties (see the results in Sects. 3 and 5).
Bifurcation phenomena (from the stationary solution as well as from infinity) are still observable. But
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since the variable coefficient shifts the eigenvalues of the corresponding linear beam operator away from
zero, it brings more “room” (with respect to b) for the existence of a unique solution and postpones
the appearance of additional solutions. Their existence can result in the buckling phenomenon, possibly
dangerous for the bridge structure. (Let us note that the destructive torsional oscillations of the infamous
Tacoma Narrows Bridge appeared as a sudden change in behavior.)

On the other hand, the non-constant weight function brings certain difficulties and disables to obtain
a more detailed description of the solution set. First of all, the implementation of the bifurcation theory
relies on the existence of a positive stationary solution under a positive constant loading. Unlike the con-
stant coefficient case, its existence is not guaranteed for any b (cf. Sect. 4). Moreover, several fundamental
questions concerning existence and blowups of solutions stay open, since answering them would require
detailed knowledge of the influence of the asymmetric nonlinearity, which is closely connected with the
so-called Fuč́ık spectrum of the corresponding linear beam operator (see Sect. 5).

Finally, let us note that for applications in real-world mechanics, only positive values of the parameter
b are relevant. In this paper, however, we omit this limitation, since from the mathematical point of view,
the problem (and the comparison of constant and non-constant coefficient cases) is interesting also for b
being negative. Similarly, a more realistic model should contain non-unit values of the bridge parameters
(length, mass, etc.). However, their consideration does not affect our results qualitatively.

2. Preliminaries and operator setting

Let us denote by Ω the domain (0, 1) × (0, 2π) and let h/
√

r ∈ L2(Ω). We consider the weighted space
L2

r(Ω) := L2(Ω, r(x)) with the inner product (u, v)r =
∫
Ω

r(x)u(x, t)v(x, t) dxdt and the norm ‖u‖r =√
(u, u)r. Notice that h/

√
r ∈ L2(Ω) means h/r ∈ L2

r(Ω).
Further, let H ⊂ L2

r(Ω) be a subspace of functions in L2
r(Ω) being even in the time variable and

let D stand for all C∞-functions ψ : [0, 1] × R → R satisfying the conditions from (1). A function
u : (0, 1) × R → R is then called a weak solution of the problem (1) if and only if

∫

Ω

u(x, t)(ψtt(x, t) + ψxxxx(x, t)) dxdt =

∫

Ω

(
h(x, t) − b r(x)u+(x, t)

)
ψ(x, t) dxdt

for all ψ ∈ D, and the restriction of u belongs to H. Here, u+ denotes the positive part of u. Similarly,
u− stands for the negative part of u and u = u+ − u−. Moreover, both u+ and u− are elements of H.

The solvability of (1) is connected to the weighted spectrum of a linear beam operator. Hence, we
first consider the following eigenvalue problem with a weight function r, i.e.,

utt + uxxxx = λ r(x)u in (0, 1) × R,

u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0,

u(x, t) = u(x, t + 2π) = u(x,−t). (2)

Lemma 1. All the eigenvalues of the problem (2) are real and form an infinite sequence

(λm,n)+∞
m,n=0

with the following properties.

(i) For any m,n ∈ N ∪ {0}, λm,n �= 0.
(ii) lim

m→+∞
λm,n = +∞, lim

n→+∞
λm,n = −∞.

(iii) For any fixed n ∈ N∪{0}, all the eigenvalues, for which λm,n > −n2, are simple, i.e., λm1,n �= λm2,n

whenever m1 �= m2.
(iv) All the eigenvalues λm,0 are positive.
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(v) For any m,n ∈ N ∪ {0}
|λm,n| ≥

∣∣(m + 1)4π4 − n2
∣∣ .

(vi) For any fixed m ∈ N ∪ {0},
λm,n1

≥ λm,n2
, whenever n1 < n2.

The eigenfunctions corresponding to λm,n take the form

ϕm,n(x, t) = Xm(x, n) cos nt

with Xm(x, n) being a non-trivial solution of the ODE problem

XIV − n2X = λm,n r(x)X,

X(0) = X(1) = X ′′(0) = X ′′(1) = 0. (3)

All the eigenfunctions ϕm,n(x, t) form a complete orthogonal system on Ω with the weight r(x), i.e.,
∫

Ω

r(x)ϕm,n(x, t)ϕk,l(x, t) dxdt = 0, whenever m �= k or n �= l.

The eigenfunction ϕ0,0(x, t) = X0(x, 0) is strictly positive in Ω. Moreover, if r(x) > 0 on (0, 1), all the
functions Xm(x, n) corresponding to λm,n > −n2 have exactly m zero points in (0, 1).

Proof. Using the separation of variables, i.e., assuming that u(x, t) = X(x)T (t), we obtain that there
exists a constant μ such that the problem (2) is equivalent to the couple of ODE problems

T ′′ + μT = 0,

T (t) = T (t + 2π) = T (−t), (4)

and

XIV − μX = λ r(x)X,

X(0) = X(1) = X ′′(0) = X ′′(1) = 0. (5)

Problem (4) has a non-trivial solution if and only if μ = n2, n ∈ N ∪ {0}, with Tn(t) = cos nt. Hence,
for a given n ∈ N ∪ {0}, problem (5) reads as (3), which is a regular Sturmian system with a weight
function r(x).

All the statements of Lemma 1 now follow directly from [8,11]. Namely, [11, Theorem 1] implies that
if r(x) decreases, the nonzero eigenvalues do not decrease in absolute value. That is, if r1(x) ≥ r2(x) are
two weight functions, then |λm,n(r1)| ≤ |λm,n(r2)|. This implies

|λm,n| ≥
∣∣(m + 1)4π4 − n2

∣∣

for any m,n ∈ N ∪ {0}, since λ̄m,n = (m + 1)4π4 − n2, m ∈ N ∪ {0} are the eigenvalues of (3) with the
constant weight function r̄(x) ≡ 1 ≥ r(x).

Similarly, if n increases, the eigenvalues do not increase.
Since the systems (Xm(x))

+∞
m=0 and (cosnt)

+∞
n=0 are complete in the corresponding one-dimensional

subspaces (cf. [8]), their product ϕm,n(x, t) = Xm(x) cos nt forms a complete system in H as well and (2)
possess no other eigenfunction in non-separated form. �

Remark 2. For r(x) ≡ 1, all the eigenvalues λm,n = (m + 1)4π4 − n2, m,n ∈ N ∪ {0}, are simple and the
corresponding eigenfuctions take the form ϕm,n = sin(m + 1)πx cos nt.

Remark 3. Some results of this type (e.g., real eigenvalues forming an infinite sequence with no finite
cluster point, r-orthogonality of corresponding eigenfunctions, etc.) hold also for r ∈ L1 (0, 1) (see [8]).
Notice, however, that in this case one cannot apply the results of [11], i.e., the monotonicity of the
eigenvalues is not guaranteed.
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Since the eigenfunctions ϕm,n form an r-orthogonal basis in H (cf. Lemma 1), any function u ∈ H
can be expanded into Fourier series

u(x, t) =

+∞∑

m=0

+∞∑

n=0

um,nϕm,n

with the coefficients

um,n =
(u, ϕm,n)r

(ϕm,n, ϕm,n)r
.

Let us define the operator L : Dom(L) ⊂ H → H by

Lu =

+∞∑

m=0

+∞∑

n=0

λm,num,nϕm,n,

with

Dom(L) =

{
u ∈ H;

+∞∑

m=0

+∞∑

n=0

λ2
m,nu2

m,n < ∞
}

.

Let us note that L can be understood as the abstract realization of the beam operator 1
r(x) (∂tt+∂xxxx)

on H. Moreover, L is a linear, closed, densely defined symmetric operator with a real point (weighted)
spectrum

σr(L) = {λm,n}+∞
m,n=0

given by Lemma 1. Its resolvent (L − λI)−1 with λ �∈ σr(L) is a compact normal operator on H and its
norm is given by ∥∥∥(L − λI)

−1
∥∥∥

r
=

1

min
m,n∈N0

|λm,n − λ| =
1

dist (λ, σr(L))
. (6)

Hence, u ∈ H is a weak solution of the problem (1) whenever it solves the abstract equation

Lu + b u+ = g (7)

with g = h/r ∈ H.

3. Existence and uniqueness

When considering an arbitrary right-hand side g = h/r ∈ H and any b ∈ R, the existence of a weak
solution of (1) is not guaranteed in general. Therefore, let us first restrict ourselves to certain values
of b and/or less general right-hand sides. First of all, we state the existence and uniqueness result on a
bounded, generally asymmetric interval of non-resonance around b = 0.

Proposition 4. Let λq < 0 < λp be such that σr(L)∩ [λq, λp] = {λq, λp}, and let g = h/r ∈ H be arbitrary.
Then the problem (1) has a unique weak solution for any b ∈ (−λp,−λq).

Proof. Let us put ε := 1
2 (λp + λq) (notice that ε /∈ σr (L)) and take an ε-shifted modification of the

abstract form (7)

(L − εI)u = g − bu+ − εu,

or, equivalently, using u = u+ − u−,

(L − εI)u = g − (b + ε)u+ + εu−.
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Since ε �∈ σr(L), the operator (L − εI) is invertible and we can write

u = (L − εI)−1(g − (b + ε)u+ + εu−).

Let us denote the right-hand side by T (u), i.e., T : H → H, T (u) = (L−εI)−1(g−(b+ε)u++εu−). Using
the expression (6) for the norm of the resolvent (L−εI)−1 and knowing that dist (ε, σr(L)) = 1

2 (λp −λq),
we obtain

‖T (u) − T (v)‖r = ‖(L − εI)−1((b + ε)(v+ − u+) − ε(v− − u−))‖r

≤ ‖(L − εI)−1‖r ‖((b + ε)(v+ − u+) − ε(v− − u−))‖r

≤ 2(λp − λq)
−1 max{|b + ε|, |ε|} ‖(v − u)‖r.

Hence, T is contractive for b ∈ (−λp,−λq) and the existence of a unique solution of (7) is guaranteed
under this condition. �
Remark 5. (i) Notice that λp is the smallest positive eigenvalue of L, and λq is the largest negative

eigenvalue of L.
(ii) Using the monotonicity of the eigenvalues (cf. Lemma 1, prop. (v)) and the fact that for r(x) ≡ 1

we have λq = λ0,10 = π4 − 100 and λp = λ0,9 = π4 − 81, we can conclude that the problem (1) has
a unique weak solution for any b ∈ (81 − π4, 100 − π4).

In what follows, we will mostly deal with a positive and/or time-independent right-hand side h. Let
us start with the necessary condition for the solvability of (1).

Proposition 6. Let g = h/r ∈ H, h(x, t) ≥ 0 a.e. in Ω, h(x, t) �≡ 0, and u ∈ H be a weak solution of (1).
Then necessarily b > −λ0,0 and u �≤ 0.

Proof. It follows from (7) that

(Lu,ϕ0,0)r + b(u+, ϕ0,0)r = (g, ϕ0,0)r.

If we use the fact that L is symmetric, Lϕ0,0 = λ0,0 ϕ0,0 and the decomposition u = u+ − u−, we can
transform the above relation into the form

(λ0,0 + b)(u+, ϕ0,0)r = (g, ϕ0,0)r + λ0,0(u
−, ϕ0,0)r.

Since ϕ0,0 is strictly positive in Ω, λ0,0 > 0 and g, r, u+, u− are nonnegative functions, we see that
necessarily u+ �≡ 0 and

b > −λ0,0.

�
Remark 7. In fact, Proposition 6 is valid also for a (more general) right-hand side such that

∫
Ω

hϕ0,0 > 0.
Unfortunately, the exact form of ϕ0,0 is not known for a non-constant r(x), which makes this assumption
practically unverifiable. Hence, we use a more restrictive, but, on the other hand, also more reasonable
setting for h.

It is also possible to obtain partial existence and uniqueness results for a more general setting with
r ∈ L1 (0, 1). However, one cannot apply the results of [5,6,11], which require the continuity of r. Hence,
any results from Sect. 4 onward are not guaranteed for L1 weights.

4. Stationary solution

For now, let us consider a time-independent right-hand side h. For a continuous function y = y(x) on
[0, 1] let us denote

ymin := min
x∈[0,1]

y(x) and ymax := max
x∈[0,1]

y(x).
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Further, we say that y is strictly positive on (0, 1), if it satisfies

y(x) > 0 for any x ∈ (0, 1) and y′(0) > 0, y′(1) < 0.

Set c0 := 4k4
0 with k0 being the smallest positive solution of the equation tan k = tanh k (i.e., k0 ≈ 3.9266

and c0 ≈ 950.8843).

Proposition 8. Let h = h(x) ∈ C([0, 1]). Then for any b > −λ0,0 the problem (1) has a unique classical
stationary solution ub = ub(x) ∈ C4([0, 1]). Moreover, if h(x) ≥ 0, h(x) �≡ 0 on (0, 1), then there exists
λM (depending on h and r) such that u is strictly positive whenever b ∈ (−λ0,0, λM ], where

− λ0,0 ≤ min
{
bm, −π4

}
, λM ≥ min {bM1, bM2} (8)

with

bm = − 4π2

∫ 1

0
r(x) dx

,

bM1 = c0 +
hmin

hmax
2π

√
π4 + c0,

bM2 = c0 + 2π
hmin

hmax

⎛
⎝π

hmin

hmax
rmin +

√
c0rmin +

(
hmin

hmax

)2

π2r2
min + π4

⎞
⎠ . (9)

Proof. If ub is a stationary solution of (1), then it must solve the stationary problem

u(4) + b r(x)u+ = h(x) in (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0. (10)

The eigenvalues of the stationary weighted eigenvalue problem

u(4) = λ r(x)u in (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0, (11)

coincide with the weighted eigenvalues λm,0 of L, i.e., they are simple, positive and form a sequence

0 < λ0,0 < λ1,0 < · · · → +∞
with the property λm,0 ≥ (m + 1)4π4 for any m ∈ N ∪ {0}.

Using similar arguments as in the PDE case above (e.g., the Banach contraction principle), we can
see that b > −λ0,0 is the sufficient condition for the existence of a unique (weak) solution ub of (10). For
h ∈ C([0, 1]), the standard regularity arguments imply that ub ∈ C4([0, 1]).

If we consider a nonnegative right-hand side h = h(x) ≥ 0, h(x) �≡ 0, then b > −λ0,0 is also the
necessary condition for solvability of (10) (cf. Proposition 6). Moreover, we can exploit results of [5,6]
and [17] to obtain the strict positivity of ub. Indeed, if ub is a positive solution of (10), then it also solves
the linear problem

u(4) + b r(x)u = h(x) in (0, 1),

u(0) = u(1) = u′′(0) = u′′(1) = 0. (12)

Since the weight function r(x) does not change sign, we can exploit [17, Corollary 2.1] and obtain the
existence of λM such that ub is strictly positive for any b ∈ (−λ0,0, λM ].

The estimates (8), (9) for −λ0,0 and λM , respectively, are obtained by employing conditions from
[5, Theorem 4] and [6, Theorem 4]. Note that in view of [5, Remark 6], we have to guarantee that
b ≤ c0 + hmin

hmax
2π

√
π4 + c0 and b ≤ c0 + hmin

hmax
2π

√
π4 + brmin at the same time. The bound from the first

inequality is denoted by bM1, and the largest value which satisfies the latter inequality is denoted by bM2

(see (8), (9)). �
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Fig. 1. Stationary solutions of (10) for the constant stiffness b = 800 (a) and b = 1500 (b), and also for the non-constant
stiffness b = 1500 r(x) (c) and b = 2500 r(x) (d), where r(x) = cos4(2πx). In all cases, h(x) is a positive, piecewise constant
function. In particular, h(x) = 108 for x ∈ [0, 0.05] and h(x) = 104 for x ∈ (0.05, 1]. Note that the solution u(x) in (b) and
(d) changes sign (see also the zoomed picture in (d) corresponding to the interval (0.8, 1) on the x-axis)

Remark 9. (i) Relation (8) provides the estimate of the principal weighted eigenvalue λ0,0. Obviously,

λ0,0 = π4 for r(x) ≡ 1, and λ0,0 approaches infinity when
∫ 1

0
r(x) dx tends to zero.

(ii) In fact, [17, Corollary 2.1] ensures the existence of a unique “universal” bound λU ≥ c0 such that ub

is strictly positive for any b ∈ (−λ0,0, λU ] and any right-hand side h(x) ≥ 0, h �≡ 0. For a particular
given h and r, the positivity interval can be enlarged up to the value λM estimated as in (8), (9).

(iii) For the constant weight r(x) ≡ 1, we have λ0,0 = π4 and λU = c0. That is, for an arbitrary h(x) ≥ 0,
ub is strictly positive whenever −π4 < b ≤ c0. For b > c0, we can find h ≥ 0 such that the solution
of (10) changes sign (for illustration, see Fig. 1a, b, and cf. [16]). As Lemma 8 shows, the positivity
interval for b is stretched by introducing a non-constant weight r(x) (see Fig. 1c, d). However, the
non-constant weight results in a slightly larger amplitude of ub (compare Fig. 1b and c).

(iv) For the constant weight r(x) ≡ 1 and constant right-hand side h(x) ≡ 1, ub is strictly positive even
for any b > −π4 (see [13]). This means that the estimates bM1, bM2 are not optimal. Unfortunately,
for non-constant weights and constant right-hand sides, no extension is known.
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5. Bifurcation results

Let h �≡ 0 be a nonnegative time-independent right-hand side and ub a strictly positive stationary solution
of (1) (or (10), respectively). Let us put u := ub + w with w ∈ H. Using the equality u+ = u + u−, the
equation (7) can be written in the equivalent form

L(ub + w) + b(ub + w) + b(ub + w)− = g.

Moreover, since ub is positive, we have Lub + bub = g and we end up with

Lw + bw + b(ub + w)− = 0. (13)

Applying L−1 on both sides of (13) we obtain

w + bL−1w + bL−1(ub + w)− = 0. (14)

Let us denote E := (−λ0,0, λM ) × H. Using completely the same arguments as in [4, Lemma 2.3,
Lemma 2.4], we can prove the following statement.

Lemma 10. The operator N : E → H defined by N(b, w) := bL−1(ub + w)− is compact. Moreover, given
any compact subinterval J of (−λ0,0, λM ), the limit

lim
‖w‖→0

N(b, w)

‖w‖ = 0

is uniform with respect to b ∈ J .

Now, we are ready to formulate the main bifurcation result.

Theorem 11. Every b = −λm,n ∈ (−λ0,0, λM )∩σr(−L), where λm,n has an odd multiplicity, is a point of

global bifurcation of (14). That is, there exists a continuum of solutions Cm,n in E, (−λm,n, 0) ∈ Cm,n,
such that at least one of the following properties holds:

(i) Cm,n is not a compact set in E,
(ii) Cm,n contains an odd number of points (−λ, 0) ∈ E, where λ �= λm,n is an eigenvalue of L of odd

multiplicity.

Moreover,

projRCm,n ⊂ (−λ0,0,−λp] ∪ [−λq,+∞), (15)

where projRCm,n := {b ∈ R; (b, w) ∈ Cm,n} and λp, λq are the smallest positive and the largest negative
eigenvalues of L.

In addition, for λm,n simple, Cm,n consists of two subcontinua C+
m,n, C−

m,n bifurcating from the point
(−λm,n, 0) in the directions of the corresponding eigenfunctions ϕm,n, and −ϕm,n, respectively, such that

C+
m,n ∩ C−

m,n ∩ B�(−λm,n, 0) = {(−λm,n, 0)} and C±
m,n ∩ ∂B�(−λm,n, 0) �= ∅

for sufficiently small 	 > 0.

Proof. Due to Proposition 8 and Lemma 10, the operator equation (14) represents the classical bifurcation
scheme in E, i.e.,

(
I + bL−1 + N(b)

)
w = 0,

where I is the identity mapping, bL−1 is a linear compact operator (see Sect. 2) and N(b) has the
appropriate limit behavior (see Lemma 10). As a consequence of that, we may employ the Rabinowitz
theorem [15] directly (see also, e.g., [3]) and the result follows. Finally, relation (15) is a consequence of
Proposition 4 and Proposition 6. �
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α

β

Fig. 2. Known parts of the Fuč́ık spectrum for L with r(x) ≡ 1. The red line marks the set −b < λ0,0. The intersections
of the Fuč́ık curves with the red line correspond to possible blowup values, whereas, in the grey inadmissible areas, none of
the curves may appear

Remark 12. The set (−λ0,0, λM ) ∩ σr(−L) is indeed non-empty for r ≡ 1, λM = c0, as it contains,
e.g., the points −λ0,1,−λ0,2, ...,−λ0,32. Moreover, since the interval (−λ0,0, c0) is bounded, relatively
“small” and contains zero, it can contain at most one value −λm,n0

for any sufficiently large m. Here,
either n0 = �(m + 1)2π2�, or n0 = �(m + 1)2π2�. Notice that already for m = 7, the distance between
(m + 1)4π4 − �(m + 1)2π2� and (m + 1)4π4 − �(m + 1)2π2� is greater than the length of (−λ0,0, c0).
When r �≡ 1, the situation gets more complicated, since not only the eigenvalues, but also the interval
bounds are shifted away from zero, and hence, the number of elements in (−λ0,0, λM ) ∩ σr(−L) cannot
be specified.

Remark 13. Notice that if w ∈ C1(Ω), then for any λm,n simple there exists s = s(λm,n) such that
(b, w) ∈ Cm,n ∩ Bs(−λm,n, 0) implies b = −λm,n and w = cϕm,n with some c ∈ R small enough. Indeed,
since ubk

is strictly positive, every (b, w) ∈ Cm,n∩Bs(−λm,n, 0) with s small enough satisfies (ub+w)− = 0
in Ω and (14) reduces to a linear eigenvalue problem.

For the next property, we need the so-called Fuč́ık spectrum Σ(L) of the operator L, which is defined
as

Σ(L) = {(α, β) ∈ R2 : Lu = αu+ − βu− has a non-trivial solution u}.

Proposition 14. If a bifurcation from infinity of (14) occurs in E, i.e., if there exists a sequence (bn, wn) ⊂
E such that (14) holds with (b, w) = (bn, wn) for any n ∈ N, and bn → b0, ‖wn‖ → ∞, then necessarily
(−b0, 0) ∈ Σ(L).

Proof. Dividing (14) with b = bn, w = wn by ‖wn‖ and denoting vn = wn/‖wn‖, we obtain

vn + bnL−1vn + bnL−1

(
ubn

‖wn‖ + vn

)−
= 0.

Since ubn
∈ C4([0, 1]), we have ubn

/‖wn‖ → 0. Boundedness of (vn) ⊂ H implies vn ⇀ v in H, and due
to compactness of L−1 and continuity of (·)−, we obtain vn → v in H and

v + b0L
−1v + b0L

−1v− = 0

which is equivalent to
Lv + b0v

+ = 0, ‖v‖ = 1, (16)
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i.e., v is a non-trivial solution of (16), and therefore (−b0, 0) ∈ Σ(L). �

Remark 15. Locally, the Fuč́ık spectrum Σ(L) of the beam operator L consists of a finite number of
decreasing curves crossing at (λ, λ), λ ∈ σr(L). These curves are symmetric with respect to the diagonal
α = β, the trivial part of Σ(L) is the cross (α − λ0,0)(β − λ0,0) = 0 and no parts of Σ(L) are located
in the squares between two consecutive eigenvalues and in the area (α − λ0,0)(β − λ0,0) < 0 (see [1,9]
and Fig. 2 for illustration). Hence, (−b0, 0) ∈ Σ(L) implies b0 > −λ0,0 which is in correspondence with
Proposition 6.

Unfortunately, the complete description of the structure of Σ(L) (or at least its intersection with the
line β = 0) and hence the knowledge of possible blowup values of the stiffness b is not known even for
the case of the constant weight r(x) ≡ 1. Some partial analytical and numerical results can be found in
[14] (see also references therein).

Remark 16. The complete description of Σ(L) (including multiplicities of the eigenvalues) would enable
to determine the topological degree of the operator u �→ u − L−1(αu+ − βu−) in between the Fuč́ık
curves and thus to confirm or disprove the existence of bifurcations from infinity as well as to answer the
existence questions concerning the problem (1) with a time-dependent right-hand side h.
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Abstract
In this paper, we study sufficient conditions for the (strict) inverse-positivity of the
linear fourth order operator corresponding to the one-dimensional beam equation with
a spatially variable coefficient. We use a modification of results obtained by the oper-
ator reduction technique introduced by Schröder and show that the extrema of the
coefficient can go beyond the originally derived bounds significantly.

Keywords Fourth order operator · Positive solutions · Inverse-positivity

Mathematics Subject Classification 34L40 · 34B05 · 34B30 · 34L15

1 Introduction

We study the existence of positive solutions of the linear problem

u(iv) + c(x)u = h(x),

u(0) = u(1) = u′′(0) = u′′(1) = 0, (1)

where c = c(x), h = h(x) are continuous functions on [0, 1] and h(x) ≥ 0, h(x) �≡ 0,
x ∈ [0, 1]. Our work is partially motivated by problems which arise during the study
of nonlinear models of suspension bridges (see, e.g., [6] for an overview of such
models), however, with spatially variable stiffness c(x). Specifically, when analyzing
bifurcations of periodic solutions in these models, it is necessary for the linear part of
the bridge equation to have a strictly positive stationary solution (cf. [3,9]). For mod-
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1 Department of Mathematics and NTIS, Faculty of Applied Sciences, University of West Bohemia,
Univerzitní 8, 301 00 Plzeň, Czech Republic
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els which consider the homogeneous hanger1 placement density, i.e, c(x) ≡ c > 0,
and a positive constant load, McKenna and Walter proved an important result in [12]
regarding positivity of the stationary solution. However, when considering a spatially
non-homogeneous hanger stiffness c(x) that better reflects the naturally discrete distri-
bution of the suspension bridge hangers, the positivity of the corresponding stationary
solution is not guaranteed in general. To improve results known so far in this field we
revive more than half a century old tools of the inverse positive operator theory.

We set

X = {u ∈ C4[0, 1] : u(0) = u(1) = u′′(0) = u′′(1) = 0}

and consider a differential operator Lc : X → C[0, 1] defined by

Lcu(x) := u(iv)(x) + c(x)u(x). (2)

Using this notation, (1) can be written as

Lcu = h. (3)

Definition 1 We say that Lc is strictly inverse positive (SIP for short) on X if any
solution u ∈ X of (3) with an arbitrary nonnegative nontrivial right-hand side h ∈
C[0, 1] is strictly positive, i.e., u > 0 in (0, 1) and u′(0) > 0, u′(1) < 0.

In the 1960s, J. Schröder was among the first authors to investigate the SIP property
by using the method of reduction, i.e., decomposing a general fourth order differential
operator into two operators of the second order (see, e.g., [13] and [14]). He also
derived bounds for either constant or non-constant coefficient c, which guarantee the
SIP property of Lc. Many authors continued his work later. The constant coefficient
casewas covered in detail by [10] and also [16], where the same boundswere obtained,
however, by using a different technique. Concerning the non-constant coefficient case,
many papers, e.g. [1], or more recently, [2,4], or [5], demonstrated that the extrema
of c(x) can in fact cross the bounds which were earlier obtained by Schröder and his
followers.

In this paper, we use the results of Schröder’s operator reduction, and, by applying
it more precisely for the needs of non-constant coefficients, we are able to extend the
SIP interval, i.e., allowing the maximum and/or minimum of c to reach larger values.
First of all, let us cite an important result, which serves as a starting point for our
improvements.

Proposition 1 [14, Proposition 4.3] If there exist functions ϕ,ψ ∈ C4[0, 1] such that
ϕ,ψ > 0 in (0, 1), with

ϕ(1) = ψ(0) = 0, ϕ′′(1) ≥ 0 and ψ ′′(0) ≥ 0, (4)

ϕ′(1) < 0, ψ ′(0) > 0, (5)

1 In the pioneering paper [11] and following literature, the authors use also the term “cable-stays”.
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ϕ(iv) + cϕ ≤ 0, ψ(iv) + cψ ≤ 0 in [0, 1] (6)

and

p := ϕψ ′ − ϕ′ψ ≥ 0 (7)

together with a function z ∈ X such that z ≥ 0 and Lcz ≥ 0, Lcz �≡ 0 then Lc is
strictly inverse-positive.2

The functions ψ , ϕ chosen by Schröder are positive solutions of problems

ψ(iv) + kψ = 0,

ψ(0) = ψ(1) = ψ ′′(0) = 0, ψ ′′(1) = −1, (8)

and

ϕ(iv) + kϕ = 0,

ϕ(0) = ϕ(1) = ϕ′′(1) = 0, ϕ′′(0) = −1, (9)

with constant coefficient k. Combined with z = sin πx , Proposition 1 implies that Lc

is strictly inverse-positive for −π4 < c(x) < c0 (i.e., the original Schröder’s result,
see [14, Proposition 4.4]). In fact, it is possible to show that the upper inequality need
not be strict, as Schröder did also in [14] by more refined, local usage of the method
of reduction.

The threshold values have different meanings. The lower bound−π4 is the opposite
value to the first eigenvalue of L0 and the upper bound c0 is given by c0 = 4κ4 with
κ being the smallest positive solution of tan κ = tanh κ . Moreover, c0 coincides with
the value λ for which the following (3,1) and (1,3) conjugate problems

u(iv) + λu = 0,

u(0) = u′(0) = u′′(0) = 0, u(1) = 0, (10)

and

u(iv) + λu = 0,

u(0) = 0, u(1) = u′(1) = u′′(1) = 0, (11)

possess positive solutions. See [10], [14,16] for the technical (positivity of the Green
function associated with (1)) and also physical (the behaviour of a bending beam with
the considered boundary conditions) arguments.

The weakness of this approach is the usage of “classical” eigenvalues for deter-
mining these bounds for non-constant coefficients. That is why we update Schröder’s
procedure and treat the threshold values in a more precise way, using weighted eigen-
values where possible. The main goal is to show that both of the original bounds,−π4

2 Let us note that [14] uses different notation for order relations.
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and c0, can be crossed if the coefficient c is variable. We treat constant sign coeffients
(i.e., positive or negative definite ones) as well as coefficients changing sign or van-
ishing on a set of non-zero measure (i.e., the indefinite and semidefinite ones). For
more details, see Theorems 1, 2 and Corollary 1. For simplicity, we split checking the
assumptions of Proposition 1 into several lemmas in Sect. 3. The improvement rate of
obtained results is demonstrated in a series of computations in Sect. 5.

2 Preliminaries

Throughout the text, we consider c = c(x), h = h(x), r = r(x) and q = q(x) to be
continuous functions on [0, 1]. Moreover, we assume

1. h ≥ 0, h �≡ 0,
2. q ≥ 0,
3. 0 ≤ r ≤ 1, r �≡ 0,

for x ∈ [0, 1]. That is, both h and r can vanish on subintervals of [0, 1], but they are
positive on a set of non-zero measure.

We consider a differential operator Lq : X → C[0, 1] in the sense of (2), and, for
the sake of brevity, if q ≡ 0, we write L instead of L0.

As usual, we say that λ is a (weighted) eigenvalue of Lq with the weight function
r if there exists a nontrivial solution u ∈ X of

Lqu = λru.

We speak about the principal eigenvalue, if (at least one) corresponding eigenfunction
is positive in (0, 1). Due to non-negativity of q and symmetry of Lq (with respect to the
scalar product in the spaceW 2,2(0, 1)∩W 1,2

0 (0, 1), cf. [5] and Sect. 4), all its weighted
eigenvalues are real and positive, and for the first one, the following statement holds.

Lemma 1 The first (weighted) eigenvalue of Lq with the (semidefinite) weight r —
denoted by λq,r — satisfies

λq,r ≥ λ0,r ≥ λ0,1 = π4

with equalities only for r ≡ 1 and q ≡ 0.

Proof The first inequality λq,r ≥ λ0,r follows directly from the fact that

λq,r = inf

{∫ 1

0
((u′′)2 + qu2);

∫ 1

0
ru2 = 1, u ∈ W 2,2(0, 1) ∩ W 1,2

0 (0, 1)

}
.

For any semidefinite weight r , the first eigenvalue λ0,r of L is simple and the principal
one with the positive eigenfunction u ∈ X (cf., e.g., [15]). For r ≡ 1, we have
λ0,1 = π4 and u(x) = sin πx . Multiplying Lu = u(iv) = λ0,r ru by sin πx and
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integrating over (0, 1), we get

λ0,r = π4

∫ 1
0 u sin πx∫ 1
0 ru sin πx

≥ π4 (12)

with the equality only for r ≡ 1. 
�
For other spectral properties of Lq (or L , respectively), see [7,8,15]. For more

information concerning dependence of λ0,r on the weight function r , see Sect. 5.
As a consequence we obtain that the problem Lqu + kru = h is uniquely solvable

for any k > −λq,r .
To deal with the upper bound of the SIP interval, we need to work with operators

corresponding to auxiliary (3,1) and (1,3) conjugate boundary value problems (see,
e.g., [2] and [18].) Let us put

X3,1 = {u ∈ C4[0, 1] : u(0) = u′(0) = u′′(0) = u(1) = 0},
X1,3 = {u ∈ C4[0, 1] : u(0) = u(1) = u′(1) = u′′(1) = 0},

and consider L3,1 : X3,1 → C[0, 1] and L1,3 : X1,3 → C[0, 1] defined by

L3,1u = L1,3u = −u(iv).

The following statement concerns the principal eigenvalues of L3,1 and L1,3. Let
us denote these by �r and �′

r , respectively.

Lemma 2 Both the operators L3,1, L1,3 have the same principal eigenvalue with
respect to the weight function r , that is, �r = �′

r , which is positive and it is the
smallest eigenvalue in absolute value. Moreover, it satisfies

�r ≥ �1 = c0

with the equality only for r ≡ 1.

Proof The existence of the principal eigenvalue �r of L3,1 and the corresponding
positive eigenfunction u ∈ X3,1 is proved in [17], together with the property that �r

is the inverse of the spectral radius of L3,1, i.e., it is positive and the smallest eigenvalue
in absolute value.

Similarly, we obtain �′
r as the principal eigenvalue of L

1,3 with the positive eigen-
function v ∈ X1,3. Multiplying the equality L3,1u = −u(iv) = �r ru by v and
integrating over (0, 1) results in

(�′
r − �r )

∫ 1

0
ruv = 0

and hence �′
r and �r coincide.
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Now, let w ∈ X1,3 denote the positive eigenfunction of L1,3 corresponding to �1
with r(x) ≡ 1, i.e., L1,3w = �1w. Notice that this problem coincides with (11) and
�1 = c0. Multiplying L3,1u = �r ru by w, we obtain the estimate

�r = c0

∫ 1
0 uw∫ 1
0 ruw

≥ c0 (13)

with the equality only for r ≡ 1. 
�
For more information concerning dependence of �r on the weight function r , see
Sect. 5.

3 Positive semidefinite case

To investigate the SIP property of Lc, we start with the positive semidefinite case, i.e.,
through this section, we consider

c(x) = kr(x) ≥ 0 with k ≥ 0 and 0 ≤ r ≤ 1.

Thus, if r attains the value 1, the parameter k coincides with the maximum value of c
on [0, 1].

Now, let ϕ,ψ be the solutions of the boundary value problems

ϕ(iv) + krϕ = 0,

ϕ(0) = ϕ(1) = ϕ′′(1) = 0, ϕ′′(0) = −1, (14)

and

ψ(iv) + krψ = 0,

ψ(0) = ψ(1) = ψ ′′(0) = 0, ψ ′′(1) = −1, (15)

respectively. Notice that for k ≥ 0 both problems (14), (15) are uniquely solvable.
Indeed, puttingψ = ψh+hwith h(x) = 1

6 (x−x3), (15) is equivalent to Lψh+krψh =
−krhwhichhas a unique solution for any k ≥ 0. (In fact,wehave the unique solvability
for k > −λ0,r .) Similarly for (14).Hence, bothproblems (14), (15) canbe reformulated
as initial value problems with unique solutions ϕ and ψ that depend continuously on
the parameter k.

Lemma 3 Let �r be the principal eigenvalue of L3,1 and L1,3, respectively, with the
(semidefinite) weight r . Then for any k ∈ [0,�r ], both the solutions of (14), (15)
satisfy ϕ, ψ > 0 in (0, 1). Moreover, ψ ′(0) > 0, ϕ′(1) < 0 for k ∈ [0,�r ), and
ψ ′(0) = ϕ′(1) = 0 for k = �r .

Proof For k = 0, we have trivially ψ = h = 1
6 (x − x3), which is strictly positive in

(0, 1). Since ψ depends continuously on k, we can assume that there exists k0 > 0
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and x0 ∈ [0, 1] such that ψ is strictly positive for any k ∈ [0, k0) and ψ solving (15)
with k = k0 satisfies ψ(x0) = ψ ′(x0) = 0. Multiplying (15) by ψ and integrating by
parts over (0, x0), we obtain

∫ x0

0
(ψ ′′)2 + k0

∫ x0

0
rψ2 = 0.

Hence, x0 = 0 and ψ coincides with a positive eigenfunction of L3,1 corresponding
to λ = k0 = �r . The analogous result holds for the solution ϕ of (14). 
�
Lemma 4 Let k ∈ [0,�r ] be arbitrary and ϕ, ψ be the positive solutions of (14),
(15), respectively. Then p := ϕψ ′ − ϕ′ψ is positive in (0, 1) as well, and p(0) =
p′(0) = p(1) = p′(1) = 0.

Proof The boundary values of ϕ,ψ imply directly p(0) = p(1) = 0, and since

p′ = ϕψ ′′ − ϕ′′ψ,

we have also p′(0) = p′(1) = 0. Further, multiplying (15) by ϕ and integrating over
the interval (0, x), x ∈ (0, 1], we obtain the identity

ϕ′ψ ′′ − ϕ′′ψ ′ = ψ ′′′ϕ − ψϕ′′′ + ψ ′(0). (16)

Hence,

p′′ = ϕ′ψ ′′ + ϕψ ′′′ − ϕ′′′ψ − ϕ′′ψ ′ = 2(ψ ′′′ϕ − ψϕ′′′) + ψ ′(0). (17)

Thus, p′′(0) = p′′(1) = ψ ′(0). For k ∈ [0,�r ), ψ ′(0) > 0 and hence p is positive
close to the end points of [0, 1].

For k = �r being the principal eigenvalue of L3,1 and L1,3, ψ ′(0) = 0. Differen-
tiating (17) we obtain

p′′′ = 2(ψ ′′′ϕ′ − ψ ′ϕ′′′)

and p′′′(0) = ψ ′′′(0)ϕ′(0) > 0, p′′′(1) = −ψ ′(1)ϕ′′′(1) < 0. (Notice that signs of
ψ ′, ψ ′′′, ϕ′, ϕ′′′ in the end points follow from the positivity of ψ , ϕ and the boundary
conditions.) Hence, p is positive close to the end points of [0, 1] also in the case
k = �r .

For k = 0, we have trivially ϕ = 1
6 x(x − 1)(x − 2), ψ = 1

6 (x − x3) and hence
p = 1

12 x
2(x − 1)2 > 0 in (0, 1). To prove that p > 0 in (0, 1) for any k ∈ [0,�r ], we

argue via contradiction. Let us assume that p changes sign for some k ∈ (0,�r ]. Since
ϕ,ψ depend continuously on k, there must exist values k0 ∈ (0,�r ] and x0 ∈ (0, 1)
such that p(x0) = p′(x0) = 0 and p′′(x0) ≥ 0.

Assumption p(x0) = 0 implies ψ ′(x0) = ψ(x0)
ϕ(x0)

ϕ′(x0), similarly, p′(x0) = 0

implies ψ ′′(x0) = ψ(x0)
ϕ(x0)

ϕ′′(x0). Hence, ϕ′ψ ′′ − ϕ′′ψ ′|x=x0 = 0, the identity (16)
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results in ψ ′′′ϕ − ψϕ′′′|x=x0 = −ψ ′(0) and

p′′(x0) = −ψ ′(0).

For k ∈ [0,�r ) this means p′′(x0) < 0, a contradiction. For k = �r , we have
p′′(x0) = 0. But (17) implies ψ ′′′(x0) = ψ(x0)

ϕ(x0)
ϕ′′′(x0), and since ψ , ϕ solve the same

equation, ψ ≡ ψ(x0)
ϕ(x0)

ϕ for all x ∈ [0, 1]. But this is a contradiction with ψ ′′(0) = 0 �=
−1 = ϕ′′(0). 
�

Now, we are ready to employ Proposition 1.

Theorem 1 Let �r be the principal eigenvalue of L3,1 (and L1,3, respectively) with
the weight function r . Then Lc with c(x) = k r(x) is strictly inverse-positive whenever
0 ≤ k < �r .

Proof Obviously, the functions ϕ, ψ defined as unique solutions of (14), (15), respec-
tively, satisfy the assumptions (4) and (6) of Proposition 1. Moreover, due to Lemma
3 and Lemma 4, the assumptions (5), (7) are satisfied as well for any k ∈ [0,�r ).
Similarly as in [14], we can take z(x) = sin πx as the function z ∈ X satisfying z ≥ 0,
Lcz ≥ 0, Lcz �≡ 0. 
�

4 Negative semidefinite and indefinite cases

Now, we can extend our considerations to the cases of non-positive coefficients c and
to coefficients c changing sign in [0, 1]. That is, we consider

c(x) = kr+(x) − lr−(x)

with k, l ≥ 0 and r± being the weight functions, i.e., 0 ≤ r± ≤ 1 and r± �≡ 0.
Notice that if r+r− ≡ 0, we have kr+ = c+ (the positive part of c) and lr− = c−
(the negative part of c). Using this notation, (3) is equivalent to

Lkr+u = lr−u + h. (18)

Theorem 2 Let 0 ≤ k < �r+ . Then Lc with c = kr+ − lr− is strictly inverse positive
whenever 0 ≤ l < λkr+,r− .

Proof Obviously, (18) has a unique solution for any h whenever l < λkr+,r− (cf.
Lemma 1). In order to show that λkr+,r− is also the threshold value for positivity of
the solution, we use successive iterations. Let us define

Lkr+un+1 = lr−un + h, with u0 ≡ 0 (19)

(cf. [5]). Note that the sequence (un) is monotone increasing. Indeed, the assumption
0 ≤ k < �r+ implies that Lkr+ is SIP, and Lkr+(un+1 − un) = lr−(un − un−1), i.e.,
for any n ∈ N, un > un−1 implies un+1 > un and u1 > u0 ≡ 0.

123



Extending the threshold values for inverse-positivity of a…

To prove the convergence of (un), we have to pass to weak formulation. Let us
denote H := W 2,2(0, 1) ∩ W 1,2

0 (0, 1) and recast (18) as

∫ 1

0
u′′v′′ +

∫ 1

0
kr+uv =

∫ 1

0
lr−uv +

∫ 1

0
hv, (20)

for u ∈ H and any v ∈ H . Since kr+ is nonnegative, the left-hand side of (20) has
the property of the scalar product in H . By introducing the operator Sr− : H → H ,
(Sr−u, v) = ∫ 1

0 r−uv, and h∗ ∈ H , (h∗, v) = ∫ 1
0 hv, we can write (20) as

u = l Sr−u + h∗.

Similarly, (19) can be written as

un+1 = l Sr−un + h∗, u0 = 0. (21)

According to [5], if l < ‖Sr−‖−1, the sequence (un) ⊂ H is bounded. Its convergence
to a strictly positive weak solution u ∈ H is ensured by its monotonicity and the
compactness of Sr− . Standard regularity argument for ODEs guarantees that u is also
a strictly positive solution of (18) in X . For further details, see the proof of Theorem
4 in [5].

Since Sr− is a normal bounded operator, we have ‖Sr−‖ = μ with μ being the
largest eigenvalue of Sr− . That is Sr−u = μu, or equivalently,

∫ 1

0
r−uv = μ

(∫ 1

0
u′′v′′ +

∫ 1

0
kr+uv

)

for any v ∈ H . Thus, 1/μ coincides with the minimal eigenvalue of Lkr+ with the
weight r−, i.e., ‖Sr−‖−1 = λkr+,r− . 
�

Using Theorems 1 and 2, the SIP criteria for Lc with generally indefinite coefficient
c can be also summarized as follows.

Corollary 1 The operator Lc is strictly inverse positive for any c ∈ C([0, 1]) satisfying

−λc+,r− < c(x) < �r+ ,

where

• c±(x) are the positive and negative parts of c(x),
• r±(x) are their “profiles”, i.e., r±(x) = c±(x)/max[0,1](±c(x)) (or r± ≡ 0, if
max[0,1](±c(x)) = 0),

• λc+,r− is the first eigenvalue of Lc+ with respect to the weight r−,
• �r+ is the principal eigenvalue of L3,1 (and L1,3) with respect to the weight r+.
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5 Eigenvalue estimates

Dependence of the principal eigenvalue on the semidefinite weight function r can be
partially quantified using estimates introduced in [17,18] and [19], which incorporate
the Green function corresponding to the given linear operator.

Estimates of �r . Let us first consider the operator L3,1 and its principal eigenvalue
�r . Let G3,1(x, y) denote the corresponding Green function, i.e.,

L3,1u = h ⇔ u(x) =
∫ 1

0
G3,1(x, y)h(y)dy.

We have (cf. [17, Theorem 3.1.] or [19])

G3,1(x, y) =
⎧⎨
⎩

x3(1−y)3−(x−y)3

6 x ≥ y,

x3(1−y)3

6 x < y,
(22)

with 0 ≤ x, y ≤ 1. The following lemma is a direct consequence of results in [18] (or
[19], respectively).

Lemma 5 (Webb and Lan [18]) Let G3,1 be the Green function of L3,1 given by (22).
Then m ≤ �r ≤ M, where

m =
(

sup
0≤x≤1

∫ 1

0
G3,1(x, y)r(y)dy

)−1

,

M = inf
0≤a<b≤1

(
inf

a≤x≤b

∫ b

a
G3,1(x, y)r(y)dy

)−1

.

Remark 1 For simplicity, we present Lemma 5 in a specific form for L3,1, but it can
be formulated for a more general class of operators with appropriate integral kernels,
i.e., analogue statements hold also for L1,3 and L itself (see [18] for details).

Notice that the lower bound m suggests how far beyond c0 the SIP property holds
when the weight function is not constant and we are not able to determine the exact
value of�r . For illustration, we use four different non-constant weight functions. The
first one, rSB(x) = cos6(6πx) should resemble hanger placement density of a sus-
pension bridge. The other ones should represent various types of positive semidefinite
weights. These are the “hill” function

rH(x) =
{−16(x − 0.5)2 + 1 for x ∈ [ 1

4 ,
3
4

]
,

0 otherwise

and the pair of “half-parabolas”

rRP(x) =
{
4(x − 0.5)2 for x ∈ [ 1

2 , 1
]
,

0 otherwise,
rLP(x) = rRP(1 − x).
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(a)

x

rSB(x)

�

�

(b)

x

rH(x)

�

�

(c)

x

rLP(x)

�

�

(d)

x

rRP(x)

�

�

Fig. 1 Overview of used weight functions. In the picture (a), we show the function rSB(x) = cos6(6πx),
which should illustrate the placement of hangers of a suspension bridge. In pictures (b–d), we present
examples of semidefinite weights

See Fig. 1 for illustration. The following table reveals the corresponding valuesm and
M computed inMathematica.

Weight m M

1 227.56 2783.13
rSB(x) 741.79 8881.62
rH(x) 502.53 4415.23
rLP(x) 1109.19 114,749.00
rRP(x) 11,590.90 29,153.50

Notice that for r ≡ 1, the value m is quite far from the real eigenvalue �1 = c0 ≈
950.884. This gives us hope that for non-constant weights r , the real values of �r

could be much higher than their lower bounds as well. On the other hand, we can see
that m for rLP and especially for rRP cross the value c0 significantly.

Another improvement was suggested in [19] by an iteration technique. Let us con-
sider functions θ0, σ0 being a priori bounds for the eigenfunction u corresponding to
�r , i.e., σ0 ≤ u/ ‖u‖C[0,1] ≤ θ0. Then we can define sequences (σn) and (θn) by

θn+1(x) =
∫ 1

0
G3,1(x, y)r(y)θn(y)dy, σn+1(x) =

∫ 1

0
G3,1(x, y)r(y)σn(y)dy,

123



G. Holubová , J. Janoušek

and values

mn :=
(

sup
0≤x≤1

θn(x)

)− 1
n

and Mn :=
(

sup
0≤x≤1

σn(x)

)− 1
n

.

The next assertion yields improved estimates for �r .

Lemma 6 (Yang [19]) Let θn, σn, mn and Mn be defined as above. Then for each
n ∈ N, we have mn ≤ �r ≤ Mn.

Obviously, we can choose θ0 ≡ 1 and then m1 coincides with m given by Lemma 5.
Finer estimates for both θ0 and σ0 are introduced in [19].

The following table illustrates the significant improvement of lower bounds of
�r given by iterations mn for the same weight functions as considered above. For
illustration, we show the first value mn such that mn is significantly larger than c0.

Weight n mn

rSB 4 1950.29
rH 4 1050.31
rLP 3 6339.80
rRP 1 11,590.90

Remark 2 In fact, we have �r > 11,590.90 for both rLP and rRP. Indeed, since
rLP(x) = rRP(1 − x) and G3,1(x, y) = G1,3(1 − x, 1 − y), then also

∫ 1

0
G3,1(x, y)rRP(y) dy =

∫ 1

0
G1,3(x, y)rLP(y) dy,

i.e, mn for rRP and L3,1 are the same as mn for rLP and L1,3. Since both conjugate
problems for the same weight have the same principal eigenvalue (see Lemma 2), it
is possible to compute lower bounds mn of �r for L3,1 with both rRP and rLP and
choose the better estimate. Similarly, for any assymetrical weight r , we may compute
the mn-bounds for both r(x) and r(1 − x) and use the better ones.

Estimates of λ0,r . Let us now consider the symmetric operator L on X and its eigen-
value λ0,r . The corresponding Green function takes the form (see, e.g., [10], Section
6)

Gsym(x, y) =
{ 1

6 x(1 − y)(1 − x2 − (1 − y)2) for x ≤ y,

1
6 y(1 − x)(1 − y2 − (1 − x)2) otherwise

with 0 ≤ x, y ≤ 1. We can easily verify that Gsym together with any semidefinite
weight function r satisfy again the assumptions (C1)–(C3) of [17] and/or [18]. Hence,
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λ0,r is the principal (weighted) eigenvalue of L andwe applyYang’s iteration technique
and analogy of Lemma 6 to obtain the lower (and upper) bounds of λ0,r with respect
to r .

We again consider the same illustrative weight functions and using Mathematica,
we get the following values. Recall that for r ≡ 1, λ0,1 = π4 ≈ 97.409.

Weight m1 m2 m3

1 76.80 83.14 87.45
rSB 248.55 267.66 295.80
rH 154.37 156.70 169.96
rLP 808.09 1052.14 1129.67
rRP 808.09 1156.14 1220.50

Note that the first lower bound m1 is the same for both half-parabolas. This is to be
expected due to the symmetry of Gsym and θ0. However, θ1 is not symmetric and so
the higher iterations of mn do not coincide.

Remark 3 The value of λ0,r is governed by the product ru sin πx (see (12)) and thus
the behaviour of r near the centre of [0, 1] affects it the most. Hence, functions that
are “concentrated” around 0.5 (see, e.g., rH) lead to smaller improvements, than, e.g.,
semidefinite parabolas like rRP. As for the conjugate problem, �r is affected in a
similar way, that is, by the product of the corresponding conjugate eigenfunctions uw

(see (13)). Note that the product uw, its first and second derivatives vanish at x = 0
(or x = 1) and hence the behaviour of r is also less important close to the boundary
of [0, 1].
Comparison with previous results. The SIP bounds crossing the original Schröder’s
values −π4 and c0 can already be found in [4] and [5]. However, estimates therein
omit any details concerning the profile of c(x) and—in the case of the upper bound—
depend also on the extremal values of the right-hand side, specifically on the ratio
min h(x)
max h(x) for x ∈ [0, 1]. Even considering the best-case scenario, i.e., a constant h, our
new estimates bring a significant improvement over [4] and [5].

According to Corollary 1, the SIP property is guaranteed for −λc+,r− < c < �r+
with c(x) = c+(x)− c−(x) = kr+(x)− lr−(x). Let us first focus on the upper bound
�r+ and consider r+ to have the same form as the four examples of weights above
(cf. Fig. 1). For a constant right-hand side, [4] provides the estimate �r+ ≥ mold =
c0 + 2π3 ≈ 1012.89 regardless of the profile of r+. The comparison with our new
estimates is in the following table.
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Weight mold mnew

rSB 1012.89 1950.29
rH 1050.31
rLP 6339.80
rRP 11,590.90

Concerning the lower bound, we have λc+,r− ≥ λ0,r− (cf. Lemma 1). Again, let us
consider the same four examples of weights, this time standing for the profile of r−.
The estimate based on [5] reads

λ0,r− ≥ mold = 4π2∫ 1
0 r−(x) dx

.

Again, we provide the following table for comparison with our new results.

Weight mold mnew

1 39.48 87.45
rSB 126.33 295.80
rH 118.44 169.96
rLP 236.87 1129.67
rRP 236.87 1220.50

In short, the new estimates sometimes bring several times larger interval of strict
inverse-positivity valid for an arbitrary continuous right-hand side.
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