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Figure 1: Mip-NeRF RGB-D uses RGB-D frames to represent 3D scenes using neural radiance fields. Depth in-
formation is used for local sampling and geometric loss. It produces significantly better photometry and geometry.

ABSTRACT
Neural scene representations, such as Neural Radiance Fields (NeRF), are based on training a multilayer perceptron
(MLP) using a set of color images with known poses. An increasing number of devices now produce RGB-D(color
+ depth) information, which has been shown to be very important for a wide range of tasks. Therefore, the aim
of this paper is to investigate what improvements can be made to these promising implicit representations by
incorporating depth information with the color images. In particular, the recently proposed Mip-NeRF approach,
which uses conical frustums instead of rays for volume rendering, allows one to account for the varying area of
a pixel with distance from the camera center. The proposed method additionally models depth uncertainty. This
allows to address major limitations of NeRF-based approaches including improving the accuracy of geometry,
reduced artifacts, faster training time, and shortened prediction time. Experiments are performed on well-known
benchmark scenes, and comparisons show improved accuracy in scene geometry and photometric reconstruction,
while reducing the training time by 3 - 5 times.
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1 INTRODUCTION
Recent advances in neural scene representations
[Sitzmann et al., 2019, Mildenhall et al., 2020] have
demonstrated that neural networks can be used to rep-
resent 3D scenes as weights of a neural network for the
purpose of rendering novel photorealistic views. Meth-
ods such as [Mildenhall et al., 2020, Saito et al., 2019,
Lombardi et al., 2019] learned a volumetric repre-
sentation from a sparse set of RGB images captured
from color camera sensors. This method requires pre-
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computation of camera poses and uses two multilayer
perceptron networks to represent scene geometry and
lighting effects. Although the NeRF models and their
variants have shown impressive results, the underlying
model is computationally inefficient, largely due to
its volumetric search space for intersecting viewing
rays, leading to extended training times. For example,
volume rendering involves sampling points along each
viewing ray (256 for NeRF) to calculate the color of
the ray from the volume density and radiance of each
sample point. Furthermore, the multiview triangulation
problem is sometimes intractable from only images,
which leads to artifacts and inaccurate geometry.

Although color-only approaches work well for appli-
cations that only have RGB images available, this ap-
proach can be improved by considering depth informa-
tion alongside color. Many devices, including mobile
phones, now include RGB-D sensors, and the aim of
this paper is to investigate and devise a methodology to
incorporate depth information into a neural scene rep-
resentation.

Only a few methods have been proposed to take
advantage of depth measurements simultane-
ously with color within the volumetric rendering
pipeline [Neff et al., 2021, Deng et al., 2021]. How-
ever, these methods do not explicitly model the
uncertainty of the sensor. To successfully incor-
porate noisy depth measurements into the volu-
metric rendering pipeline, the recent Mip-NeRF
approach [Barron et al., 2021] provides a framework
that accounts for the uncertainty of color pixel with
varying depth by replacing classic 3D ray sampling
with conic region sampling. This approach provides an
elegant framework for including multivariate Gaussian
uncertainty and will be extended in this paper to
include depth uncertainty.

In this paper, it will be demonstrated that considering
depth information can improve geometry considerably
compared to only color information at several differ-
ent levels. First, this method shows how local sam-
pling along the rays, guided by surface information
from RGB-D frames, can reduce the number of samples
along the ray and replace the coarse network of NeRF.
Second, a joint color-and-depth-loss term will be shown
to allow the network to learn the geometry and color of
the scene from a limited number of input views. Third,
the proposed method shows how depth uncertainty can
be incorporated into a multivariate Gaussian method to
query the MLP. Finally, an adaptive training method
will be proposed that allows the network to learn mul-
tiple scales of uncertainty within the representation.

To sum up, the proposed method is based on a RGB-D
neural radiance field combined with an implicit occu-
pancy representation that takes into account both color
and depth observations.

The key contributions of the article are summarized as
follows:

• Depth information is used for efficient sampling.

• The representation is optimized simultaneously on
scene geometry and photometry.

• Depth uncertainty is handled adaptatively via a new
local sampling strategy.

2 RELATED WORK
The proposed Mip-NeRF RGB-D uses a set of RGB-D
inputs to learn a volumetric scene representation of the
observed scene using a multilayer perceptron by lever-
aging both depth and color information. In the follow-
ing, related work to this research will be discussed.

2.1 Novel view synthesis from images
Image-based view synthesis uses a number of tech-
niques to generate novel images, such as transforming
or warping an existing set of images using esti-
mated geometry and camera poses to create novel
views [Hedman et al., 2016, Gortler et al., 1996].
[Heigl et al., 1999] used a sequence of images and
directly rendered the views by projective mapping
of all images to a common plane of mean geometry.
To generate a novel view from a set of captured
images of different poses requires blending them
to target views; even though the geometry of the
static objects is constant in different views, the
appearance can change depending on lighting and
object properties. To overcome these drawbacks
[Hedman et al., 2018, Thies et al., 2020] used artificial
neural networks to reduce artifacts and view-dependent
effects in the generated novel views.

2.2 Implicit neural surface representation
These methods use neural networks to learn a neu-
ral surface representation of the object using voxels,
meshes, and point cloud data. Although they are ca-
pable of achieving impressive results, they are limited
by their internal resolution and high-frequency details.
Mescheder et al. [Mescheder et al., 2019] used a neural
network to learn a continuous 3D occupancy function;
Given 3D points as input to an occupancy network, the
network predicts binary occupancy at that 3D location.
Later, [Chen and Zhang, 2019] used an MLP to predict
occupancy from a feature vector and the 3D coordinates
of the location. On the other hand, [Park et al., 2019]
learned a signed distance function(SDF) instead of oc-
cupancy to improve the quality of the reconstruction.
[Saito et al., 2019] showed that it is possible to infer 3D
surfaces and texture from a single image using an im-
plicit function.
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Figure 2: An overview of the proposed Mip-NeRF RGB-D. (a) The input to the network is the integrated positional
encoding of a conical frustum segment. (b) The network outputs volume density and color. (c) The color and depth
of a ray is generated using the classic volume rendering method. (d) The network is optimized using a color and
depth loss.

2.3 Neural volume rendering
Lombardi et al. [Lombardi et al., 2019] initially
introduced volume rendering for novel view synthe-
sis using a CNN-based encoder and an MLP-based
decoder to produce density and color for each point
in space. The well-known Neural Radiance Fields
approach was introduced in [Mildenhall et al., 2020]
and demonstrated compelling results with a simple
method that takes 3D points and the associated view
direction as input to an MLP and outputs density
and color. Some of the drawbacks of NeRF are its
long training time, its long rendering time, the need
to train a separate model for each scene, and it only
works on static scenes. Various investigations have
been conducted since the original NeRF to address
these problems. [Liu et al., 2020, Neff et al., 2021,
Garbin et al., 2021, Reiser et al., 2021, Yu et al., 2021]
addressed the slow inference time of NeRF by
using a tiny MLP and a better sampling strategy.
[Deng et al., 2021] used sparse depth supervision dur-
ing training to improve the training time of the NeRF
model. [Pumarola et al., 2020, Gafni et al., 2020,
Noguchi et al., 2021] address the problem of static
scenes. [Yu et al., 2020, Schwarz et al., 2020,
Tancik et al., 2020, Chan et al., 2020] have gener-
alized NeRF models using fully convolutional image
features, a generator discriminator, and meta-learning.
Saito et al.[Barron et al., 2021] focused on NeRF
aliasing and sampling problems. They proposed an
integrated positional encoding, which uses a conical
frustum defined by the mean and covariance of the
rays, and the neural radiance field is integrated over the
region represented by 3D Gaussian encoding.

2.4 Neural radiance field with depth
To solve the problem of incorrect geometry prediction
when a limited number of input views are given,
[Deng et al., 2021] proposed using depth as alternate

supervision. Ds-NeRF uses a sparse 3D point cloud
and then reprojects the errors between the detected 2D
keypoints and projected 3D points, generated by com-
monly used structure-from-motion (SfM) algorithms
which are error-prone. They optimize the model over
a combined color and depth loss function. Similarly,
NerfingMVS [Wei et al., 2021] uses a monocular
depth network to generate depth prior from SfM
reconstruction of the scene. The adapted depth priors
are used to guide the sampling process of points along
the ray. Unlike DS-NeRF, it generates a dense depth
prior from sparse SfM points using a pretrained depth
network. Azinovic et al.[Azinović et al., 2021] also
demonstrated the incorporation of depth with NeRF
to produce a better and more detailed reconstruction
than simply using color or depth alone. Unlike others,
it uses a truncated signed distance function(TSDF)
instead of volume density to represent the underlying
geometry. It still uses two networks that significantly
affect training and prediction time. On the other hand,
iMap [Sucar et al., 2021] shows that NeRF can be used
to represent scenes in a real-time SLAM system. It
jointly optimizes the 3D map and camera pose using
keyframes. iMap uses a smaller MLP (4 layers) than
NeRF and does not consider the viewing direction to
model lighting effects. DONeRF [Neff et al., 2021]
proposed a compact dual network design to reduce
evaluation cost, leading to a faster prediction time. The
coarse NeRF network is replaced by a depth oracle
network based on a classification network. To reduce
the number of samples along the rays, they suggested
nonlinear transformation and a local sampling strategy,
which helped them to achieve a similar result to NeRF
with a fraction of the samples, but the method is limited
to forward facing scenes.

3 METHODS
Now the proposed Mip-NeRF RGB-D will be pre-
sented. First, the implicit scene representation used by
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NeRF based methods will be over-viewed, followed by
the explanation of the rendering process. After that, an
efficient network architecture will be proposed and a
joint optimization method using RGB-D data will be
presented. Finally, the local sampling strategy used
to reduce the number of samples along the rays and
reduce training time will be described.

3.1 Implicit scene representation
The proposed system is based on the Mip-NeRF
[Barron et al., 2021] method which is an extension of
NeRF for handling anti-aliasing. Vanilla NeRF based
methods use a set of images and corresponding poses
to train a MLP network that represents the scene by
outputting the emitted radiance and volume density
of 3D locations. Given 5D coordinates(3D location +
viewing direction) as input, the network FΘ learns an
implicit function that estimates color C = (r,g,b) and
volume density τ as:

FΘ : (x,y,z,θ ,φ)→ (C,τ). (1)

First, rays r(t) = o+ td passing through each pixel of
the image are generated, where the ray origin o is the
camera center and d is the ray direction. Then N sam-
ple points are placed along the ray stratified manner
between predefined near and far bounds. The color of
each pixel is computed using a radiance and a volume
density along the ray. In Mip-NeRF the rays are re-
placed with cones generated using the camera center
and the pixel size. The cone is split into N intervals
T⟩ = [ti, ti + 1) and for each interval the integrated po-
sitional encoding of the mean and the covariance (µ,Σ)
of the corresponding conical frustum is computed. In-
tegrated positional encoding encodes the Gaussian ap-
proximation of the conical frustum as follows:

γ(µ,Σ) =

{[
sin(2l µ)exp(−2l−1diag(Σ))
cos(2l µ)exp(−2l−1diag(Σ))

]}L−1

l=0
,

(2)
where Σ is the covariance of the Gaussian approxima-
tion:

Σ = σ
2
t (d ·dT)+σ

2
r

(
I − d ·dT

||d||22

)
. (3)

The variance along the ray is denoted by σ2
t and the

variance perpendicular to the ray is σ2
r . Mip-NeRF uses

this integrated positional encoding instead of the fre-
quency positional encoding as input to the neural net-
work. One of the key difference between Mip-NeRF
and the proposed method is the local sampling strate-
gies, which will be discussed in the subsequent part of
this article.

3.2 Volume rendering
Similarly to NeRF, a volume rendering formula was
used to calculate the color and the depth of pixels from

radiance and volume density of the conical frustum.
The volume density τ(P) at location P = (x,y,z) can
be interpreted as the differential probability of ray ter-
mination. The expected color C(r) of a camera ray
r(t) = o+ td with near and far bounds tn and t f is:

C(r) =
∫ t f

tn
T (t)τ(r(t))c(r(t),d)dt, (4)

where
T (t) = exp(−

∫ t

tn
τ(r(s))ds). (5)

The function T (t) denotes the accumulated transmit-
tance along the ray from tn to t, i.e., the probability that
the ray travels from tn to t without hitting any other par-
ticle. In the stratified sampling approach [tn, t f ] is parti-
tioned into N evenly-spaced bins and then one sample is
drawn uniformly at random from within each bin. The
samples are used to estimate predicted color Ĉ(r) as:

Ĉ(r) =
N

∑
i=1

Ti(1− exp(−τiδi))ci, (6)

where

Ti = exp(−
i−1

∑
j=1

τ jδ j). (7)

Here δ j = t j+1 − t j is the distance between adjacent
samples. Similarly [Wei et al., 2021], the depth can be
represented with volume density using:

D̂(r) =
N

∑
i=1

Ti(1− exp(−τiδi))ti, (8)

where Ti is the accumulated transmittance. To optimize
the network, NeRF uses a squared error between the
rendered and true pixel colors.

3.3 Optimization
The network parameters θ are optimized using a set of
RGB-D frames, each of which has a color, depth, and
camera pose information. The proposed method mini-
mizes the geometric and photometric loss together on a
set of frames as the rendering functions are completely
differentiable. The photometric loss lp is the abso-
lute difference (L1-norm)[Sucar et al., 2021] between
the predicted color and the ground truth color of the
ray. The photometric loss over a set of rays is defined
as:

lp = ∑
r∈R

|Ĉ(r)−C(r)|. (9)

The geometric loss is the absolute difference between
predicted and true depths, normalized by the depth
variance [Sucar et al., 2021] to discourage weights with
high uncertainty:

lg = ∑
r∈R

|D̂(r)−D(r)|√
D̂var(r)

, (10)
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where D̂var(r) = ∑
N
i=1 Ti(1 − exp(−τiδi))(D̂(r) − ti)2

depth variance of the image. The neural network
can be optimized by combining photometric, and
geometric losses together using empirically chosen
scale factors λp:

minθ (lg +λplp). (11)

3.4 Network architecture
The network architecture is similar to the original NeRF
with some modifications. The proposed method uses
only one network with 4 hidden layers of feature size
256. The skip connection is used in layer 3. The view-
ing direction is concatenated to the fourth layer before
the color and volume density are output. The integrated
positional encoding was applied to the conical frustum
and a positional encoding of frequency 4 is applied to
the viewing directions as was done in Mip-NeRF. By
decreasing the network size, faster training and predic-
tion time were achieved without significantly compro-
mising the novel view quality.

3.5 Local sampling
NeRF based methods estimate pixel color by placing
samples on viewing rays traced through the pixels. The
final color of the pixels is calculated by the alpha com-
position [Max, 1995] of the volume density and the ra-
diances of the samples along the ray. Samples relevant
to the volume produce higher volume density, so sam-
ples close to the surface are more relevant to the pixel’s
final color. NeRF uses 256 samples in a stratified man-
ner and 2 networks to ensure that samples are placed on
relevant parts of the ray. To compute a pixel color, each
sample on that ray needs a full network evaluation, so
the training time increases exponentially with the num-
ber of samples on the ray. Although Mip-NeRF uses a
conical frustum instead of viewing rays, it still requires
2 network passes and a large number of bins to create
integrated positional encoding. In reality, the majority
of the scene volume is empty space (for 360 scenes),
and the samples placed on the empty space have less
contribution to the final color. Therefore, given the
depth information of an image, it is possible to place
fewer samples and to place them directly on the relevant
parts of the ray, while achieving similar quality results.
Finally, in this case, it is also possible to eliminate the
coarse network with local sampling, which NeRF uses
to find important sampling locations along the ray. Var-
ious depth-guided sampling strategies have been con-
sidered. Figure:3 shows the comparison between the
proposed local sampling and the baseline approaches.

3.5.1 Stratified sampling
The so-called stratified sampling strategy is very simi-
lar to the original Mip-NeRF sampling, but the conical

NeRF

Mip-NeRF

Mip-NeRF RGBD

Stratified

Mip-NeRF RGBD

Gaussian

Mip-NeRF RGBD

Adaptive

Near Far

Near Far

Depth

Near
Far

Depth

Depth

Gaussian

Adaptive Gaussian

(a)

(b)

(c)

(d)

(e)

Figure 3: Visualization of the proposed sampling strate-
gies(c, d, e) compared to NeRF(a) and Mip-NeRF(b).
Black arrows represent ray direction and purple ellip-
soids represent a Gaussian approximation of the conical
frustum.

frustums are generated only close to the surface based
on depth information(Figure:3(c)). Here the space be-
tween the near and far bounds [tn, t f ] is divided into N
evenly spaced bins and a sample is drawn uniformly
at random from each bin where tn = D−αn and t f =
D+α f , αn and α f are empirically chosen based on the
depth uncertainty. The samples are then used as the
bounds of the conical frustum. This allows the network
to avoid empty space and eventually decrease the num-
ber of bins needed for each ray.

3.5.2 Gaussian sampling
In this strategy, instead of placing the bins equidistantly
around the surface, the limits of the conical segments
are selected from a normal distribution where the mean
is the depth and the standard deviation ς is empirically
chosen based on the depth uncertainty. In this way, it
ensured that the conical frustums are smaller (toward
the ray direction) on the relevant part of the ray(close
to the true depth as in Figure:3(d)) to emphasize the
high-frequency details on the surface. This allows the
network to handle the generalized uncertainty present
in the depth estimate.

3.5.3 Adaptive sampling
The adaptive sampling strategy uses a normal distribu-
tion with a varying standard deviation ς(r) based on
the number of epochs and the depth of the ray. There-
fore, the normal distribution (the mean is the depth
measurement) is used to define the limits of the con-
ical frustums(Figure:3(e)). ς(r) varies during training
according to the number of epochs in a coarse to fine
manner to improve the fine photometric details. Addi-
tionally, this sampling strategy takes into account the
depth uncertainty, which increases with distance. The
standard deviation of each ray is calculated as follows:
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ς(r) =
D(r)

4
(exp−λr i+λm), (12)

where i is the epoch number, λr is the rate of decrease,
λm is minimum standard deviation, and D(r) is the true
depth of the ray. λr and λm are empirically chosen
based on dataset and depth uncertainty.

4 EXPERIMENTAL RESULTS
In this section, the proposed methods are evaluated on
various datasets and compared with other state-of-the-
art NeRF based methods.

4.1 Experimental Setup
4.1.1 Datasets
Simulated datasets were used for all experiments. Each
data set contained RGB images, depth maps, and their
corresponding camera poses. All poses in the datasets
belong to an upper hemisphere, where the object is
placed in the center. Four different scenes were con-
sidered for the experiments: Lego1, Cube, Human 2,
and Drums3. The input images have 800×800 resolu-
tion, and the depth measurements are in meters. Each
of the datasets has three versions, in which the number
of training images is 8, 30, and 100.

4.1.2 Implementation Details
The proposed method is implemented using a combina-
tion of PyTorch and CUDA. The ADAM optimizer with
a learning rate of 5×10−4 and an exponential decay of
the learning rate of 5× 10−1 in every five epoches has
been used. A batch size of 2048 on 2 Nvidia Rtx 3090
GPUs was used for all experiments. 16 frequency bands
were used for integrated positional encoding of the con-
ical frustum and 4 frequency bands to encode viewing
directions with positional encoding.

For all experiments, the following parameters are used
as default: the photometric scale factor for the loss
function is λp = 100, standard deviation for Gaussian
sampling is 0.3, λr = 0.09 and λm = 0.1 for adaptive
sampling.

4.1.3 Metrics
Four metrics are used to evaluate the predicted RGB im-
age quality and depth map: Peak Signal-to-Noise Ratio
(PSNR in dB): to compare the quality of the RGB re-
construction, the higher is better; Absolute Relative dis-
tance (Abs Rel in m): to compare the quality of the gen-
erated depth map, the lower is better; Structural Simi-
larity Index (SSIM in %) [Wang et al., 2004]: quantifies

1 https://www.blendswap.com/blend/11490
2 https://renderpeople.com/free-3d-people/
3 https://www.blendswap.com/blend/13383

the degradation of image quality in the reconstructed
image, the higher is better; Learned Perceptual Im-
age Patch Similarity (LPIPS) [Zhang et al., 2018]: the
distance between the patches of the image, the lower
means that the patches are more similar.

4.2 Comparison
First, local sampling strategies are compared in Section
4.2.1. Then, the effect of a different number of samples
on the proposed model is discussed. After that, the pro-
posed method is applied in different scenes. Finally, in
Section 4.2.5, the proposed method is compared with
other NeRF-based methods that use depth supervision.

4.2.1 Comparison between different local sam-
pling strategies

Instead of placing samples over the entire ray, local
sampling places samples only on the relevant regions
of the ray using depth information. In this section, pro-
posed local sampling strategies are compared. Table 1
shows the quantitative performance of the three sam-
pling strategies mentioned.

Metrics
Strategy PSNR

↑
SSIM
↑

Abs
Rel↓

LPIPS
↓

Equidistant 19.86 0.87 0.02 0.0023
Gaussian 20.75 0.88 0.04 0.0022
Adaptive 21.09 0.89 0.04 0.0024
NeRF 19.21 0.88 0.34 0.0036

Table 1: Comparison of three different sampling strate-
gies. The Lego spherical dataset containing 8 training
images has been used for all experiments. All experi-
ments used 16 sampling points per ray. Best values are
highlighted by green, significant wrose values by red,
and darker shades represent best values.

The results show that adaptive sampling performs best
among the proposed sampling strategies. All local sam-
pling strategies improve the underlying geometry com-
pared to NeRF.

4.2.2 Effect of ray sample size

NeRF based methods use a large number of ray sam-
ples to estimate volume density and produce fine output
details. The number of samples is arguably the most
important parameter for any NeRF model because it is
directly related to the training time, the prediction time,
and the quality of the novel view. The following experi-
ments in Table 2 demonstrate that the proposed method
performs significantly well even when the number of
samples is low. The 64 samples provide the best com-
promise between novel view quality and training time.
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Figure 4: Qualitative comparison on blender scenes: Visual comparison between generated RGB ground truth
images and the true depth maps generated by the proposed method, where (a) Ground truth RGB images; (b)
Predicted RGB images; (c) True depth maps; (d) Predicted depth maps; (e) Absolute error between predicted and
true depth maps.

Number of samples
Metrics 16 64 128
PSNR ↑ 19.4 21.18 22.13
SSIM ↑ 0.86 0.89 0.9
Abs Rel ↓ 0.05 0.04 0.05
LPIPS ↓ 0.0025 0.0023 0.0018
Training Time ↓ 38m 44m 1.54h

Table 2: A comparison between training time and novel
view quality based on the number of samples per ray.

4.2.3 Different datasets
The proposed method was evaluated with 4 different
datasets with different characteristics to demonstrate its
robustness in different types of scenes. The cube has
a simple geometry but a complicated texture. Alterna-
tively, the drums have a complicated and very detailed
3D structure. The Lego scene is a good mix of photo-
metric and geometric details. The human scene mimics
some real-world applications. Quantitative results are
shown in Table 3 and qualitative results are shown in
Figure 4.

Metrics
dataset PSNR↑ SSIM↑ AbsRel↓ LPIPS↓
Lego 28.21 0.93 0.02 0.0013
Cube 22.78 0.95 0.01 0.0001
Human 37.7 0.97 0.02 0.00008
Drums 27.85 0.9 0.02 0.0012

Table 3: Performance of the proposed method on 4 dif-
ferent simulated datasets.

4.2.4 Fewer input views
To demonstrate that the proposed method can perform
well even when the number of training images is lim-
ited, three different datasets with different numbers of
training images have been considered for experiments.
Table 4 shows a comparison between different datasets.
Although increasing the number of inputs increases the
quality of the novel view, the training time also in-
creases significantly.

Number of input views
Metrics 8 30 100
PSNR ↑ 21.18 25.25 28.21
SSIM ↑ 0.89 0.92 0.93
Abs Rel ↓ 0.04 0.04 0.02
LPIPS ↓ 0.0023 0.0017 0.0013
Training Time ↓ 44m 2.15h 6.45h

Table 4: More samples in the training set provides more
supervision for the network to learn the scene represen-
tation. With an increasing number of input views, geo-
metric and photometric metrics improve. Subsequently,
training time increases significantly. A dataset with 100
images takes 11 times longer to train than dataset with
8 images.

4.2.5 Scene representation
In this section, the proposed method is compared with
other state-of-the-art NeRF-based methods.
NeRF [Mildenhall et al., 2020]: The implementation
of PyTorch Lighting of the NeRF by [Quei-An, 2020]
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Figure 5: Qualitative comparison: Visual comparison results between the proposed method and other state-of-the-
art methods.
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Figure 6: Qualitative result of the proposed method on 3 different real sensor datasets. (a) Ground truth RGB
images; (b) Predicted RGB images; (c) Ground-truth depth maps; (d) Predicted depth maps.

Metrics
Method PSNR

↑
SSIM
↑

Abs
Rel↓

LPIPS
↓

Time
↓

DSNeRF 29.31 0.87 0.489 0.003 3:37h
DONeRF 39.23 0.98 0.008 0.00001 5:08h
NeRF 27.36 0.94 0.34 0.0015 3.40h
MipNeRF 30.66 0.95 0.334 0.006 1:27h
Proposed 32.72 0.95 0.001 0.0004 1.15h

Table 5: Quantitative comparison for novel view syn-
thesis and depth estimation between the proposed
method and state-of-the-art methods. The Lego dataset
is used for all these experiments.

Metrics
dataset PSNR↑ SSIM↑ AbsRel↓ LPIPS↓
scene0521 25.48 0.724 0.025 0.0004
scene0316 16.99 0.57 0.05 0.001
scene0158 24.93 0.74 0.02 0.0007

Table 6: Performance of the proposed method on 4 dif-
ferent real RGB-D datasets.

has been considered for the experiments. NeRF can
be trained using simulated 360-degree Blender data or
real data. For these particular experiments, simulated
Blender scenes were used.

DSNeRF [Deng et al., 2021]: DSNeRF works
only on the forward facing scenes where depth
supervision data is generated using Colmap

[Schonberger and Frahm, 2016]. The official imple-
mentation of DSNeRF was used for these experiments.
DONeRF [Neff et al., 2021]: DONeRF works only on
forward-facing datasets where all poses belong to a
view cell. This method works only with simulated data
with a dense depth map. The official implementation of
the DONeRF was used for the experiments.
Mip-NeRF [Barron et al., 2021]: The official Mip-
NeRF implementation on JAX was converted to
PyTorch for convenience of comparison.
All experiments were carried out on the same Lego
scene dataset that contains 30 training images with res-
olution 800× 800. The quantitative results in Table: 5
and the qualitative results in Figure: 5 show that DON-
eRF [Neff et al., 2021] can produce the best photomet-
ric quality, but is limited to forward-facing scenes, a
longer training time, and oracle network-based depth
prediction, where the proposed method uses only one
smaller network (less space requirement), trains faster
(4 times faster), and produces more accurate geometry.
Three different real-world datasets have been used from
the NerfingMVS [Wei et al., 2021] for experimenting
on real acquired depth images. Pre-processed depth
maps were used instead of using raw depth maps
because the raw depth maps contain areas without
depth information (holes where sensors cannot esti-
mate depth). NerfingMVS uses a monocular depth
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prediction network to complete the missing depths.
Alternatively, holes in the raw depth maps could be
handled as in the classic RGB NeRF implementa-
tion, however, this randomly affects computational
performance and comparisons. Table:6 shows the
quantitative results of the proposed method on 3
different datasets. The adaptive sampling strategy with
16 samples was used for all of these experiments. The
qualitative results of the experiments are shown in the
Figure:6. The ground-truth depth shows that it is not
very detailed and that some areas have wrong depth
measurements, which results in some artifacts in the
predicted image generated by the proposed method.

4.3 Analysis
Fewer views: The proposed method can learn a scene
representation from fewer views, as depth supervision
provides additional supervision and effective sampling.
Depth supervsion allows the network to learn scene ge-
ometry and multi-view constancy from a very limited
number of views.
Faster training: The results show a quantifiable
speed improvement in training time with the proposed
method compared to other state-of-the-art methods.
Faster training was achieved using fewer samples, a
smaller network architecture, and local sampling. The
Mip-NeRF RGB-D method is 3− 5× faster compared
to other similar NeRF-based methods.
Accurate depth estimation: The proposed method is
capable of producing a more accurate geometry com-
pared to other state-of-the-art methods. The network
can learn accurate geometry from small number of in-
puts as few as 8 frames.

5 DISCUSSION
In this article, a new method was presented for repre-
senting 3D scenes from RGB-D data using recent neu-
ral radiance fields. Instead of learning the radiance field
from RGB images, the proposed method uses RGB-D
frames, which allows achieving better underlying ge-
ometry and faster training and prediction times. Addi-
tional depth supervision of dense depth maps is shown
to have a significant improvement on the training time
through local sampling. The proposed method trains
3− 5× faster and improves the novel view and depth
quality. The experiments show significant improve-
ments over the state-of-the-art methods, both quantita-
tively and qualitatively. Future perspective will be fo-
cused on extending this approach to dynamic scenes.
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