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ABSTRACT This article presents an intelligent and accurate framework for fault diagnosis of induction
motors using light gradient boosting machine (LightGBM). The proposed framework offers promising
generalization ability when the testing data contains new unseen operating conditions unavailable during
the training process. After the acquisition of vibration signals and feature extraction in multiple domains,
we perform an iterative feature selection (FS) approach by utilizing a modified version of recursive feature
elimination (RFE) and the features’ importance scores obtained by LightGBM. To prevent overfitting and
subsequent selection bias, an outer resampling loop encompasses the whole process of our RFE-LightGBM
algorithm.Moreover, instead of the conventional resampling methods based on K-fold cross-validation (CV)
or leave-one-out CV (LOOCV), we use a new scheme called leave-one-loading-out CV (LOLO-CV). Lever-
aging LOLO-CV, the proposed FS method identifies the optimal feature subset, making the fault diagnosis
robust under changing operating conditions. Then, the final classification is performed with optimal feature
subset by training a newLightGBMmodel with adjusted hyperparameters employing Bayesian optimization.
Experimental results from two real case studies show that our proposed fault diagnosis framework achieves
accuracies between 98.55% and 100% for various testing scenarios. For example, for the worst-case testing
scenario in the bearing dataset of Case Western Reserve University where the no-load data (0hp) is absent
during the training process and is only used for testing, the testing accuracy of LightGBM classifier before
and after applying the proposed RFE-LightGBM-FS method is 88.04% to 97.23%, respectively. Using the
Bayesian hyperparameter optimization further improves the accuracy to 98.55%.

INDEX TERMS Electrical machines, bearings, fault diagnosis, feature importance, gradient boosting,
hyperparameter optimization, LightGBM, machine learning.

I. INTRODUCTION
Condition monitoring and fault diagnosis of induction
motors (IMs) at incipient stages are critical to decrease main-
tenance costs and tremendous financial losses and avoid the
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long-term shutdown of industrial operations [1], [2]. The
methods developed for the condition monitoring of IMs can
be classified based on the various signals being recorded
and analyzed, e.g., motor vibration, current, acoustic emis-
sion, temperature, and pressure [3]–[5]. Among them, vibra-
tion signal analysis is one of the most reliable, accurate,
and standard methods widely utilized in machinery fault
diagnosis [6]–[9].
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Recently, intelligent data-driven fault diagnosis tech-
niques based on either shallow machine learning (SML) or
deep learning (DL) have become emerging in industry and
academia [10], [11].

In the SML-based methods, after data acquisition, sev-
eral handcrafted features must be extracted using signal-
processingmethods. Then the selected features are used in the
final step (fault classification) to train various SML models
such as support vector machine (SVM) [12], Naive Bayes
[13], K-nearest neighbor (KNN) [14], ensemble boosted
trees [15], etc.

The DL-based fault diagnosis employs deep architec-
tures of neural networks (NNs) with many layers. They
enable automatic extraction of abstract and informative
features from the raw input signals and eliminate man-
ual feature extraction requirements [16]. Although the
classification accuracy of DL-based motor fault diagnosis
methods is promising [17]–[19], using black-box models
with few physical perspectives, they cannot provide enough
interpretation about how the system operates well. Moreover,
training deep NNs requires massive data, time, and com-
putational resources, which is not practical in all industrial
sectors [20], [21].

On the other hand, SML models such as SVM have sim-
pler structures and can be trained with fewer computational
requirements [22]–[24]. However, one of the biggest chal-
lenges in SML-basedmethods is dealing with the high dimen-
sionality of the handcrafted features extracted from multiple
domains, which deteriorates the classification accuracy due
to overfitting [25]–[27]. Light Gradient Boosting Machine
(LightGBM) is a recently-developed framework based on
gradient boosting decision tree (GBDT) [28]. Besides its
promising classification performance, LightGBM can rank
and evaluate the feature scores. Feature scores define the total
contribution of each feature to the splitting process of mul-
tiple decision tree learners. The calculation of each feature’s
score is based on the total gain of splits which use that feature
in the structure of decision trees. Hence, using LightGBM as
the classifier, it is also possible to implement an embedded
feature selection (FS) and remove the redundant features that
are not discriminative.

Another critical challenge in intelligent IM fault diagno-
sis methods is the lack of available data for all operational
conditions. Few works in the literature have studied the more
realistic and practical scenarios where the training and testing
data originated from different working conditions, i.e., dif-
ferent loading levels or rotational speeds [29]. Highlighting
this issue, Gangsar et al. [27] showed that when there is a
difference between training and testing data working con-
ditions, the average prediction accuracy of a multi-sensor
SVM-based fault diagnosis system decreases significantly.
It was shown in [27], [30] that the reason for this perfor-
mance degradation is that variational working conditions lead
to a distribution discrepancy between the training and test-
ing feature sets, decreasing the generalization ability of the
fault diagnosis methods. Stief et al. [31] utilized principal

component analysis (PCA) to reduce the dependency of the
extracted features on the loading levels and combined it with a
two-stage Bayesian method to improve the performance gen-
eralization. Although the technique was reported to be effec-
tive in the accurate classification of different types of faults, it
could not accurately discriminate the faults’ severity. Another
powerful approach for solving the distribution discrepancy of
features is applying domain adaptation and transfer learning
methods proposed in [30], [32]–[34]. However, the limitation
of these methods is that they necessitate the availability of
unlabeled data for the newworking conditions. Satisfying this
requirement is not practical in those industrial cases where
neither labeled data nor unlabeled data are available for the
motor’s new working conditions.

Considering the above challenges of intelligent fault diag-
nosis, in this article, we propose an integrated SML-based
framework using LightGBM to enhance the classification
performance in terms of prediction accuracy and general-
ization ability. We used the vibration signals as the inputs
of our fault diagnosis framework and extracted features in
time domain, frequency domain, and time-frequency domain
from the vibration signals obtained by the accelerometers.
Thanks to the innovative techniques employed in LightGBM,
such as gradient-based one-side sampling (GOSS), leaf-wise
tree growth strategy, and histogram-based split finding [28],
the proposed fault diagnosis method obtains high accuracy
and efficient performance. We utilize the feature ranking
capability of LightGBM to sort the features according to their
importance. Then, we combine the feature scores with a mod-
ified recursive feature elimination (RFE) approach to select
the best feature subset. In the proposed RFE-LightGBM-FS,
an outer resampling loop encloses the whole process to avoid
overfitting the training data and the selection bias. In addition,
instead of the conventional resampling methods based on
K-fold cross-validation (CV) or leave-one-out CV (LOOCV),
we introduce a new resampling scheme called leave-one-
loading-out CV (LOLO-CV) to increase the algorithm’s
generalization when test data contains new unseen loading
conditions. The K-fold CV method split the original dataset
randomly into K training and validation sets. LOOCV is
also a special case of K-fold CV, where K is the number
of observations [35], [36]. Therefore, in conventional resam-
pling methods, the data from all the available IM operating
conditions exist in all training sets, and there is high over-
lap between training and validation sets in terms of operat-
ing conditions. In other words, the conventional resampling
methods select the training and validation sets without paying
attention to the operating conditions under which the data
is recorded. The reason is that domain knowledge is not
used in the conventional resampling methods. On the other
hand, LOLO-CV utilizes domain knowledge in dividing the
data into training and validation sets. At each resampling
iteration of the proposed FS strategy using LOLO-CV, all
the data samples belonging to a specific loading level are
excluded from the original training set and create a virtual
validation set. Therefore, each resampling iteration contains
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non-overlapping training and validation sets in terms of load-
ing level. The proposed FS strategy improves the robustness
of selected features against new unseen working conditions
by efficiently utilizing the information in the different work-
ing conditions existing in the original training data. The main
contributions of our work are described in the following
points:

1) A new integrated fault diagnosis framework is pre-
sented, which first uses a basic default LightGBM
model for obtaining the feature scores. In the next step,
a modified RFE containing an outer resampling loop
with a new LOLO-CV scheme is linked to the basic
LightGBM. The LOLO-CV scheme efficiently lever-
ages the information of multiple loading levels existing
in the training set. It makes RFE identify an optimal
feature subset that is robust to new unseen loading
levels. Using RFE with LOLO-CV also leads to omit-
ting the redundant and uninformative features. Finally,
a new optimized LightGBM model is employed to
perform the final classification task.

2) To improve the classification accuracy, we use
Bayesian optimization to determine the most critical
hyperparameters of the final LightGBM model.

3) To evaluate the model’s robustness to limited data
conditions, we build the testing sets using the data at
specific loading conditions which is not included in
the training data. The loading condition specified for
the test data is neither used in FS nor hyperparameter
optimization and is only for final model evaluation.

4) Two real case studies are used to validate the perfor-
mance of the proposed algorithm. Experiments under
different loading conditions prove the effectiveness
and superiority of the proposed framework compared
with the traditional fault diagnosis methods and related
works.

The remainder of this paper begins with the theoret-
ical knowledge of LightGBM in Section II. Section III
presents the proposed fault diagnosis framework includ-
ing the feature extraction in multiple domains and the
proposed RFE-LightGBM FS approach. Section IV focuses
on experimental results and evaluating the proposed
method on two real case studies. The conclusion is given
in Section V.

II. THEORETICAL FOUNDATION OF LIGHTGBM
In this section, the main principles and advantages of the
LightGBM algorithm are clarified. GBDT is an iterative
ensemble model achieving the final strong classification
results by combining multiple base learners (i.e., weak deci-
sion trees) [37]. To improve the performance of the traditional
GBDT, Chen et al. [38] presented XGBoost framework that
supports parallel learning by CPU multi-threading, adds a
regularization term to the loss function to deal with the over-
fitting, and applies the second-order Taylor approximation in
optimizing the objective function.

Having the advantages of XGBoost, LightGBM [28] is a
newer enhanced implementation of GBDT. One of the defects
of XGBoost is using a level-wise tree growth strategy in
which many nodes obtain low splitting gains and increase
the computationswithout improving the accuracy. LightGBM
solves this problem by adopting a leaf-wise methodbeing
faster and more accurate. The leaf-wise method detects the
node with the highest gain at each layer and only splits that
node, growing asymmetrical and deeper trees.

Moreover, LightGBM employs other innovative strategies
that distinguish its performance from XGBOOST, such as
GOSS and histogram-based algorithm of finding the best
split points that are fully described in [28], [39].

Considering the training dataset with M instances and p
features D = {(xi, yi)}Mi=1 , (xi ∈ Rp, yi∈R), the predicted
output of LightGBM model for the i-th sample, ŷi is the
combination of multiple weak decision trees as follows:

ŷi =
N∑
n=1

fn
(
xi; {Rln}L1

)
, (1)

where N is the total number of trees (i.e., number of iter-
ations), and fn is an L-leaf node (terminal node) decision
tree at the n-th iteration that splits the feature space into
L non-overlapping regions {Rln}Ll=1. The region Rln repre-
sents the subset of feature space corresponding to the leaf
node l in the n-th tree. Equation (2) defines fn as follows:

fn
(
x; {Rln}L1

)
=

L∑
l=1

βln1{x ∈Rln}, (2)

where βln is the predicted score associated with the l-th leaf
node, and 1{·} is the indicator function that outputs 1 if the
condition is true and 0 otherwise.

LightGBM trains the trees in an additive process. Let ŷ(k)i
be the predicted output of the i-th sample at the k-th iteration.
The objective function in the k-th iteration is defined as

J (k) =
M∑
i=1

loss
(
yi, ŷ

(k−1)
i + fk

(
xi; {Rlk}L1

))
+�(fk)

(3)

�(fk) = αL +
1
2
λ
∑L

l=1
β2lk . (4)

The term ‘‘loss’’ in (3) is the multi-class logistic loss function
for classification problems [37]. The second part is the regu-
larization term� that prevents the number of leaf nodes L and
the leaf node scores {βlk}Ll=1 from increasing. α and λ are the
corresponding tuning parameters. By using the second-order
Taylor expansion and omitting the constant terms, (3) can be
approximated as

J (k) ≈
M∑
i=1

(
gik fk

(
xi; {Rlk}L1

)
+

1
2
hik f 2k

(
xi; {Rlk}L1

))
+�(fk) , (5)
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where gik and hik are the first-order (gradient) and second-
order (hessian) derivatives of loss function. At each iter-
ation of the training, the optimal L-leaf node tree f ∗k
must be found that minimizes J (k). Therefore, for each
tree, the non-overlapping regions {Rlk}Ll=1 and optimal leaf
node scores

{
β∗lk

}L
l=1 must be obtained. LightGBM adopts

a two-step procedure to carry out this purpose. It firstly fits a
regression tree on the pseudo-residuals r̃esik of the previous
tree (i.e., the negative first derivatives of loss function) as
follows:

r̃esik = −gik = ∂ŷ(k−1)i
loss

(
yi, ŷ

(k−1)
i

)
, i = 1 . . .M

(6)

{Rlk}Ll=1 = L−leaf node regression tree
(
{r̃esik , xi}Mi=1

)
.

(7)

Therefore, {Rlk}Ll=1 is established. By combining (2), (4), (5),
and (7), the objective function can be rewritten as

J (k) ≈
L∑
l=1

∑
i∈Ilk

gik

βlk + 1
2

∑
i∈Ilk

hik + λ

β2lk
+ αL

(8)

Ilk = {i | xi∈Rlk} , (9)

where Ilk is the subset of data instances at the leaf node l
of the k-th tree. By setting the derivative of (8) to zero, the
optimal score of the l-th leaf node β∗lk and the corresponding

minimized objective function J(k)
∗

can be achieved as
follows:

β∗lk = −

∑
i∈Ilk gik∑

i∈Ilk hik + λ
(10)

J (k)
∗

= −
1
2

L∑
l=1

(∑
i∈Ilk gik

)2∑
i∈Ilk hik + λ

+ αL. (11)

Suppose IR and IL are the sample subsets of right and left leaf
nodes after splitting and I = IR ∪ IL is the sample subset
of the original node. The splitting gain (i.e., the reduction of
objective function after the split) is computed as

Gainsplit

=
1
2

[ (∑
i∈IL gi

)2∑
i∈IL hi + λ

+

(∑
i∈IRgi

)2∑
i∈IRhi + λ

−

(∑
i∈I gi

)2∑
i∈I hi + λ

]
− α.

(12)

Higher values of gain are preferable in growing the trees.
When splitting a leaf node, the gains associated with the seg-
mentation points of candidate features are evaluated by (12).
LightGBM selects the feature showing the maximum gain for
splitting. Finally, feature scores are calculated according to
the total splitting gain of each feature or the number of times
it participated in the splitting process.

III. PROPOSED FAULT DIAGNOSIS METHODOLOGY
This article presents a new fault diagnosis approach offering
high accuracy and generalization. Fig. 1 demonstrates the
proposed workflow. Initially, vibration signals are collected
from the accelerometers under various loading conditions.
Before feature extraction, vibration signals are processed and
divided into successive equal-length segments resulting in
non-overlapping samples. The details of the remaining steps
are described as follows.

A. MULTIPLE DOMAIN FEATURE EXTRACTION
AND STANDARDIZATION
The performance of the intelligent IM fault diagnosis sys-
tems is highly dependent on the information contained in
the extracted features. In this study, we calculated a total
of 33 statistical features from the time domain, frequency
domain, and time-frequency domain analysis of the prepro-
cessed vibration signal samples. The constructed features are
standard and commonly used in the previous IM fault diagno-
sis works, and their detailed description can be found in [6],
[7], [31], [40]. Table 1 shows the formulations of the 15 sta-
tistical time-domain feature parameters TD1 -TD15 - which
are mean value, standard deviation, median value, skewness,
kurtosis, square root amplitude, mean absolute deviation,
peak to peak value, L1 norm (mean norm), L2 norm (mean-
square norm), infinity norm (max norm), crest factor, impulse
factor, margin factor, and shape factor, respectively.

The frequency domain features may capture the informa-
tion that cannot be detected in the time-domain features.
After performing fast Fourier transform (FFT) on each vibra-
tion signal sample, 12 statistical frequency domain features
FD1-FD12 are extracted from each sample’s frequency spec-
trum summarized in Table 1. In the frequency domain, the
energy of vibration signals may be reflected in the feature
FD1. The power spectrum convergence can be represented
by features FD2-FD4, FD6, and FD10-FD12. The position
shift of the main frequencies can be seen in features FD5 and
FD7-FD9 [40].
In the time-frequency domain, we implemented discrete

wavelet transform (DWT) on the vibration signal samples.
The specific Daubechies mother wavelet with four vanishing
moments ‘‘db4’’ in five levels is chosen to decompose the
signal samples into five detail levels plus approximation level.
Six wavelet domain features are computed as the percentage
of energies associated with the wavelet coefficients of each
decomposed level (WE1 -WE6) [6], [41].
LightGBM and other tree-based algorithms are inherently

insensitive to the features’ scales. However, for the sake
of comparison, we also use the case studies of this paper
to train other classification algorithms that require feature
scaling such as SVM, KNN, etc. We also apply PCA on the
dataset for feature visualization that needs feature scaling
as well. Therefore, after the feature extraction step, the fea-
tures are standardized i.e., subtracted by their average value,
and divided by their standard deviation, where the average

VOLUME 10, 2022 81913



A. Nemat Saberi et al.: LightGBM-Based Fault Diagnosis of Rotating Machinery Under Changing Working Conditions

FIGURE 1. Proposed fault diagnosis architecture. (The workflow is represented from left to right from signal acquisition up to final model evaluation. The
left part shows the data acquisition, processing, and feature extraction. The blocks located inside the dashed rectangle (upper right of the figure)
represent the process of the proposed feature selection method in which only the original training dataset is used to form the LOLO-CV dataset. More
details on the proposed RFE-LightGBM-FS are given in Algorithm 1. The red arrow shows the iterative process that connects the result of the
RFE-LightGBM-FS to the extracted features to select the optimal feature subset. The lower right part shows the final model training using Bayesian
hyperparameter optimization and also final model evaluation using the testing dataset that contains new unseen operating conditions.

TABLE 1. Time domain and frequency domain features.

values and standard deviations are computed from the train
dataset.

B. RFE-LightGBM-FS USING LOLO-CV
The next step belongs to FS. As stated in section II,
LightGBM (and other tree-based algorithms) can output the
feature scores. However, selecting the optimal feature sub-
set is another challenge affecting the fault diagnosis per-
formance. This article proposes a straightforward method
based on modified RFE to select a reduced feature subset
having almost identical distributions under different loading
conditions. The proposed FS also alleviates the classification
algorithm’s computational burden by removing the redundant
features.

RFE is an iterative technique that uses the features ranking
provided by training a model that can offer feature scores.
At each step of RFE, the n least important features (n is
user-defined) are iteratively removed from the feature set,

and then the model (LightGBM) is retrained using the new
reduced feature subset. An evaluation metric such as classifi-
cation accuracy is iteratively estimated for each rebuilt Light-
GBM model. RFE finds the optimal feature subset achieving
the maximum evaluation metric and selects it for the final
model [35].

Algorithm 1 illustrates the process of the proposed
RFE-LightGBM-FS. As shown in Fig. 1, the original test
set containing new unseen working conditions does not take
part in the whole process of our RFE-LightGBM-FS. Thus,
Algorithm 1 only uses the original training setD as input, and
it is possible to assess the robustness of the proposed method
against varying working conditions by the original testing set.

To prevent the selected features from overfitting the train-
ing data and the subsequent selection bias in their itera-
tive performance evaluation, an outer resampling at Line 1
encloses the whole FS loop as propounded by [35]. This
contrasts with the traditional RFE methods in which the FS
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Algorithm 1: Proposed RFE-LightGBM-FS
Inputs and definitions:
M : number of data samples in the original train set;
L: number of loading conditions in the original train set;
S: number of subset sizes being evaluated in the algorithm;
D = {(xi, yi)}Mi=1 is the entire original train set;
G is an M-dimensional vector indicating each sample i
(i =1. . .M ) belongs to which loading condition k (k = 1. . .L);

1: for k = 1 to L do //k is the resampling (LOLO-CV) iteration
2: I ktrain ←{∅}, I kval ←{∅} //I ktrain is the nested train set,

I kval is the nested validation set
3: for i = 1 to M do //Partition D to I ktrain and I

k
val

4: if G[i]== k then
5: I kval ← I kval

⋃
{(xi, yi)}

6:

else
7: I ktrain ← I ktrain

⋃
{(xi, yi)}

8:

end if
9:

end for
10: Train a LightGBM model on I ktrain using all features
11: Calculate and sort the feature scores
12: Evaluate the model performance on I kval
13: for Each subset size Si (i=1. . . S) do
14: Select and keep the Si highest ranked features
15: Train a LightGBM model on I ktrain using Si features
16: Evaluate the performance on I kval using Si features
17:

end for
18:

end for
19: Obtain the performance profile with respect to different

feature subset sizes Si (i=1. . . S) using I kval (k =1. . .L)
20: Identify the optimal number of features S∗i
21: Obtain final feature ranking using original train set D
22: Train the final LightGBM model on entire original train

set D using optimal feature subset with top S∗i features
Output: Optimal feature subset with top S∗i features

loop is not included within the resampling process leading
to information leakage into the selected model and overfit-
ting the training data. Moreover, instead of the conventional
K-fold CV or LOOCV resampling methods, we apply the
LOLO-CV scheme in the proposed FS method. Generally,
more than one operating condition is available in the train-
ing data for intelligent IM fault diagnosis practical cases.
Considering this fact, LOLO-CV can fully utilize the infor-
mation of the varying operating conditions in the training
data in a simple way. At each iteration k of LOLO-CV, the
data samples from the original train set D belonging to the
k-th loading condition build a nested virtual validation split
while the remaining Samples create a nested virtual train split
(Algorithm 1, lines 2-9). Thus, making the non-overlapping
nested train and validation sets resembles the testing scenar-
ios containing new unseen working conditions and increases

the robustness of the selected features. The number of resam-
pling iterations equals the number of the loading levels L in
the original training set. After finishing the L-th resampling
iteration, Algorithm 1 averages the performance of each fea-
ture subset on L nested validation sets Ikval (k =1. . .L) and
then identifies the optimal number of features for the final
model (Lines 19-20). Then, the complete original train set D
is utilized to achieve the final feature ranking and train the
final LightGBM model with top S∗i features (Lines 21-22).

As it is shown in Fig. 1, our proposed FS method employs
a basic default LightGBM model for obtaining the feature
scores and calculating evaluation metrics without perform-
ing any hyperparameters optimization at this stage. Using
the basic default LightGBM model simplifies the iterative
process of RFE and reduces the potentiality of overfitting to
training data.

C. BAYESIAN HYPERPARAMETER OPTIMIZATION OF
FINAL MODEL
After finding the optimal feature subset and performing
FS, the proposed framework carries out the final classifi-
cation task by training a new optimized LightGBM model.
According to the principal theory of LightGBM discussed
in section II, various hyperparameters affect the performance
of LightGBM (and other tree-based algorithms), such as the
total number of decision trees (iterations), maximum depth
of each tree, the minimum value of gain for splitting the leaf
nodes, the learning rate of each iteration, maximum number
of leaves in each tree, etc. To improve the performance,
we adjust the hyperparameters of the final LightGBM model
using Bayesian optimization [42]. The basic idea of Bayesian
optimization is to construct a surrogate probability model
of the objective function and determine the configuration
of adjusted hyperparameters that perform best on the sur-
rogate model. It then evaluates the true objective function
using the selected hyperparameters and updates the surrogate
probability model by adding the new evaluation results. This
process continues until a certain number of iterations or time
limit is reached [42]. The surrogate function we used in this
article for probability representation of the objective function
is the tree-structured Parzen estimator [43], which is based on
Bayesian reasoning.

Incorporating the previous evaluation results and not
spending a considerable time finding non-optimal hyperpa-
rameters, Bayesian optimization is faster and more efficient
than conventional hyperparameter optimization methods like
grid search or random search. As shown in Fig. 1, a LOLO-CV
scheme similar to the previous FS step evaluates the classi-
fication performance of different sets of hyperparameters to
avoid overfitting.

IV. EXPERIMENTAL CASE STUDIES AND
RESULT ANALYSIS
This section validates the efficacy of our proposed fault
diagnosis framework and compares its performance with the
existing intelligent methods using two case studies.
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FIGURE 2. Experimental setup of CWRU bearing test rig [45].

TABLE 2. Considered class labels and their corresponding conditions for
CWRU bearing dataset.

TABLE 3. Various Testing Scenarios built for CWRU Bearing Dataset.

FIGURE 3. Vibration signals and their corresponding spectrums for CWRU
dataset.

Rolling element bearings are among rotating machinery’s
most vulnerable and crucial components [44]. Therefore,
we focus on the bearing faults in the first case study and
evaluate our proposed algorithm’s capabilities in diagnosing
the bearing faults. The first dataset is the public CaseWestern
Reserve University (CWRU) bearing fault dataset which is
also studied in many research articles on fault diagnosis in
the literature [44].

The second studied dataset belongs to our laboratory’s
induction machine (IM) setup. In addition to the bear-
ing fault, which is the most common fault type, there are
more fault types, including broken rotor bars and eccentricity
faults [1]. A powerful fault diagnosis method must be general
enough to present excellent performance for various fault
types. Therefore, we also tested our algorithm on the IM
dataset in which six types of non-bearing faults have been
implemented.

We used python 3.8.5 to train the machine learningmodels.
The libraries NumPy 1.19.2 and pandas 1.1.3 are utilized
for preparing and preprocessing the data structures. More-
over, we imported Scikit-learn 0.23.2, XGboost 1.4.2, and
LightGBM 3.2.1 to support the considered models. The fol-
lowing experiments are run on Windows 10, using a PC with
Intel Core i7-9750H processor and 16 GB memory.

A. CASE 1: BEARING DATASET OF CASE WESTERN
RESERVE UNIVERSITY (CWRU)
1) DATA PREPARATION
CWRU Bearing Data Center has prepared this public dataset
as a benchmark [45]. As shown in Fig. 2, the experimental
setup includes a 2hp IM, a torque transducer/encoder, and a
dynamometer. The dataset contains vibration data collected
by the accelerometers located at the drive-end and fan-end
of an IM under four loading level conditions (0, 1, 2, and
3 hp). Three different fault types have been implemented
on the drive-end bearings, including inner race fault (IF),
outer race fault (OF), and ball fault (BF). Each fault type
consists of three severity levels (diameters 0.18, 0.36, and
0.54 mm). Therefore, considering one normal condition and
three fault types, each with three severity levels, there are a
total of ten class labels for bearing health states, i.e., C1-C10.
Table 2 illustrates the ten considered class labels and their
corresponding fault types and diameters. The sampling fre-
quency is 12kHz. The data acquired at each loading level
creates a subset containing 500 samples where each sample
consists of 2400 data points. We randomly selected 50% of
the samples of each subset for training. Besides, to assess
the performance of the fault diagnosis methods under varying
operating conditions, we constructed five testing scenarios
(α, β, γ , δ, and ε) shown in Table 3. In the first four sce-
narios, the training and testing sets are created from different
loading levels, and the loading levels used for testing sets
are removed from the corresponding training sets. Therefore,
they are more critical than the last scenario because
they can assess the generalization ability of the diagnosis
methods.

Fig. 3 depicts three sample time-domain waveforms of raw
vibration signals and their corresponding FFT spectrums for
health states IF, BF, and OF at the severity level of 0.54mm.
It is challenging to observe the hidden features discriminating
the bearing states from the raw vibration signals. Hence, it is
essential to extract features in multiple domains according to
Section III.A.
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FIGURE 4. Profile of LOLO-CV and testing accuracy for CWRU dataset
scenario α for different subsets of features. (a) RFE-LightGBM.
(b) RFE-XGBoost. (c) RFE-RF.

2) RESULTS, ANALYSIS, AND COMPARISON
Based on the methodology elucidated in section III and Fig.1,
the proposed fault diagnosis framework is implemented on
the CWRU bearing dataset. Initially, the data obtained from
two vibration sensors at the drive-end and fan-end of the IM
are processed, and 15 time domain features, 12 frequency
domain features, and sixwavelet energy features are extracted
from each sensor’s data leading to 66 features in total.
Then, by training basic LightGBM models, the proposed
RFE-LightGBM-FS is applied according to Algorithm 1 for
each scenario. The total splitting gain in LightGBM is cho-
sen as the criteria for calculating and evaluating the feature
scores.

Among the five scenarios shown in Table 3, scenario
α using the 0hp load as the original test data is taken as
an example and is highlighted here because the no-load
and light- load levels are potentially the most challenging

FIGURE 5. Top 30 features rankings obtained by LightGBM, XGBoost,
and RF.

conditions in fault diagnosis [27]. The resampling process
in the RFE-LightGBM-FS of scenario α has three iterations
(L = 3). Each loading (1hp, 2hp, and 3hp) is once excluded
from the training set and included in the virtual nested
validation set for LOLO-CV evaluation. Fig. 4a illustrates
the RFE-LightGBM curve for scenario α concerning the
LOLO-CV accuracy. For the sake of comparison, the testing
accuracy for 0hp load is also shown in Fig. 4a for different
subsets of features. It is observed that LightGBM achieves
the maximum LOLO-CV accuracy (99.2%) when the top 11
most important features are selected. Correspondingly, the
maximum testing accuracy (97.23%) is also achieved with
the top 11 features. Therefore, applying the optimal feature
subset for LOLO-CV accuracy determined by our proposed
RFE-LightGBM-FS, we can reach the optimal testing per-
formance, too, even when the test data contains new unseen
loading levels.

In Algorithm 1, we applied XGBoost and Random
Forest (RF) instead of LightGBM to obtain feature rank-
ings (Lines 10-11 and 21) and perform classifications
(lines 15 and 22) to compare their performance with
RFE-LightGBM-FS. Figs. 4(b) and 4(c) depict the perfor-
mance of RFE-XGBoost-FS and RFE-RF-FS for scenario
α, respectively. In both figures, the optimal feature sub-
sets achieving the highest testing accuracy differ from those
achieving the highest LOLO-CV accuracy. In fact, using
the proposed FS strategy of Algorithm 1, RFE-XGBoost-FS
gives only 93.51% testing accuracy with the top 27 fea-
tures, and RFE-RF-FS gives 94.4% testing accuracy with the
top 15 features. Thus, we cannot achieve the best testing
Performance by replacing LightGBM with XGBoost and RF
in Algorithm 1.

The reason behind the superiority of the RFE-LightGBM-
FS method can be attributed to the different feature scores
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FIGURE 6. Testing confusion matrix of CWRU dataset scenario α for the
basic LightGBM classifer without applying FS and hyperparameter
optimization.

TABLE 4. Optimal LightGBM hyperparameters for CWRU dataset
scenario α.

provided by LightGBM due to its leaf-wise tree growth
strategy, explained in section II. Fig. 5 compares the top
30 most important features and their scores obtained by
LightGBM, XGBoost, and RF models. For instance, FD8_S1
in Fig. 5 represents the eighth frequency domain feature
from the first vibration sensor located in the drive-end of
the IM, and WE3_S2 represents the third Wavelet energy
feature from the second vibration sensor located in the fan-
end of the IM. Although most of the top 30 features are
shared between the three models, the feature rankings differ
remarkably between the three cases in Fig. 5. According to
the excellent performance of RFE-LightGBM-FS in selecting
the optimal feature subset in Fig. 4a and utilizing the leaf-wise
tree growth strategy, we can conclude that the feature ranking
provided by LightGBM in Fig. 5 is more valid than XGBoost
and RF.

Moreover, it can be seen that most of the features
extracted from the drive-end vibration sensor (S1) have

FIGURE 7. Testing confusion matrix of CWRU dataset scenario α for the
LightGBM classifier after applying FS and hyperparameter optimization.

higher importance scores than the features obtained from the
fan-end vibration sensor (S2) because the faults have been
implemented on the drive-end bearing.

According to the confusion matrix shown in Fig. 6, the
testing accuracy of a basic LightGBM classifier without
applying FS is only 88.04% for scenario α. From Fig. 4a,
we saw that adopting the proposed FS method improves the
testing accuracy to 97.23%. The testing accuracy can further
increase by applying Bayesian hyperparameter optimization
for the final LightGBM classifier. Table 4 shows the adjusted
LightGBM hyperparameters after performing Bayesian opti-
mization. Fig. 7 illustrates the testing confusion matrix of the
final optimized LightGBM classifier. After implementing the
proposed FS and Bayesian optimization, the average testing
accuracy becomes 98.55%.

To further explore the effectiveness of the proposed FS
method, we applied PCA to reduce the features’ dimensions
and visualize their distribution in Fig. 8 for scenario α. Using
the first three principal components (PCs), Fig. 8a depicts the
distribution of features without implementing the FS method.
It can be seen that there is a distribution discrepancy between
the training and testing samples having identical class labels
due to changing loading conditions, leading to misclassified
samples in the confusion matrix of Fig. 6, particularly for
classes C3, C5, C7, and C9. Moreover, because some features
are redundant and uninformative, there is a significant overlap
between the samples of class labels C3, C5, C6, C7, and
C9, leading to poor classification performance. In contrast,
after selecting the optimal subset with top 11 features in
Fig. 8b, the distributions of the same class label samples are
no longer sensitive to loading levels, and they are clustered
together. In addition, the proposed FS has also increased the
interclass separability between the samples of different fault
types (C1-C10).

81918 VOLUME 10, 2022



A. Nemat Saberi et al.: LightGBM-Based Fault Diagnosis of Rotating Machinery Under Changing Working Conditions

FIGURE 8. Visualization of feature distributions using the first three principal components (PCs) for CWRU dataset scenario α.
(a) Without applying FS. (b) After applying the proposed RFE-LigthGBM-FS. (The train data samples from the loadings 1hp, 2hp, and
3hp are shown by hollow shapes, while filled shapes show the test data samples from 0hp load. Each of the ten class labels from C1
to C10 has its own shape and color.)

TABLE 5. Comparison of classification accuracies using CWRU dataset (%).

Previously, Fig. 4 proved the superiority of LightGBM
over XGBoost and RF in terms of providing the feature
ranking. Table 5 compares the performance of six different
settings of the proposed fault diagnosis framework for all
scenarios. In methods (1-6) examined in Table 5, LightGBM
is used for obtaining the feature rankings in the proposed
FS (Algorithm1, lines 10-11 and 21). However, for evalu-
ating different feature subsets (Lines 15-16) and obtaining
the final classification results (Line 22), the methods (1-5)
in Table 5 replace LightGBM with other existing optimized
SML-based methods, i.e., KNN, SVM, RF, XGBoost, and
artificial NN (ANN). For each experiment, ten trials are
performed, and the average testing accuracies are reported.
It can be seen that the proposed framework using LightGBM
in all steps (method6 in Table 5) offers the highest average
testing accuracies compared with the other methods for all
the five scenarios.

Table 6 summarizes a number of fault diagnosis meth-
ods reported in the literature using the CWRU bearing
dataset and compares their performance with the proposed
LightGBM- based fault diagnosis framework. It can be seen

that, unlike our proposed method that uses a shallow model,
most of the recently developed methods in the literature
are based on deep convolutional neural network (CNN).
The methods based on deep transfer learning (DTL) [21],
[46], [47] overcome the problems of high computational
time and overfitting of conventional deep CNNs which are
trained from scratch. According to Table 6, the DTL-based
methods presented in [21] and [47] using VGG-16 and
ResNet-50 models present the highest accuracies in the lit-
erature. Table 6 verifies the effectiveness of the proposed
method in terms of accuracy compared with the state-of-the-
art DL-based approaches reported in the literature. However,
another key factor that should be considered and directly
affects the efficiency of the fault diagnosis methods is the
computational training time. As mentioned previously, the
shallowmodels are more efficient than DLmodels in terms of
computational requirements. The average training time of the
proposed shallow LightGBM-based fault diagnosis method
for the studied scenarios is 26.08 seconds; this is way less
than the training times of the DTL-based methods in [21] and
[47], which are reported to be in the range of 150-318 seconds
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TABLE 6. Comparison of classification accuracies on CWRU bearing dataset for some published works (%).

TABLE 7. Considered class labels and their corresponding conditions for
IM dataset.

for different scenarios in CWRU bearing dataset. Therefore,
the performance of the proposed method is proven to be
promising in terms of both accuracy and efficiency.

B. CASE 2: INDUCTION MACHINE DATASET OF
AALTO UNIVERSITY
In this section, we further examine the performance of the
proposed fault diagnosis system by conducting experiments
on the IM dataset at our laboratory.

1) DATA PREPARATION
This setup consists of two 18kW IMs that are connected
back-to-back via their shaft. The IM measurement setup and
its configuration are depicted in Figs. 9(a) and 9(b), respec-
tively. The vibration signals were measured from the first
IM (tested machine) fed from a sinusoidal voltage supply
at 50 Hz. The second IM operating as the loading machine
was connected to a frequency converter to provide various

FIGURE 9. (a) IM measurement setup. (b) Setup configuration.
(c) Position of accelerometers.

loading levels. Three Kistler 8763B050AB accelerometers
were evenly arranged at positions 120 degrees apart on the
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TABLE 8. Various Testing Scenarios created for IM Dataset.

FIGURE 10. Three sample raw vibration signals and their spectrums for
IM setup dataset measured in FL condition.

FIGURE 11. Profile of LOLO-CV and testing accuracy of IM dataset
scenario α for different subsets of features.

circumference of the tested IM. Fig. 9c shows the posi-
tion of the accelerometers. The vibration signals were col-
lected under full-load (FL), half-load (HL), and no-load
(NL) conditions where the currents were 40A, 30A, and
18A, respectively. The following defects were implemented
on the tested IM: dynamic eccentricity with 28.5% severity
(Ecc), two consecutive broken rotor bars (2 BRBs), 3 BRBs,
two non-consecutive (NC) BRBs (2 NC-BRBs), and simul-
taneous fault of 2 NC-BRBs and Ecc. Hence, with the nor-
mal condition, there are a total of six class labels, i.e.,
C1-C6. Table 7 depicts the six considered class labels
and their corresponding fault conditions. The samp-
ling frequency is 10kHz. The data acquired at each loading

FIGURE 12. Testing confusion matrix of IM datset scenario α for the basic
LightGBM classifer without applying FS and hyperparameter optimization.

FIGURE 13. Testing confusion matrix of IM dataset scenario α for the
LightGBM classifier after applying FS and hyperparameter optimization.

level creates a subset containing 400 samples where each
sample consists of 2400 data points. We randomly selected
50% of the samples of each subset for training. Table 8 shows
the four testing scenarios (α, β, γ , and ε) that are built
like the previous CWRU case study. In the first three sce-
narios, the loading level used for testing is entirely unseen
during the training process. The raw vibration signals for
three sample health states under FL level and their spectrums
are illustrated in Fig. 10.

2) RESULTS, ANALYSIS, AND COMPARISON
The same fault diagnosis methodology as the previous
CWRU case is carried out on the IM dataset. In total,
99 features are calculated from the three vibration sensors
data. Taking scenario α as an example, Fig. 11 displays
the RFE-LightGBM-FS curve and the profile of testing
accuracy. After adopting the proposed RFE-LightGBM-FS,
the feature subset containing the top 19 features is deter-
mined to be the optimal one as it gives the maximum
LOLO-CV accuracy (98.9%). According to Fig. 11, this
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FIGURE 14. Visualization of feature distributions using the first three principal components (PCs) for IM dataset scenario α. (a) Without
applying FS. (b) After applying the proposed RFE-LigthGBM-FS. (The train data samples from full-load and half-load conditions are
shown by hollow shapes, while filled shapes show the test data samples from No-load condition. Each of the six class labels from C1 to
C6 has its own shape and color.)

TABLE 9. Optimal LightGBM hyperparameters for IM dataset scenario α.

feature subset also matches the highest testing accuracy
(97.92%). Thus, applying the proposed FS technique leads to
finding the optimal feature subset offering the highest testing
accuracy.

Fig. 12 shows the testing confusion matrix of a basic
LightGBM classifier for scenario α, indicating the aver-
age testing accuracy of 79.85%. Previously, we saw from
Fig. 11 that applying the proposed FS method improves
the testing accuracy to 97.92%. Fig. 13 illustrates the
testing confusion matrix of scenario α after adopting the
proposed RFE-LightGBM-FS and Bayesian hyperparam-
eter optimization. According to Fig. 13, hyperparameter

optimization further improves the testing accuracy to 99.08%.
The optimized LightGBM hyperparameters are listed
in Table 9.

The average computational training time of the proposed
shallow LightGBM-based fault diagnosis framework for the
studied scenarios of IM dataset is 43.12 seconds. It is higher
than the computational training time of the same method
trained on the CWRU dataset because the number of sensors
and hence, the number of features is increased in IM case
study.

Figs. 14(a) and 14(b) demonstrate the 3D PCA visualiza-
tion of the features’ distributions before and after performing
RFE- LightGBM-FS, respectively. According to Fig. 14(a),
the training and testing samples of similar class labels are sep-
arated because of varying loading levels. On the other hand,
Fig. 14(b) shows that the proposed FS strategy can perfectly
decrease the distance between the same class label features
at various loading conditions and improve the classification
accuracy.

Table 10 evaluates the classification results of the six vari-
ations of the proposed fault diagnosis framework. In all meth-
ods assessed in Table 10, the feature rankings are provided by
the LightGBMmodel, but in methods (1-5), evaluation of dif-
ferent feature subsets and final classifications in Algorithm 1
are performed by other SML-based methods. The results
indicate the superiority of method 6, in which LightGBM
is used for all steps of Algorithm 1, including obtain-
ing feature rankings, evaluating feature subsets, and final
classification.
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TABLE 10. Comparison of classification accuracies using IM dataset (%).

V. CONCLUSION AND FUTURE WORK
In this article, a theoretical and experimental study of a
new fault diagnosis framework was presented that offers
high accuracy and generalization ability for the testing
scenarios in which data originates from new operating con-
ditions being unavailable during training. Leveraging the
LightGBM’s ability to provide feature ranking, we proposed
an efficient FS strategy combining LightGBM, RFE, and
a LOLO-CV-based resampling process. Moreover, we per-
formed Bayesian hyperparameter optimization to enhance the
final classification result. Two experimental case studies, i.e.,
bearing dataset of CWRU and induction IM dataset obtained
in our laboratory, were utilized to examine the proposed fault
diagnosis system’s effectiveness and accuracy.

Considering the changing operating conditions, we studied
various testing scenarios in which a particular loading level
is removed from the dataset and only used for testing. The
results demonstrated that the proposed RFE-LightGBM-FS
method could identify the optimal subset of features that
are not sensitive to changing operating conditions and offer
high separability between various class labels. The evaluation
results proved that for various testing scenarios of CWRU and
IM datasets, the proposed fault diagnosis framework achieved
98.55% to 100% accuracy. In both case studies, we high-
lighted the most challenging testing scenario (scenario α)
where the data measured under the no-load condition did
not participate in the training process and was only used for
testing. According to the results, the classification accuracy
of scenario α using a basic LightGBM classifier without any
FS implementation or hyperparameter tuning was 88.04%
and 79.85% for CWRU and IM datasets, respectively. Mean-
while, the proposed RFE-LightGBM-FS method increased
the testing accuracies to 97.23% and 97.92%, respectively.
The results also showed that applying the Bayesian hyper-
parameter optimization further increases accuracy to 98.55%
and 99.08%.

Future research work includes:
• Extending the proposed framework to be able to locate
the faults in addition to detecting and discriminating
the fault types by implementing and studying the faults
occurring in both drive-end and fan-end bearings.

• Considering and implementing the primary causes of
bearing failure and more realistic faults such as lubri-
cation degradation of bearings, overheating, excessive
loads, and corrosion.

• Embedded system implementation of the proposed
framework to assess its ability in real-time operation.
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