
UNIVERSITY OF WEST BOHEMIA

Faculty of Applied Sciences

Department of Mechanics

DIPLOMA THESIS

Pilsen, 2022 Martin Hrabačka

Faculty of Applied Sciences

Department of Mechanics

Design and Dynamic Analysis
of Active Tensegrity Structures

Diploma thesis

Author: Martin Hrabačka
Supervisor: Ing. Radek Buĺın, Ph.D. Pilsen, 2022

Declaration

I hereby declare that this diploma thesis is completely my own work and I used only the
cited sources.

Pilsen, 31th May 2022 Martin Hrabačka

4

Acknowledgement

I would like to thank Ing. Radek Buĺın, Ph.D. for his exemplary guidance, expert advice,
factual comments and patience.

I would also like to give special thanks to my partner and family for their unwavering
support during my studies.

Martin Hrabačka

5

Abstract

Design and Dynamic Analysis of Active Tensegrity Structures

This diploma thesis first deals with the design of a general tensegrity structure using form-
finding methods. Within path-planning, a specific actuation in form of adjustments of
cables’ rest lengths is assigned to the resulting structure so that it follows a prescribed
complex trajectory. Since the path-planning problem is treated as static, an H2 con-
troller is designed with the main objective of suppressing possible structural vibrations.
With regard to the need of testing of dynamical properties and simulating motion of the
structure, a methodology for automatic creation of tensegrity computational models in
Simscape software is developed in the MATLAB scripting environment.

Key words: dynamics, computational modelling, active tensegrity structure, form-
finding, path-planning, H2 controller

Abstrakt

Návrh a dynamická analýza aktivńıch tensegritických struktur

Tato diplomová práce se nejprve zabývá návrhem obecné tensegritické struktury pomoćı
form-finding metod. Výsledné struktuře je v rámci úlohy path-planningu přǐrazena speci-
fická aktuace ve formě změn volných délek lan tak, aby struktura opsala předepsanou
komplexńı trajektorii. Jelikož je k úloze path-planningu přistupováno jako ke statickému
problému, pro tensegritickou strukturu je nav́ıc navržen H2 regulátor s hlavńım úkolem
potlačit př́ıpadné strukturálńı vibrace. S ohledem na nutnost testováńı dynamických
vlastnost́ı a simulace pohybu struktury je v programovaćım prostřed́ı MATLAB vy-
vinuta metodika pro automatické sestaveńı výpočtového modelu tensegrity v programu
Simscape.

Kĺıčová slova: dynamika, výpočtové modelováńı, aktivńı tensegritická struktura, form-
finding, path-planning, H2 regulátor

6

Contents

Assignment 3

Declaration 4

Acknowledgement 5

Abstract 6

1. Introduction 9
1.1. Thesis content and goals . 11

2. Form-finding 12
2.1. Adaptive force density method . 13

2.1.1. Geometry matrix . 14
2.1.2. Force density matrix . 14
2.1.3. Super-stability . 16
2.1.4. First design stage . 17
2.1.5. Second design stage . 19
2.1.6. Examples . 20

2.2. Dynamic relaxation method . 21
2.2.1. Formulation of the DRM . 22
2.2.2. Ensuring numerical stability . 25
2.2.3. Reinitialization at kinetic energy peaks 25
2.2.4. The DRM algorithm . 27
2.2.5. Examples . 29

2.3. Comparison of the AFDM and the DRM 31

3. Dynamics of tensegrity systems 32
3.1. Multibody system dynamics . 32
3.2. Computational model of tensegrity structure 34

3.2.1. Models of strut and cable . 35
3.2.2. Tensegrity model building . 37
3.2.3. Automatic model generation . 43

3.3. Modal analysis of computational model 46
3.3.1. The eigenvalue problem . 46
3.3.2. Eigenfrequencies of the computational model 47
3.3.3. Example . 48

7

Contents

4. Active tensegrity structures 49
4.1. Path-planning . 49

4.1.1. Optimization problem . 50
4.1.2. Algorithmization . 53
4.1.3. Examples . 54

4.2. Shape control . 62
4.2.1. Linearization . 62
4.2.2. Augmented plant . 65
4.2.3. H2 controller . 65
4.2.4. Examples . 66

5. Conclusion 70

Bibliography 71

A. Appendices 73
A.1. Parameter table . 73
A.2. MATLAB function for automatic generation of Simscape tensegrity models 74

8

1. Introduction

The word tensegrity is a conjunction of two words, tensile and integrity, coined by B.
Fuller [9]. In accordance with [14], it refers to the integrity of a stable self-equilibrated
system that contains a discontinuous set of components in compression inside a network
of components in tension. Fuller described tensegrities in quite an interesting way – small
islands of compression in a sea of tension.

Figure 1.1.: Tensegrity in art: Kenneth Snelson’s Triple Crown [12].

Figure 1.2.: Tensegrity in biology: human arm and foot [21].

Tensegrity structures were originally created and explored by artists fascinated by the
magnificence of their appearance. Artistic people were rapidly followed by architects
applying this new approach to structures such as geodesic domes [24]. A few decades
after Fuller’s invention in 1962, tensegrities started their expansion into other technical

9

1. Introduction

fields, for instance space engineering with the development of a deployable antenna. In
mentioned engineering areas, researchers have already revealed superior static features of
tensegrities, e.g. deployability, very good strength to weight ratio, or energy efficiency,
compared to traditional approaches [24]. However, tensegrity principles can be also
applied to other areas including biology (bones and tendons in human body, cells, etc.).
In Figure 1.1, there is an example of a tensegrity as an artistic work, and a biological
example of tensegrity is depicted in Figure 1.2.

Figure 1.3.: Tensegrity in robotics: deployed structure, stowed structure, impact test [20].

Recently, there has been an increasing trend in publishing effort aiming on application
of tensegrity structures in robotics, which is also the case of this work. Conventional
robots are usually composed of rigid materials and structures bringing advantages of
rigidity, high precision, and fast speed, but they also dispose of poor flexibility and
adaptability. On the other hand, soft robots have excellent flexibility and adaptability,
but the load capacity is limited and, moreover, there are still many difficulties in the
design, manufacturing, sensing, modelling, and control [13]. Quite promising approach
represents combining rigid and soft structures into tensegrities to gain advantages from
both types and compensate their disadvantages. An example of a robotic tensegrity
structure can be seen in Figure 1.3.

Figure 1.4.: Classification of a tensegrity structure [10].

10

1. Introduction

There is a number of different body forms that can be utilized as basal members of
tensegrity structures: bars, plates, or blocks as compressive parts, fibres, cables, nets, or
membranes as tensile members. In this work, tensegrities are assumed to be composed of
struts representing compressive members and tensile parts in form of deformable cables.
Tensegrities of this kind can be sorted into classes determining maximal number of struts
connected by one joint, e.g., structures of class 1 are the basic ones – they are not allowed
to contain any joints connecting some struts together (an example of a class-1 tensegrity
is the artwork in Figure 1.1). Classification of tensegrity structures is visualized in
Figure 1.4.

1.1. Thesis content and goals

The main goal of this thesis is to present a comprehensive methodology for designing
tensegrity robots. During the design process, several different problems are solved. Form-
finding represents a problem of searching for a specific stable configuration associated with
particular prestresses in all members. Two different from-finding methods, the Adaptive
force density method and the Dynamic relaxation method, described in chapter 2 are
utilized.

Dynamics of tensegrity systems is discussed in chapter 3. In its beginning, theoretical
background of multibody system dynamics modelled by Lagrange’s equations is briefly
summarized. Main emphasis of the chapter is placed on the development of a method-
ology that enables building a computational model of tensegrity structure in Simscape
software. Moreover, a robust software for automatic creation of Simscape models is de-
veloped in order to eliminate time spent on building the model manually. Modal analysis
of created computational model is then performed.

Because this work is focused on tensegrity robots, robotic manipulators to be more
specific, it is necessary to incorporate active members into the structure and design the
actuation so that the tensegrity performs required operation. A standard task of robotic
manipulators is to move something from one place to another while following a desired
trajectory. In case of tensegrity structures, the problem of designing the needed actuation
for following a specified trajectory is called path-planning. This problem is solved by
an optimization process in chapter 4. Subsequently, the structure is enhanced by an H2

controller designed to reduce position errors mainly in form of vibrations.

Thesis goals

The content of the work complies with goals of the thesis summarized in following points:

• Processing the design of tensegrity structures using form-finding methods.

• Basic analysis of stability and mechanical properties.

• Incorporation of active parts into tensegrity structures.

• Development of a methodology for automatic creation of dynamic models.

• Dynamic analysis of active tensegrity models.

11

2. Form-finding

Form-finding represents a common design problem for tension structures (e.g. mem-
brane structures, cable-nets) when configuration associated with prestresses in state of
equilibrium is searched for [29]. Regarding tensegrity structures, solving this problem
is difficult because there is high interdependency between configuration and prestresses
so they cannot be determined separately. Moreover, tensegrity structures maintain their
stability without any support.

Nowadays, there are various numerical approaches how to solve the problem of form-
finding. In this work, two different methods are described and used, each of them ad-
vantageously applicable at a different stage of active tensegrity structure development.
Their advantages are summarized at the end of this chapter in section 2.3.

Before both methods are presented, some general points have to be clarified. A general
passive 3-D tensegrity structure with n nodes and m members is fully determined when,
in addition to member and material properties (e.g. member’s cross section or Young’s
modulus), its topology, nodal positions and prestresses in each member are specified.
As already mentioned, form-finding methods should provide the answer about nodal
positions and members’ prestresses. This thesis is not focused on searching for a suitable
topology or members’ and material properties, it assumes that they are known apriori.

It is suitable to point out that both form-finding methods are presented as solutions
for 3-D structures, but they can be used for 2-D structures too. (Methods should be also
applicable to other dimensions, but it does not make much sense from the mechanical
point of view.)

Topology of a structure can be expressed by the connectivity matrix1 C ∈ Rm×n

representing all m connections between n nodes. It is supposed that the k-th member
(k = 1, 2, ...,m) begins in the node istart and ends in the node iend (istart, iend = 1, 2, ..., n).
Then the element Ck,i (i = 1, 2, ..., n) of the matrix C is defined according to [29] as

Ck,i =


sgn(iend − i), i = istart,
sgn(istart − i), i = iend,
0, otherwise.

(2.1)

Coordinates of all nodes can be summarized into the configuration vector X ∈ R3n

XT = [xT ,yT , zT], (2.2)

1Connectivity matrix gives the information only about existence of nodal connections. It does not
distinguish between struts and cables.

12

2. Form-finding

where vectors x,y, z ∈ Rn of nodal coordinates in particular direction are assembled as

x =[x1,1, x2,1, ..., xn,1]T ,

y =[x1,2, x2,2, ..., xn,2]T ,

z =[x1,3, x2,3, ..., xn,3]T ,

(2.3)

where the coordinate of i-th node in direction d is denoted as xi,d (d = 1, 2, 3). Alterna-
tively, spatial position of the i-th node can be expressed by the vector

ξi = [xi,1, xi,2, xi,3]T ∈ R3. (2.4)

Analogously to definitions (2.2) and (2.3), the complete vector F ∈ R3n of external
nodal load and vectors fx, fy, fz ∈ Rn of external load in particular direction can be
introduced with fi,d denoting the external force acting in the i-th node in direction d.

Members’ internal forces are expressed by the vector s ∈ Rm of internal forces as

s = [s1, s2, ..., sm]T , (2.5)

where sk is the internal force in the k-th member, and, analogously, the vector l ∈ Rm of
member lengths and the vector l0 ∈ Rm of member rest lengths are defined as

l = [l1, l2, ..., lm]T (2.6)

and

l0 = [l01, l
0
2, ..., l

0
m]T . (2.7)

In the following text, also the diagonal form L = diag(l) ∈ Rm×m of the vector l is
used. It is defined as

L =


l1 0 0 ... 0
0 l2 0 ... 0
0 0 l3 ... 0
...

...
...

. . .
...

0 0 0 ... lm

 . (2.8)

2.1. Adaptive force density method

The essence of the original force density method lies in the introduction of force density
concept. This concept allows a transformation of non-linear self-equilibrium2 equations
into linear ones. Originally, this approach was used for form-finding of net structures by
[17]. These structures have many things in common with tensegrity structures, therefore,
usage of the same concept is offered as a solution to tensegrity form-finding problem.

2Self-equilibrium = structure is equilibrated only by prestresses in the members (no external forces are
applied).

13

2. Form-finding

But there is also a difference – net structures are attached to fixed points but tensegrity
structures are free-standing. Thus, a new strategy is developed in comparison to the
original method. This work is based on the adaptive force density method (AFDM)
presented by [29] which is further modified.

The AFDM presented in this work generates a specific tensegrity based on two user
inputs: topology of the structure and elevation of selected structural nodes.

The method is divided into two main parts. In the first stage, feasible force density
vector is searched for and the second stage finds the self-equilibrated configuration in
form of the configuration vector. These two outputs fully determine the tensegrity and
the AFDM assures that it is a stable structure satisfying the constraints on elevation of
selected nodes.

2.1.1. Geometry matrix

The geometry matrix represents an instrument involved in ensuring the stability of the
designed structure. This short section only defines the matrix according to [29], all
important facts connected to this matrix can be found in the mentioned paper [29].

Using the connectivity matrix and coordinate vectors defined in (2.1) and (2.3), coor-
dinate difference vectors u,v,w ∈ Rm can be defined as

u = Cx,

v = Cy,

w = Cz.

(2.9)

The matrix U = diag(u) ∈ Rm×m represents a diagonal form of the vector u introduced
similarly to the diagonal form L in (2.8). Matrices V,W ∈ Rm×m are defined analogously.

The geometry matrix G ∈ Rm×D
2+D
2 is defined as

G = [Uu,Vv,Ww,Uv,Uw,Vw], (2.10)

where D is the spatial dimension of the structure (D = 3 in this text).

2.1.2. Force density matrix

The heart of the AFDM represents the usage of the force density matrix E, and this
section is dedicated to its definition.

First, the quantity of the force density in the k-th member is introduced according
to [17] as

qk =
sk
lk
. (2.11)

Force densities of all members are summarized in the force density vector q ∈ Rm as

q = [q1, q2, ..., qm]T . (2.12)

14

2. Form-finding

It can be also derived from s and L defined in (2.5) and (2.8) as

q = L−1s. (2.13)

The matrix Q = diag(q) ∈ Rm×m represents a diagonal version of the force density
vector.

If the tensegrity structure is in static equilibrium, the equilibrium equation

Ds = F (2.14)

derived in [29] must be satisfied. The load vector F was introduced in the begin-
ning of chapter 2. The equilibrium matrix D ∈ R3n×m is composed of sub-matrices
Dx,Dy,Dz ∈ Rn×m for each direction as

DT = [DT
x ,D

T
y ,D

T
z]. (2.15)

For the matrix Dx, it applies that

Dx = CTUL−1, (2.16)

and analogously for Dy and Dz according to [29].
Equilibrium equation in the direction x (a sub-system of (2.14)) is obviously

Dxs = fx. (2.17)

Using equations (2.16) and (2.13), the left side of (2.17) can be written as

Dxs = CTUL−1s = CTUq. (2.18)

Applying general relation diag(a) ·b = diag(b) ·a between two vectors and their diagonal
forms, (2.18) can be further modified as

CTUq = CTQu = CTQCx, (2.19)

where the definition (2.9) of the coordinate vector is also used.
Finally, the force density matrix E ∈ Rn×n is defined as

E = CTQC, (2.20)

so the equilibrium equation in the direction x can be written in form of

Ex = fx. (2.21)

The whole system of equilibrium equations is thereforeE 0 0
0 E 0
0 0 E

x
y
z

 = HX = F. (2.22)

15

2. Form-finding

In addition to the definition (2.20), there is also a direct definition3 of E using particular
force densities qi of members. The element Ei,j (i, j = 1, 2, ..., n) is defined according to
[29] as

Ei,j =


∑
k∈Mi

qk, i = j,

−qk, i 6= j ∧ nodes i, j are connected by member k,
0, otherwise,

(2.23)

where Mi denotes the set of all members connected to i-th node.

2.1.3. Super-stability

The whole method relies on sufficient conditions of so-called super-stability, the term
introduced in [6]. The criterion of super-stability is a stricter type of the general stability
criterion (super-stable structures are a subset of stable structures, see Figure 2.1). In this
paper, a stable structure is defined as a structure with total potential energy reaching its
local minimum. The super-stable structure is a structure that is always stable in the state
of self-equilibrium irrespective of material properties as well as level of prestresses [29].

According to [29], if following conditions are fulfilled then the structure is super-stable.

1. The force density matrix E is positive semi-definite.

2. The force density matrix E has the rank deficiency D + 1.

3. Rank of the geometry matrix G is 1
2
(D2 +D).

First condition represents the necessary condition for super-stability in terms of force
densities. The second one is the non-degeneracy condition for free-standing prestressed
structures and the third one assures that the geometric realization of the structure is
non-degenerate. Meaning and derivation of these conditions can be found in [29].

When these conditions are fulfilled, it is clear that the structure is stable with no need
of inspecting the tangential stiffness matrix which might be difficult (or impossible) to
discover, especially at the beginning of tensegrity design process.

Stable

Unstable

Prestress-stable

Super-stable

Figure 2.1.: Relationship among different criteria of stability.

3It is an analogous procedure to the stiffness matrix creation in case of discrete vibrating systems.

16

2. Form-finding

In Figure 2.1 inspired by [29], relationship among different stability criteria is visual-
ized. Sets of stable and unstable structures are principally disjoint. The set of super-
stable structures is a subset of stable structures which means that all super-stable sets
are stable. Regarding pin-jointed structures, which the tensegrity structure truly is,
there is another relevant stability criterion – prestress-stability. It assures stability only
from the view of infinitesimal displacements from the self-equilibrium state and it does
not imply stability as it can be seen in Figure 2.1. This work does not operate with
prestress-stability.

2.1.4. First design stage

As it was already mentioned, the first phase of the AFDM searches for feasible force
densities. They can be discovered when first two conditions of super-stability are satisfied.
These two conditions are possible to be merged in one requirement – force density matrix
E must have D + 1 zero eigenvalues and other positive. The process described in the
following text is proposed in [29] and [30].

If eigenvalue analysis of the matrix E is performed, eigenvalues λν (sorted from the
lowest to the highest value) and corresponding eigenvectors vν are obtained. They can
be summarized into the spectral matrix

Λ = diag([λ1, λ2, ..., λn]), (2.24)

a diagonal matrix with eigenvalues on its diagonal, and the matrix

Φ = [v1,v2, ...,vn] (2.25)

composed of eigenvectors as its columns.
Using the fact that the force density matrix E is real symmetric, spectral decomposition

can be done as

E = ΦΛΦT . (2.26)

The modal matrix Λ is required to have D + 1 zero eigenvalues and other positive
which is probably not satisfied without any external intervention. Thus, the modified
modal matrix Λ is created with the modified set of eigenvalues λν . This set is defined as

λν =

{
0, ν ≤ D + 1,
λν , ν > D + 1

(2.27)

and the modified force density matrix E using the spectral decomposition

E = ΦΛΦT . (2.28)

is created.
The task of the first design stage is not to find the feasible force density matrix E, but

to find the feasible vector q of force densities. If the direct definition (2.23) of E is used,

17

2. Form-finding

it can be claimed according to [29] that i-th row Ei ∈ R1×n of the force density matrix
is possible to obtain by an equation

(Ei)
T = iBq, (2.29)

where the component iBj,k of the matrix iB ∈ Rn×m is defined as

iBj,k =


1, i = j ∧ node i contains member k ∈Mi,
−1, i 6= j ∧ nodes i, j are connected by member k,
0, otherwise.

(2.30)

By summarizing iB into a matrix B ∈ Rn2×m in the manner of

BT = [1B
T , 2B

T , ..., nB
T] (2.31)

and defining a vector g ∈ Rn2
as

g = [E1,E2, ...,En]T , (2.32)

an equation

Bq = g (2.33)

applies. Thus, using pseudo-inversion, the force density vector can be expressed as

q = (BTB)−1BTg. (2.34)

Analogously, it applies that

q̃ = (BTB)−1BTg, (2.35)

where the vector g is assembled from E similarly to g.

Start

End

κ = 0

Eκ → Λ,Φ

λ1,2,3,4
?
= 0

λ5,6,...

?
> 0

λ1,2,3,4 = 0

λ5,6,... > 0

E = ΦΛΦT

E
∗→ qκ+1 Eκ+1 = CTQκ+1C

κ = κ + 1

3 7

*pseudo-inversion used4

Figure 2.2.: Flow chart of the first stage of the AFDM.

4Mentioning, that pseudo-inversion is used during the process, is important. Matrices Eκ+1 6= E which
is the reason why an iterative process is needed. As claimed in [29], for κ >> 1: Eκ+1 ≈ E.

18

2. Form-finding

In summary, the new vector q̃ of force densities is derived from the modified force
density matrix E in terms of the least square method. Due to the usage of the least
square method, the new matrix Ẽ created from the vector q̃ using the equation (2.20)

is probably not the same as the matrix E. Therefore, the matrix Ẽ does not probably
have the required eigenvalues λν . As suggested in [29], the matrix Ẽ attains eigenvalues
λν (with sufficient accuracy) after a sufficient number of iterations.

In Figure 2.2, there is a flow chart of the first design stage of the AFDM. To emphasize
the iterative character of the algorithm, the notation qκ+1 = q̃ and Eκ+1 = Ẽ is used,
where κ denotes an iterator. The flow chart is only a symbolical illustration, not all
necessary operations are visualized in it, it is meant to be only a supplementary material
to the previous text.

2.1.5. Second design stage

The aim of the second design stage is to determine the self-equilibrated configuration
of the structure represented by the vector X of nodal coordinates. There are two re-
quirements that have to be satisfied. First, rank of the geometry matrix G has to be
1
2
(D2 +D) to assure super-stability of the resulting structure. Second, as indicated in the

introduction to the AFDM, elevation of preselected nodes has to meet predefined values.
Solution to this problem starts with mentioning already discussed equilibrium equa-

tions (2.22). They can be easily turned into self-equilibrium equations by omitting ex-
ternal forces on the right side asE 0 0

0 E 0
0 0 E

x
y
z

 = HX = 0. (2.36)

As pointed out in [30], equations (2.36) are actually non-linear with respect to the
nodal coordinates x,y, z – the force density matrix E is dependent on member lengths
and these lengths are non-linear functions of nodal coordinates. But if the force densities
are already determined, E is constant and self-equilibrium equations become linear.

Rank deficiency of the matrix E is D+ 1, therefore, rank deficiency of the matrix H is
3(D+ 1). This means that 3(D+ 1) linearly independent solutions (configurations of the
structure) of the system (2.36) can be found when no geometrical constraint is applied.

Hence, there is space for adding constraints on specified altitude in specified nodes.
Particular values bv (v = 1, 2, ..., nb) of altitudes are summarized into the vector b ∈ Rnb

as

b = [b1, b2, ..., bnb]
T , (2.37)

where nb is the number of nodes with specified altitude. Nodes with specified altitude
are marked in the matrix A ∈ Rnb×n assembled as

Av,i =

{
1, node i has specified altitude bv,
0, otherwise.

(2.38)

19

2. Form-finding

To meet specified nodal altitudes, the system of equations

Az = b (2.39)

has to be satisfied in addition to the system (2.36) too.
Systems (2.36) and (2.39) are possible to be merged together into a form of

E 0 0
0 E 0
0 0 E
0 0 A


x

y
z

 = ĤX = b̂, (2.40)

where b̂ ∈ Rdn+nb and Ĥ ∈ R(dn+nb)×dn.
The solution of this linear system can be achieved using common methods, e.g. pseudo-

inversion. When an initial configuration X0 is specified, it is possible to apply an iterative
approach, which is used in this work in form of MATLAB function fsolve application.

When this linear system is solved, a geometrical non-degeneracy condition has to be
checked. If the rank of the geometry matrix G is 1

2
(D2 +D), the solution X is declared

as the resulting configuration. Otherwise, altitude constraints (or constraints for other
coordinates) are added/modified/removed, modified system of equations is solved and
the new matrix G is checked again. This is repeated until the feasible configuration is
achieved. However, it is good to point out that the requirement on the rank of the matrix
G is satisfied in most cases so adjustments of constraints are generally not needed.

-0.5 0 0.5 1 1.5

x

0

0.5

1

1.5

2

z

(a) Initial configuration.

-0.5 0 0.5 1 1.5

x

0

0.5

1

1.5

2

z

(b) Final configuration.

Figure 2.3.: A 2-D example structure subjected to the AFDM.

2.1.6. Examples

This section contains two structures, which initial configurations are subjected to the
AFDM. Values of members’ properties of both structures are available in Appendix A.1.

20

2. Form-finding

The first one is a 2-D tensegrity tower with two simple floors. The total height of initial
structure is 2.2 [m], while it is required that the final structure has the total height of
exactly 2 [m]. Both initial and final super-stable configuration are visualized in Figure 2.3.
The symmetry of the resulting force density vector corresponds with the symmetry of the
structure configuration, while particular values of force densities in particular members
are not important. The required height is met accurately.

A 3-D tensegrity tower with two floors represents the second example. The initial
height of the structure is 2 [m]. Let altitudes of all nodes be prescribed, specifically as
0 [m] for nodes in the lowest layer, 1 [m] for nodes in the middle layer, and 2 [m] for
nodes in the top layer. Both initial and final configuration are visualized in Figure 2.4
(beware of different scaling). In this case, altitudes are not met precisely (expected due
to definition of more than 3(D + 1) constraints) – altitude of the bottom layer is 0 [m]
in all nodes, altitude of the middle layer is 1.005 [m] in all nodes, and altitude of the top
layer is 1.995 [m] in all nodes. Again, the symmetry of the resulting force density vector
corresponds with the symmetry of the final configuration.

-1

0

40

1z

2

1

3

x y

2 2
3

4 0

(a) Initial configuration.

0

0.5

1

1z

1.5

2.51.5

x y

2 2
2.5 1.5

3

(b) Final configuration.

Figure 2.4.: A 3-D example structure subjected to the AFDM.

2.2. Dynamic relaxation method

Unlike the previous described form-finding method, the AFDM, which is based purely
on mathematical analysis and operations with matrices, the dynamic relaxation method
(DRM) is based on the analysis of mechanical system real behaviour.

The general concept of the DRM is to trace step-by-step the motion of the structure
until the structure reaches a static equilibrium due to introduced damping. Originally,
the method uses the viscous damping of nodal movements. According to [2], damping
is formed proportionally to the product of nodal velocities and mass components in this
case and most rapid convergence is obtained by critically damping the lowest frequency

21

2. Form-finding

mode. An alternative to viscous damping is the usage of kinetic damping procedure
which authors of [3, 25] found very efficient regarding speed of convergence in case of
very large disturbances from equilibrated configuration.

2.2.1. Formulation of the DRM

In this work, the kinetic damping process is applied. As described in [2], this approach
represents a procedure when movements of an undamped structure are traced until a local
peak (maximum) of total kinetic energy is reached. At this point, all nodal velocities
are set to zero (no movements of the structure) and the process is restarted from the
current configuration. These steps are repeated until the energy is completely dissipated
and a static equilibrium is found. Following section introduces governing equations of
this process presented in [2].

According to the Newton’s second law, motion of i-th node in direction d at time t is
governed by equation

ri,d(t) = mi,dv̇i,d(t), i = 1, 2, ..., n, d = 1, 2, 3, t ≥ 0, (2.41)

where ri,d represents a residual force, v̇i,d is nodal acceleration and mi,d is lumped mass.

Residual force

At any time, it is possible to express the residual force ri,d according to [2] as

ri,d(t) = fi,d(t) +
∑
ki∈Mi

ski(t) · nki,d(t), (2.42)

where summation is done through the set Mi of all the members connected to the i-th
node, ski is the internal force in the ki-th member, fi,d is an external load applied to
the i-th node and nki,d is the d-th component of the ki-th member’s normalized direction
vector nki expressed as

nki,d(t) =
xj,d(t)− xi,d(t)

lki(t)
, (2.43)

where xi,d the d-th coordinate of the node i, xj,d is the d-th coordinate of the ki-th
member’s second node and lki is the member’s length. The product ski ·nki expresses the
spatial vector of the internal force ski acting on the i-th node, while the product ski ·nki,d
in (2.42) specifies the component of this force in the direction d.

It should be explicitly noted that the direction vector nki varies for the same index ki
depending on which node is the main one (node with the index i) and which node is the
second one (node j). This definition of nki by the eq. (2.43) ensures the law of action
and reaction satisfaction in case of member forces.

22

2. Form-finding

1 2

34

5

6

7

8

x
y

z

(a) The example structure.
x

y

z

4 3

6

8

5

n5-4 n5-3

n5-6

n5-8

s5-4
s5-3

s5-6

s5-8f5

(b) Forces acting in node i = 5.

Figure 2.5.: The example structure and an analysis of nodal forces.

In Figure 2.5a, there is an example 3-D tensegrity, and forces acting on a chosen node
are visualized in Figure 2.5b. Figures should clarify the issue of both acting nodal forces
and indexing i, j, ki. With the focus on the right figure, the node chosen for the analysis
is the 5-th node (i = 5). Four members are connected to the node, so there are four
internal forces ski = ski · nki and direction vectors nki , where the index ki is gradually
ki = 5-3, 5-4, 5-6, 5-8 (the notation is only symbolical for better orientation). And, for
instance, in case of the member ki = 5-3, its first node is obviously i = 5 and its second
node is j = 3. There is also another force acting in the node 5, an external force f5.

Combining (2.42) and (2.43), it is possible to write the equation for the residual force
as

ri,d(t) = fi,d(t) +
∑
ki∈Mi

ski(t) ·
xj,d(t)− xi,d(t)

lki(t)
. (2.44)

Member’s length (distance between two corresponding nodes) is calculated as the Eu-
clidean norm

lk(t) = ||ξj(t)− ξi(t)|| =
√∑

d

[xj,d(t)− xi,d(t)]2. (2.45)

Calculation of the internal force in a member depends on the type of the member. For
a strut, it is defined as a standard elastic force

sk(t) = kek · [lk(t)− l0k], k = 1, 2, ...,m, (2.46)

23

2. Form-finding

where l0k is the rest length of the member and

kek =
EsAs

l0k
(2.47)

is its elastic stiffness, where the strut’s cross section As and Young’s modulus Es appear.
For a cable, it is defined similarly but as a one-sided binding. Thus,

sk(t) =

{
kek · [lk(t)− l0k] for lk(t)− l0k > 0,
0 else,

(2.48)

where the elastic stiffness kek is now

kek =
EcAc

l0k
, (2.49)

where Ac is the cross section of a cable and Ec is Young’s modulus of a cable.
If the weight of the structure is considered, it is necessary to add the gravity f gi in

form of

f gi = g ·mreal
i (2.50)

to the appropriate component of the external load fi,d (it is d = 3 in this work). The
gravitational acceleration is denoted as g and mreal

i is the real lumped mass in the i-th
node expressed as

mreal
i =

∑
ki∈Ms

i

ms
ki

2
, (2.51)

where summation is done through the set M s
i of all struts connected to the i-th node,

and ms
ki

is the weight of the ki-th strut. Mass of cables is not considered.

Updating nodal position and velocity

Central difference formula can be used as an approximation of nodal acceleration v̇i,d(t)
in form of

v̇i,d(t) =
vi,d(t+ ∆t

2
)− vi,d(t− ∆t

2
)

∆t
, (2.52)

so nodal velocity vi,d(t+ ∆t
2

) is obtained with respect to the eq. (2.41) in form of

vi,d(t+ ∆t
2

) = vi,d(t− ∆t
2

) +
∆t

mi,d

· ri,d(t), (2.53)

where ∆t is time step and the residual force ri,d is expressed by eq. (2.44).
Updated nodal position xi,d(t+∆t) can be derived using average velocity (at midpoint

of time interval) as

xi,d(t+ ∆t) = xi,d(t) + ∆t · vi,d(t+ ∆t
2

). (2.54)

When the new configuration is obtained, it is possible to express the updated residual
force ri,d(t+ ∆t) according to the eq. (2.44) and repeat the process ri,d(t)→ vi,d(t+

∆t
2

)→
xi,d(t+ ∆t) for t = t+ ∆t.

24

2. Form-finding

2.2.2. Ensuring numerical stability

As pointed out in [1] or [2], when a static solution rather than tracing the real dynamic
behaviour is searched for, there is no need for setting mi,d to real values (mi,d = mreal

i),
it is advantageous to adjust these masses to ensure convergence of the iterative process.

When searching for a suitable choice of mi,d, it is possible to come from the idea
of finding a critical value ∆tcr of the time increment. The author of [2] claims that
the process is divergent when the velocity vi,d(t + ∆t

2
) of one node in some direction is

higher and with opposite sign compared to the velocity vi,d(t− ∆t
2

) in the previous step.
Therefore, the critical case is present when the velocity reaches the state

vi,d(t+ 3∆tcr

2
) = −vi,d(t+ ∆tcr

2
) = vi,d(t− ∆tcr

2
). (2.55)

Using the idea (2.55), it is possible to express the critical time increment ∆tcr(mi,d)
dependent on arbitrarily chosen fictitious mass mi,d. Apparently, a reverse approach can
be used – expressing a critical value mcr

i,d(∆t) of mass dependent on arbitrary choice of
time increment ∆t. Finally, fictitious mass mi,d used in the iterative process is chosen as
mi,d = mcr

i,d, while its explicit expression is set out in [2].
During the implementation of this work, it turned out that it is better to use an

alternative setting of mi,d recommended by [1] in form of

mi,d = mi,d(t) = 2∆t2 · ki,d(t). (2.56)

The direct stiffness ki,d is calculated by summing up partial stiffnesses supplied by the
members connected to the i-th node. Each partial stiffness is composed of the elastic
stiffness keki and the geometric stiffness kgki , so ki,d can be written as

ki,d(t) =
∑
ki∈Mi

[
keki + kgki(t)

] [xj,d(t)− xi,d(t)
lki(t)

]2

, (2.57)

where

kgki(t) =
ski(t)

lki(t)
(2.58)

and keki has been already defined in eq. (2.47) for struts, or in (2.49) for cables.

2.2.3. Reinitialization at kinetic energy peaks

As it was already mentioned in the introduction of section 2.2.1, kinetic damping is used.
When the process is starting or restarting (at time t = t∗), nodal velocity is set

vi,d(t
∗) = 0. (2.59)

If this is combined with forward difference formula

v̇i,d(t
∗) =

vi,d(t
∗ + ∆t

2
)− vi,d(t∗)

∆t
2

(2.60)

25

2. Form-finding

Ek(t)

t
t− 3∆t

2
t−∆t

t∗

t− ∆t
2

t t+ ∆t
2

Figure 2.6.: Local peak of total kinetic energy.

and with the eq. (2.41), it is possible to express initial value of nodal velocity vi,d(t
∗+ ∆t

2
)

after start or restart as

vi,d(t
∗ + ∆t

2
) =

∆t

2mi,d(t∗)
· ri,d(t∗) (2.61)

which is used in the first iteration after start or restart.
It is also important to point out that the detection of the local peak of the kinetic

energy Ek, which is calculated as

Ek(t) =
1

2

n∑
i=1

3∑
d=1

mi,d(t)v
2
i,d(t), (2.62)

is done by monitoring the declination of the energy. Using an inequality

Ek(t− 3∆t
2

) < Ek(t− ∆t
2

) ≥ Ek(t+ ∆t
2

), (2.63)

it is clear that the kinetic energy peak Ek(t∗) occurs in the interval t∗ ∈ 〈t− 3∆t
2
, t+ ∆t

2
〉,

which is visualized in Figure 2.6, but it is not possible to specify the energy peak only
from this information, so the function Ek(t) has to be approximated.

According to [2], a quadratic polynomial can be used to fit the current (t+ ∆t
2

) and two
previous values of kinetic energy. Then the interval of possible peak appearance is due
to the symmetry of the parabola limited to t∗ ∈ 〈t−∆t, t〉 and, moreover, it is possible
to derive the exact time t∗ of the peak of the approximated energy according to [2] as

t∗ = t− δt∗ = t−∆t · c, (2.64)

where

c =
Ek(t− ∆t

2
)− Ek(t+ ∆t

2
)

2Ek(t− ∆t
2

)− Ek(t+ ∆t
2

)− Ek(t− 3∆t
2

)
. (2.65)

26

2. Form-finding

In the same manner as the eq. (2.54) was obtained, calculation of coordinates xi,d(t
∗)

at peak time can be done:

xi,d(t
∗) = xi,d(t+ ∆t)−∆t · vi,d(t+ ∆t

2
)−∆t · c · vi,d(t− ∆t

2
). (2.66)

Using this equation and eq. (2.53), it applies that

xi,d(t
∗) = xi,d(t+ ∆t)−∆t · (1 + c) · vi,d(t+ ∆t

2
) +

∆t2

2
· c · ri,d(t)

mi,d(t)
. (2.67)

2.2.4. The DRM algorithm

In this section, the DRM algorithm is presented. First, it is suitable to introduce matrix
forms of some related variables and define their dimensions.

Coordinates xi,d of all nodes can be assembled again into vectors x,y, z ∈ Rn defined
in (2.3) forming the vector X ∈ R3n of nodal coordinates defined in (2.2). This can be
summarized into a symbolic notation xi,d → x,y, z→ X.

Analogously, vectors summarizing other nodal properties are created. The summary
(including already defined coordinate vector X for better orientation) of these vectors
follows:

xi,d(t) ∈ R→ x(t),y(t), z(t) ∈ Rn → X(t) ∈ R3n, (2.68)

vi,d(t) ∈ R→ vx(t),vy(t),vz(t) ∈ Rn → V(t) ∈ R3n, (2.69)

v̇i,d(t) ∈ R→ v̇x(t), v̇y(t), v̇z(t) ∈ Rn → V̇(t) ∈ R3n, (2.70)

mi,d(t) ∈ R→mx(t),my(t),mz(t) ∈ Rn →M(t) ∈ R3n, (2.71)

ki,d(t) ∈ R→ kx(t),ky(t),kz(t) ∈ Rn → K(t) ∈ R3n, (2.72)

ri,d(t) ∈ R→ rx(t), ry(t), rz(t) ∈ Rn → R(t) ∈ R3n, (2.73)

fi,d(t) ∈ R→ fx(t), fy(t), fz(t) ∈ Rn → F(t) ∈ R3n. (2.74)

Properties, that belong to members, are summarized into vectors as follows:

l(t) =[l1(t), l2(t), ..., lm(t)]T ∈ Rm, (2.75)

s(t) =[s1(t), s2(t), ..., sm(t)]T ∈ Rm, (2.76)

ke(t) =[ke1(t), ke2(t), ..., kem(t)]T ∈ Rm, (2.77)

kg(t) =[kg1(t), kg2(t), ..., kgm(t)]T ∈ Rm, (2.78)

Before a global algorithm for the whole method is introduced, a sub-algorithm deter-
mining member lengths l, member internal forces s, nodal residuums R and fictitious
nodal masses M is visualized in Figure 2.7. It is quite a straightforward algorithm with
possibility of prescribing fixed position in some direction to preselected node(s)5.

5The same behaviour, prescription of specific altitude to some nodes, as in case of the AFDM can be
achieved.

27

2. Form-finding

Start
l(t)

(2.45)

s(t)
(2.46), (2.48)

R(t)
(2.44)

K(t)
(2.57)

M(t)
(2.56)

fixed
d-th coordinate

of node i
ri,d(t) = 0

End

3

7

Figure 2.7.: Flow chart of l, s, R, M calculation.

In order to make the DRM algorithm output similar to the AFDM algorithm output,
there is a requirement for the conversion of an internal force sk(t) to a force density

qk(t) =
sk(t)

lk(t)
(2.79)

and particular force densities create the force density vector

q(t) = [q1, q2, ..., qm]T (2.80)

together, which is the same definition as in (2.12).
In the introduction to section 2.2.1, it was mentioned that the process is repeated until

a static equilibrium is found. This can be interpreted as a stopping condition in form
of an acceptably low value of the total nodal residuum norm ||R||. In this work, the
Euclidean definition of a norm is used. The stopping condition can be written as

||R(t)|| ≤ Rtol, (2.81)

where Rtol is a tolerance parameter set acceptably low.
The complete DRM algorithm presented in Figure 2.8 is with some modifications in-

spired by [1].

28

2. Form-finding

Start

t = 0

l(0), s(0),
R(0), M(0)

Fig. 2.7

q0

(2.79)

V(∆t
2

)
(2.61)

Ek(∆t
2

)
(2.62)

X(∆t)
(2.54)

t = t+ ∆t

l(t), s(t),
R(t), M(t)

Fig. 2.7

V(t+ ∆t
2

)
(2.53)

Ek(t+ ∆t
2

)
(2.62)

X(t+ ∆t)
(2.54)

Ek(t+ ∆t
2

)

≤ Ek(t− ∆t
2

)

7

3

X(t∗)
(2.67)

l(t∗), s(t∗),
R(t∗), M(t∗)

Fig. 2.7

||R(t)||
≤ Rtol

(2.81)

3

7

t = t∗

V(t∗ + ∆t
2

)
(2.61)

X(t+ ∆t)
(2.54)

Ek(t+ ∆t
2

)
(2.62)

XF = X(t∗),
sF = s(t∗)

qF

(2.79)
End

Figure 2.8.: Flow chart of the DRM process.

2.2.5. Examples

The same example structures as shown in case of the AFDM in section 2.1.6 are presented
to illustrate the usage of the DRM. The final super-stable configuration calculated by the
AFDM is now used as the initial configuration for the DRM, while cables’ rest lengths

29

2. Form-finding

are calculated from particular force densities provided by the AFDM. Thus, the initial
state of structures is now exactly the same as the final state in case of the AFDM. To
demonstrate benefits of the the DRM, let all three cables on the right side of the 2-D
tensegrity be shortened by 0.1 [m] and all three cables on the left side be extended by
0.1 [m]. In case of the second example, the 3-D tensegrity tower, all eight horizontal
cables forming the middle ring are shortened by 0.2 [m]. Both examples with initial and
final configuration are depicted in figures 2.9 and 2.10. Exploited values of members’
properties and parameter Rtol are available in Appendix A.1.

-0.5 0 0.5 1 1.5

x

0

0.5

1

1.5

2

z

(a) Initial configuration.

-0.5 0 0.5 1 1.5 2

x

0

0.5

1

1.5

2

z

(b) Final configuration.

Figure 2.9.: A 2-D example structure subjected to the DRM.

0

0.5

1

31

z

1.5

2

1.5

x y

2 2
2.5

3 1

(a) Initial configuration.

0

0.5

1

31

z

1.5

2

1.5

x y

2 2
2.5

3 1

(b) Final configuration.

Figure 2.10.: A 3-D example structure subjected to the DRM.

30

2. Form-finding

2.3. Comparison of the AFDM and the DRM

In this chapter, two form-finding methods were presented, each one based on a different
approach. Their applicability in the active tensegrity design process is different, while
both of them bring advantages when applied in an appropriate design stage.

The AFDM is very useful when only few inputs from a designer are available – it
allows to find a super-stable form of a tensegrity only based on given topology and an
initial idea of the structure appearance. This becomes very helpful especially in the
beginning of the design process when the main aim is the exploration of various stable
tensegrity configurations with the same topology without much effort. From the explored
set, the designer is able to choose the one with advantageous shape and other features
with respect to particular tensegrity application.

On the other hand, in further design steps, when a tensegrity structure is already
fully defined, the usage of the AFDM becomes quite inappropriate, since the method can
change the whole structure (see examples in section 2.1.6, extensive change especially
in case of the 3-D structure). This is the right time for the usage of the DRM. The
method provides the information about statically equilibrated configuration of a structure
without any changes of structural properties. This is extremely helpful when the aim
is to investigate static response on particular structure actuation in form of changes
of members’ rest lengths (this work allows to actuate only cables, struts are always
passive). The DRM also allows to include external forces, such as gravity or external
load. Considering these facts, the DRM method can be advantageously used during the
path-planning process presented in chapter 4.1.

31

3. Dynamics of tensegrity systems

This chapter is focused on modelling of tensegrity structure dynamics. It contains a brief
introduction to mathematical description of tensegrity dynamics and the main emphasis
is placed on the automatic generation of computational models in the Simscape software.

3.1. Multibody system dynamics

The aim of this section is to provide a brief summary of equations describing the dynamics
of multibody systems applied on tensegrity structures. The description is based on [8]
and [19].

Basically, the presented summary is a set of findings achieved by the Hamilton’s prin-
ciple application. These findings are called the Lagrange’s equations of the first kind (the
use of p > ndof generalized coordinates is considered). Dynamics of a tensegrity structure
with ndof degrees of freedom can be described by an algebraic-differential system of p+ r
equations in a matrix form[

M A(q)
AT (q) 0

] [
q̈
λ

]
=

[
a(q, q̇, t)
b(q, q̇)

]
, (3.1)

where the number p of generalized coordinates is equal to

p = 6 ·ms (3.2)

in case of a 3-D system assumed in this work, the number of rigid struts in the structure
is denoted as ms, and

r = p− ndof (3.3)

defines how many constraint equations are specified.
Unknown variables of the system (3.1) are the Lagrange multipliers summarized in the

vector

λ = [λ1, λ2, ..., λr]
T ∈ Rr (3.4)

and generalized coordinates summarized in the vector q that can be established in various
ways (e.g. coordinates of mass centres of struts in combination with the Euler’s angles).
Because this question is beyond the scope of this thesis, let just generalized coordinates
of the v-th strut be defined by three coordinates ρv,d and three angles ϕv,d. Thus,

ρv = [ρv,1, ρv,2, ρv,3]T , v = 1, 2, ...,ms, (3.5)

32

3. Dynamics of tensegrity systems

ϕv = [ϕv,1, ϕv,2, ϕv,3]T , v = 1, 2, ...,ms, (3.6)

q = [ρ1,ϕ1,ρ2,ϕ2, ...,ρms ,ϕms]
T ∈ Rp. (3.7)

The mass matrix M can be expressed as

M =
∂

∂q̇T

(
∂Ek

∂q̇

)
∈ Rp×p, (3.8)

where Ek is the kinetic energy.
Let only holonomic and scleronomic constraints among generalized coordinates be con-

sidered. Constraint equations can be written in form of

c(q) = 0 ∈ Rr. (3.9)

Then, the constraint Jacobian matrix A is defined as

A(q) =
∂cT (q)

∂q
∈ Rp×r. (3.10)

Vectors a,b are introduced as

a(q, q̇, t) = f +
∂Ek

∂q
− ∂

∂qT

(
∂Ek

∂q̇

)
q̇ ∈ Rp (3.11)

and

b(q, q̇) = −ȦT (q)q̇ ∈ Rr. (3.12)

In a, there is the vector f of all generalized forces except inertial ones (they are included
by Ek) – external loads acting on the structure, gravity forces or elastic and viscous forces
generated by cables incorporated into the structure. The last two forces mentioned are
defined as

sek(t) =

{
kek · [lk(t)− l0k] for lk(t)− l0k > 0,
0 else

(3.13)

and

svk(t) =

{
dk · l̇k(t) for lk(t)− l0k > 0,
0 else

(3.14)

for the k-th cable connecting nodes k1 and k2 with coordinates ξk1 and ξk2 . The elastic
stiffness of the cable is defined as

kek =
EcAc

l0k
(3.15)

and its viscous damping can be defined proportionally to the cable stiffness as

dk = βkek. (3.16)

33

3. Dynamics of tensegrity systems

The rest length is denoted as l0k, Young’s modulus as Ec, cross section as Ac and pro-
portional damping coefficient as β. Cable’s current length is expressed as the Euclidean
norm

lk(t) = ||ξk1(t)− ξk2(t)||. (3.17)

Its time derivative l̇k(t) expresses the magnitude of relative velocity between correspond-
ing nodes.

Other approaches to modelling cables can be found for instance in [4]. Incorporation
of cable forces sek and svk into the generalized force vector f is dependent on particular
definition of generalized coordinates through nodal positions ξi(ρv,ϕv), thus, it is not
further analysed.

This work is not focused on the precise mathematical description of multibody system
dynamics since its objectives are different. Nevertheless, there is a number of publications
dealing with this issue, for instance [21], [22] or [27]. In the first mentioned paper,
a detailed dynamic analysis of tensegrity systems of the class 1 is performed.

3.2. Computational model of tensegrity structure

Lots of software has been developed in past years in order to model the dynamics of
multibody systems such as Adams, Simpack, RecurDyn, etc. In this work, Simscape
is used for this purpose. It is an extension package of MATLAB-Simulink, it uses the
same block environment, and, moreover, both standard Simulink and special Simscape
blocks can be combined together. Simscape enables modelling and simulating multi-
domain systems, this thesis exploits only its subpackage Multibody with the focus on
multibody systems from the field of solid mechanics. As an illustration of the development
environment, there is an example of Simscape model in form of a mechanical oscillator
in Figure 3.1.

f(x) = 0

Solver

C

Conf

W

WorldFrame S PS

ForceStep

B F

Rigid
Transform

B

f

F

p

v
Prismatic Joint
k = 100 N/m

b = 0.02 Ns/m

R

Solid
m = 1 kg

SPS

Position

SPS

Velocity

Scope

Figure 3.1.: Simscape model of a mechanical oscillator.

The principle of modelling in Simscape lies in quite intuitive connecting elementary
blocks together imitating physical connections in the real modelled structure. Unlike

34

3. Dynamics of tensegrity systems

Simulink blocks, Simscape blocks have a definite physical meaning (bodies, joints, sen-
sors and actuators, contraints and drivers, and force elements). Standard Simulink blocks
have distinct input and output ports. The connections among those blocks (signal lines)
represent inputs to and outputs from mathematical functions. This concept is not appli-
cable to a mechanical system due to Newton’s third law of action and reaction (if body
A acts on a body B with force F, B also acts on A with a force −F) – there is no definite
direction of signal flow. Special connection lines anchored at both ends to a connection
port are introduced with Simscape [18].

As [18] pointed out, many commercial software packages for multibody dynamics use
the formulation in absolute coordinates. Using this approach, each body is assigned 6 de-
grees of freedom. Then, depending on interaction of bodies due to joints, etc., constraint
equations are formed. This results in a large number of configuration variables and rel-
atively simple constraint equations, but also in a sparse mass matrix. Simscape uses
a different strategy in form of relative coordinates. In this approach, a body is initially
given zero degrees of freedom. Additional degrees of freedom are added by connecting
joints to the body. Therefore, far fewer configuration variables and constraint equations
are required. The drawback of this approach is the dense mass matrix containing the
constraints implicitly, and more complex constraint equations.

Via Simscape, it is possible to create multi-layer models which improves clarity and
user orientation. It also enables creation of own components and adding them into an own
library which speeds up subsequent modelling. A great advantage for purposes of this
work is its natural collaboration with “classic” MATLAB workspace. It is possible to
rapidly exchange various data in form of variables, to execute MATLAB scripts within
the model, or to edit the model in the scripting environment. Other features and ben-
efits can be found in [7]. The last mentioned feature is fully utilized in this work in
form of automatic generation of Simscape models of tensegrity structures introduced in
section 3.2.3.

3.2.1. Models of strut and cable

Two main components used in modelling tensegrities are naturally a strut and a cable.
Their implementation and features are described in the following text.

Strut

The model of a strut is covered in a block Strut. There are two connection ports (imitating
strut’s nodes), through which the block can be connected to other elements. Strut’s
properties (length, radius, mass density) can be easily edited in a so-called mask (opening
by clicking on the block). The block and the mask are visualized in Figure 3.2.

This component is modelled simply, see Figure 3.3. It is a homogeneous rigid cylinder
represented by the block Solid. Strut’s ends (two nodes of the tensegrity) are realized by
Connection Port blocks.

35

3. Dynamics of tensegrity systems

B F

Strut

(a) Block. (b) Mask.

Figure 3.2.: The Strut block and its mask.

R

Solid

B F

Rigid
Transform 2

B F

Rigid
Transform 1

1

Connecting port B

2

Connecting Port F

Figure 3.3.: Model of a strut.

Cable

Similarly to the Strut component, a cable component has its own covering block with two
connection ports, it is called the Cable. There is an Outport, through which it is possible
to track current value of the cable’s internal force, and an Inport enabling continuous
changes of the cable’s rest length which is an important feature for structure actuation.
Cable’s properties (cross section, Young’s modulus, mass density, relative damping) and
force sensing can be easily edited in a mask. The block and the mask are shown in
Figure 3.4.

Cable

l_0 f

B F

(a) Block. (b) Mask.

Figure 3.4.: The Cable block and its mask.

36

3. Dynamics of tensegrity systems

As it was already mentioned in previous chapters, a cable represents a viscoelastic
force between two structure nodes. This is realized in the model by a block Internal
Force acting between two blocks Connection Port. The elastic component of the force is
defined in (3.13) and the viscous component in (3.14). There is a necessary component
Transform Sensor implemented to the model that provides information about relative
velocity and distance between two nodes (Connection Ports). A force sensor continuously
exporting the information about the current cable force is implemented by a block Outport
and the rest length is provided to the model via a block Inport. The block realization of
mentioned points is depicted in Figure 3.5.

B

fm
F

B

F

dst

vdst

>= 0 S PS

0 S PS

Distance

S PS

Velocity

1

Connection Port F2

Connection Port B

1

E

A

Stiffness

beta

Damping

1

lnternal Force

Transform
sensor

Outport fInport l_0

Figure 3.5.: Model of a cable.

3.2.2. Tensegrity model building

This part is dedicated to manual creation of 3-D tensegrity models (2-D models cap-
tured as well) of any class. The resulting model simulates the real structure lying on
an immobile flat rigid surface.

Elementary blocks

There are three standard blocks that have to be contained in every Simscape model.
The Solver defining numerical solver settings, the Mechanism Configuration used mainly
for setting gravitational acceleration properties, and the World Frame representing the
global coordinate system origin. These base blocks must be connected together and
all physical components (struts and cables) must be connected to them (directly, or
indirectly through other components). Regarding gravitational acceleration setting, it is
assumed to act in the negative direction of the axis z.

The base of every Simscape multibody model is formed by solid bodies. Each body
has to be rigidly connected to a frame (local/global) with the origin in the mass center.

37

3. Dynamics of tensegrity systems

Translation and/or rotation of one frame relative to another frame is done through the
Rigid Transform block. In this moment, it is good to come back to the model of a strut
depicted in Figure 3.3. The block Solid inherently contains a local frame with the origin
in the mass centre and with the axis z oriented in the direction of the strut’s symmetry
axis. Because it is intended to connect other struts or cables to its ends (not to the mass
centre), two Rigid Transform blocks have to be used realizing translation by half the
strut’s length on both sides.

If only Rigid Transform blocks are used for the transition between two frames, it
means that these frames are fixed to each other. When it is intended to release some
degrees of freedom, specific constraint blocks have to be used. There are lots of different
constraints available in the Simscape library, but this work utilizes only two of them.
The Spherical Joint enables relative rotation of the frames in all directions, and the
connection between two frames can be completely interrupted by using the 6-DOF Joint.
This type of constraint also offers a possibility to define required motion in any direction
which enables creation of a planar constraint by prescribing zero relative motion in some
direction. Let this special type of the 6-DOF Joint call the Planar Joint for better
distinction in further text.

Building process

The main task is to place all struts in correct positions and to attach them correctly
to adjacent struts or to the World Frame. After that, adding cables is quite simple. In
Figure 3.6, there is a 2-D example tensegrity structure of the class 2 (placed in the plane
with y = 0), on which the model building procedure is illustrated.

-1 -0.5 0 0.5 1 1.5 2

x

0

0.5

1

1.5

2

2.5

z

21

3 4

5

8

6

7

9 10

M5 M6

M1 M2

M3 M4

Figure 3.6.: A 2-D example structure.

Placement of struts always starts from the bottom of the structure. Struts, which nodes
are located in the lowest z-level, are the ones touching the surface (represented by the
World Frame). There is always one node located in the lowest z-level that is connected to

38

3. Dynamics of tensegrity systems

f(x) = 0

Solver

C

Conf

W

WorldFr

B F

Spherical1

B F

Trans1
[X,Y,Z] = [0,0,0]

B F

Rot1
[phiY,phiX,phiY] = [45°,0,0]

B F

M1

0

Const

S PS

S-PS

B

pz
F

Planar2

B F

Trans2
[X,Y,Z] = [1,0,0]

B F

Rot2
[phiY,phiX,phiY] = [-45°,0,0]

B F

M2

Figure 3.7.: The example structure model in progress (1).

the World Frame by a Spherical Joint and other nodes in the lowest z-level are connected
to the World Frame by a Planar Joint fixing the node’s motion in the direction z. This
imitates the situation that the structure is lying on the surface with fixed position of one
node. To place the struts with mentioned nodes in the correct position, it is necessary to
use the Rigid Transform block, whereas the order of the individual operations must be
taken into account.6 First, the strut is shifted to the correct place defined by its node’s
position, then, an appropriate constraint is used, and, finally, rotation7 with the center
in the node is realized. In Figure 3.7, there is a particular realization of topics discussed
in this paragraph.

In case of tensegrities of higher class, there is one or more nodes with more than one
struts, therefore, there must be a settled procedure how to connect more struts together.
Let the strut already existing in the model be labeled as the base and and the strut
being added to the model as the follower. The basic idea is to connect the base and
the follower by a Spherical Joint and a Rigid Transform realizing the relative rotation.
This procedure can become quite tricky in case of 3-D structures. The question is how to
define relative angles of rotation of the follower when the base is already somehow rotated
in the global frame. In this work, a simple solution in form of two separate rotations is
used. First, the rotation neutralizing8 the rotation of the base is realized. After that,
it is possible to perform the second rotation realizing the absolute rotation between the
World Frame and the follower. In case of more than two struts connected in one node,
this procedure is repeated (the same base with a different follower). See the example
structure model with two class-2 nodes 3 a 4 processed in Figure 3.8.

6The order is important only in case of the Planar Joint due to correct orientation of the fixing plane.
However, the procedure is the same for all types of constraints to maintain consistency.

7The rotation is realized using Euler angles – a sequence of three elementary rotations: precession
around the axis y, nutation around the x axis and spin around the y axis. Since struts are axially
symmetric, spin is not needed.

8The rotation is neutralized when the reverse sequence of elementary rotations is used together with
opposite values of elementary angles.

39

3. Dynamics of tensegrity systems

f(x) = 0

Solver

C

Conf

W

WorldFr

B F

Spherical1

B F

Trans1
[X,Y,Z] = [0,0,0]

B F

Rot1
[phiY,phiX,phiY] = [45°,0,0]

B F

M1

0

Const

S PS

S-PS

B

pz
F

Planar2

B F

Trans2
[X,Y,Z] = [1,0,0]

B F

Rot2
[phiY,phiX,phiY] = [-45°,0,0]

B F

M2

B F

Spherical3

B F

Spherical4

B F

Rot3
[phiY,phiX,phiY] = [45°,0,0]

B F

Rot4
[phiY,phiX,phiY] = [-45°,0,0]

B F

M3

B F

M4

B F

Rot-1
[phiY,phiX,phiY] = [0,0,-45°]

B F

Rot-2
[phiY,phiX,phiY] = [0,0,45°]

Figure 3.8.: The example structure model in progress (2).

Another topic, that has to be discussed, is the situation when a separate set9 of struts
needs to be added to the model. First, it has to be determined which node of which
strut is going to be added to the model as the first one from the set. In this work, the
node with the lowest z-coordinate from the set is chosen. The corresponding strut is
then shifted to the correct place defined by chosen node’s position, a 6-DOF Joint is
added between the node and the World Frame, and, finally, the strut is rotated with
the rotation center in the node. After that, remaining struts from the set are added as
described in the previous paragraph. In case of the example structure, there are two
separate sets remaining (each one containing only one strut, M5 and M6). Processed
Simscape model is shown in Figure 3.9.

The last discussed issue related to struts’ placement is the problem of loops. Using
procedures described in previous paragraphs, all struts can be added to the model (even
those struts supposed to create a loop) but there is no procedure assuring kinematic
closure of possible loops. The loop closure is done by addition of a Spherical Joint
between ends of struts that are supposed to be connected but they have not been, yet.
Generally in Simscape, joints of all types can be placed between two frames with the
same position and orientation. Local frames of struts’ ends are already in the same
place, but they are probably rotated differently. Therefore, it is necessary to add another
block of Rigid Transform connected to both struts’ ends realizing the rotation to the same
position. There are no struts creating a loop in the example structure in Figure 3.6, thus,

9A separate set of struts represent struts connected together only by Spherical Joints (e.g. a chain of
4 struts connected in 3 nodes) and none of these struts has been added to the model, yet.

40

3. Dynamics of tensegrity systems

f(x) = 0

Solver

C

Conf

W

WorldFr

B F

Spherical1

B F

Trans1
[X,Y,Z] = [0,0,0]

B F

Rot1
[phiY,phiX,phiY] = [45°,0,0]

B F

M1

0

Const

S PS

S-PS

B

pz
F

Planar2

B F

Trans2
[X,Y,Z] = [1,0,0]

B F

Rot2
[phiY,phiX,phiY] = [-45°,0,0]

B F

M2

B F

Spherical3

B F

Spherical4

B F

Rot3
[phiY,phiX,phiY] = [45°,0,0]

B F

Rot4
[phiY,phiX,phiY] = [-45°,0,0]

B F

M3

B F

M4

B F

M5

B F

M6

B F

Rot5
[phiY,phiX,phiY] = [45°,0,0]

B F

Rot6
[phiY,phiX,phiY] = [-45°,0,0]

B F

6DOF5

B F

6DOF6

B F

Trans5
[X,Y,Z] = [0,0,1.8]

B F

Trans6
[X,Y,Z] = [1,0,1.8]

B F

Rot-1
[phiY,phiX,phiY] = [0,0,-45°]

B F

Rot-2
[phiY,phiX,phiY] = [0,0,45°]

Figure 3.9.: The example structure model in progress (3).

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

z

1

2 3

Figure 3.10.: A 2-D example structure with a loop.

41

3. Dynamics of tensegrity systems

a primitive structure (not a tensegrity) consisting of three struts forming one loop is
shown in Figure 3.10. In Figure 3.11, there is its Simscape model, where the loop closure
is performed in the node 3, while blocks realizing the closure are highlighted.

B F

M1

f(x) = 0

Solver

C

Conf

W

WorldFr

B F

Spherical1

B F

Trans1
[X,Y,Z] = [0,0,0]

B F

Rot1
[phiY,phiX,phiY] = [-30,0,0]

B F

M2

B F

Spherical2

B F

Rot2
[phiY,phiX,phiY] = [90,0,0]

B F

Rot-1
[phiY,phiX,phiY] = [0,0,30]

B F

M3

B F

Spherical3

B F

Rot3
[phiY,phiX,phiY] = [30,0,0]

B F

Rot--1
[phiY,phiX,phiY] = [0,0,30]

B
F

Spherical4

B F

Rot-3
[phiY,phiX,phiY] = [0,0,-30]

B F

Rot-2
[phiY,phiX,phiY] = [0,0,-90]

Figure 3.11.: The model of the example structure with a loop.

To finalize the model of a tensegrity, cables are put between appropriate nodes. No
other blocks are needed. Complete model of the example tensegrity from Figure 3.6 is
depicted in Figure 3.12, where connection lines connecting a cable with nodes 6 and 7
are highlighted for illustration.

f(x) = 0

Solver

C

Conf

W

WorldFr

B F

Spherical1

B F

Trans1

B F

Rot1

B F

M1

0

Const

S PS

S-PS

B

pz
F

Planar2

B F

Trans2

B F

Rot2

B F

M2

B F

Spherical3

B F

Spherical4

B F

Rot3

B F

Rot4

B F

M3

B F

M4

B F

M5

B F

M6

B F

Rot5

B F

Rot6

B F

6DOF5

B F

6DOF6

B F

Trans5

B F

Trans6

l_0 f

B F

m7

l_0 f

B F

m8

l_0 f

B F

m9

l_0 f

B F

m10

l_0 f

B F

m11

l_0 f

B F

m12

l_0 f

B F

m13

l_0 f

B F

m14

l_0 f

B F

m15

l_0 f

B F

m16

l_0 f

B F

m17

l_0 f

B F

m18

l_0 f

B F

m19

B F

Rot-1

B F

Rot-2

Figure 3.12.: The complete example structure model.

42

3. Dynamics of tensegrity systems

The tensegrity model itself is now ready. Last step necessary for running the sim-
ulation successfully is to provide inputs to all cables in form of rest lengths l0k (which
can be constant or variable in time) and to set the numerical ODE (ordinary differential
equations) solver properly. In Simulink settings, various ODE solvers are divided into
two groups: solvers with fixed time step and with variable time step. Simulink offers
a possibility to choose the solver automatically, however, two particular solvers turned
out to be quite efficient – ode15s and ode45. The first mentioned one is also recommended
by [7] as an efficient solver for stiff problems. Last but not least, extremely important
is the time step setting. In default, its maximal size is selected automatically, but it is
highly recommended to set it manually to 10−3 s or less. Exploited settings are available
in Appendix A.1.

Simscape also provides visualization of the model both in its initial state and during
the simulation. Unfortunately, it is not possible to easily visualize cables since they
are massless (and shapeless) and represented only by forces. Nevertheless, it is still
possible to visualize them using the standard MATLAB scripting environment as a part
of simulation post-processing. See Simscape visualization of the example tensegrity in
Figure 3.13.

Figure 3.13.: Simscape visualization of the example structure.

3.2.3. Automatic model generation

Manual building process of a computational model can become quite time consuming
in case of a complex structure, however, it still follows the same rules described in the
previous section. Therefore, it is appropriate to use process automation. The aim is to
implement a MATLAB function (in the scripting environment) that generates a Simscape
model of a tensegrity structure based on provided inputs defined in the following text.

This section contains only the basic information about expected inputs and utilized
MATLAB library functions. The text does not clarify the question of algorithmization,

43

3. Dynamics of tensegrity systems

which is quite complex. In case of the interest in particular implementation, see Ap-
pendix A.2 containing the developed function.

Required inputs

Automatic generation of a computational tensegrity model is based on processing of the
following data: the connectivity matrix C ∈ Rm×n, the configuration vector X0 ∈ R3n

with initial coordinates of all structure nodes, the force density vector q0 ∈ Rm with
initial values of members’ force densities, the vector type ∈ Rm containing boolean
information about members’ types (0 – strut, 1 – cable) and properties of particular
struts (mass density ρs, cross-section As) and cables (cross-section Ac, Young’s modulus
Ec, proportional damping coefficient β).

The implementation is also ready for possible actuation of cables defined by the path-
planning process, which is presented in chapter 4.1. Therefore, two additional inputs
have to be specified: discrete sets l0(κT) ∈ Rmc of rest lengths and a time period T
of transition between sets l0(κT) and l0(κT + T) together representing piecewise linear
time functions of cables’ rest lengths. The meaning of κ and other details regarding the
topic of tensegrity actuation can be found in chapter 4.

Elementary functions

There are several functions in the MATLAB library that create, modify, save, or close
a Simscape model. Here is the list of functions that are used in this work:

• new system(filename) – creates a new model file “filename.slx”

• open system(filename) – opens the model “filename.slx”

• save system(filename) – saves the model “filename.slx”

• close system(filename, saveflag) – closes the model “filename.slx” with or without
saving depending on the boolean variable “saveflag”

• add block(source, dest) – adds a Simulink/Simscape block with the library path
“source” to the destination path10 “dest”.

• delete block(dest) – deletes a Simulink/Simscape block with the destination path
“dest”.

• add line(sys,out,in) – creates a connection from the outport “out” to the inport
“in” between blocks located in the system path11 “sys”.

• delete line(sys,out,in) – deletes a connection from the outport “out” to the inport
“in” between blocks located in the system path “sys”.

10The destination path contains information about the model and its specific layer (subsystem) where
the block is going to be located. The destination path ends with the block’s unique name.

11The system path is the same as the destination path except its ending – the block’s name is missing.
Blocks’ names are specified by outport/inport.

44

3. Dynamics of tensegrity systems

Resulting model features

Implemented function in Appendix A.2 is able to automatically create models of tenseg-
rity structures of any class containing arbitrary number of struts and cables (their fea-
tures have been already described in the previous text). The whole model is packed into
a subsystem for better manipulation with the resulting model and the parametrization
of the model is saved into a .mat file in order to be able to change tensegrity properties
easily. The model also enables tracking of nodal positions and cables’ forces. In default,
positions are saved as array variables into a workspace after simulation, and forces can
be watched during the simulation via a Scope block, but this default setting can be easily
changed manually according to user’s needs.

A generated model corresponding to the example structure from Figure 3.6 is depicted
in Figure 3.14. The subsystem is unpacked. The whole model is not captured due to its
size, but its visible part is sufficient as an illustration of appearance of resulting models.

f(x) = 0

Solver

C

Conf

W

WorldFr

0

Const

S PS

S-PS

B F

Spherical1

B F

Trans1

x,y,z
B

F

Sensor_1

toWS_1

B F

Rot1

B F

M1

x,y,z
B

F

Sensor_4

toWS_4

B F

Rot-4

B F

Sph4

B F

Rot4

B F

M4

x,y,z
B

F

Sensor_7

toWS_7

B

pz
F

Planar2

B F

Trans2

x,y,z
B

F

Sensor_2

toWS_2

B F

Rot2

B F

M2

x,y,z
B

F

Sensor_3

toWS_3

B F

Rot-3

B F

Sph3

B F

Rot3

B F

M3

x,y,z
B

F

Sensor_8

toWS_8

B F

6DOF5

B F

Trans5

x,y,z
B

F

Sensor_5

toWS_5

B F

Rot5

B F

M5

x,y,z
B

F

Sensor_10

toWS_10

B F

6DOF6

B F

Trans6

x,y,z
B

F

Sensor_6

toWS_6

B F

Rot6

B F

M6

x,y,z
B

F

Sensor_9

toWS_9

l_0 f

B F

m7

Out

l0_7

l_0 f

B F

m8

Out

l0_8

l_0 f

B F

m9

Out

l0_9

l_0 f

B F

m10

Out

l0_10

l_0 f

B F

m11

Out

l0_11

l_0 f

B F

m12

Out

l_0 f

B F

m13

l_0 f

B F

m14

l_0 f

Scope_m_force

Figure 3.14.: Automatically generated model of the example structure.

45

3. Dynamics of tensegrity systems

3.3. Modal analysis of computational model

Modal analysis is one of standard tasks of mechanical structure dynamics. It is an
operation leading to determination of eigenvalues and eigenvectors of examined linearized
system. Based on this information, it is possible to obtain system’s eigenfrequencies and
corresponding mode shapes. Because a tensegrity structure is generally prone to vibrate,
knowledge of its eigenfrequencies is essential mainly with respect to design of a controller
regarding this work.

3.3.1. The eigenvalue problem

A linear time-invariant discrete mechanical system can be expressed by a motion equation

Mq̈(t) + Bq̇(t) + Kq(t) = f(t), (3.18)

where t is time, q ∈ Rndof is the vector of generalized coordinates, f ∈ Rndof denotes the
vector of generalized forces, and M,B,K ∈ Rndof×ndof are the mass, damping, stiffness
matrix. Number of degrees of freedom is denoted as ndof . In case of a weakly damped
system, modal analysis is performed with associated conservative homogeneous system.
However, modal analysis can be also performed with the original non-conservative system.
According to [8], the homogeneous version of the equation (3.18) and a trivial identity

Mq̇(t)−Mq̇(t) = 0 (3.19)

can be written together in a matrix form[
B M
M 0

] [
q̇(t)
q̈(t)

]
−
[
−K 0
0 M

] [
q(t)
q̇(t)

]
=

[
0
0

]
, (3.20)

which can be expressed in a compact form

Nẋ(t)−Px(t) = 0, (3.21)

where x ∈ R2ndof is the state vector. The state vector derivative can be expressed from
equation (3.21) as

ẋ(t) = N−1Px(t) (3.22)

and then rewritten using the system matrix A ∈ R2ndof×2ndof as

ẋ(t) = Ax(t). (3.23)

In accordance with [8], the solution to the equation (3.23) is expected in form of

x(t) = uνe
λνt. (3.24)

After substituting x and ẋ by (3.24) and its time derivative, equation (3.23) can be
expressed as

(λνI−A)uν = 0, (3.25)

46

3. Dynamics of tensegrity systems

where I = diag{1, 1, ..., 1} ∈ R2ndof×2ndof . Equation (3.25) is a standard form of the
eigenvalue problem, where λν ∈ C represents the ν-th eigenvalue and uν ∈ C2ndof denotes
the corresponding eigenvector.

The eigenvalue problem (3.25) is solved by 2ndof complex non-trivial eigenvectors and
complex eigenvalues. Eigenvalues can be sorted into three groups:

λν = αν + iβν , ν = 1, 2, ..., k, (3.26a)

λν = αν − iβν , ν = k + 1, k + 2, ..., 2k, (3.26b)

λν = αν , ν = 2k + 1, 2k + 2, ..., 2ndof , (3.26c)

where αν and βν are the real and the imaginary part of the ν-th eigenvalue. First, only
eigenvalues from groups (3.26a),(3.26b) are focused. According to [23], the magnitude |λν |
represents the eigenfrequency of the associated conservative system to (3.18)

Ων = |λν |, (3.27)

the real part αν defines the proportional modal damping parameter Dν as

Dν = − αν
|λν |

, (3.28)

and, finally, the imaginary part βν stands for the non-zero eigenfrequency

ΩD
ν = βν (3.29)

of the damped system (3.18). With real eigenvalues from the group (3.26c), it is possible
to define overdamped and zero eigenfrequencies.

3.3.2. Eigenfrequencies of the computational model

The model of a tensegrity created in Simscape is non-linear. Therefore, it must be lin-
earized to be able to perform modal analysis. The topic of discrete model linearization is
discussed in the next chapter in section 4.2.1. However, Simscape offers quite an inter-
esting option of model linearization in a specified state, which usage is very simple. The
product of Simscape linarization is in form of a linear time-invariant state-space model
represented by matrices A,B,C,D (more about this form in mentioned section 4.2.1).

For the purpose of modal analysis, only the system matrix A ∈ R2ndof×2ndof is nec-
essary. This matrix has a different form than the system matrix in (3.23) depending
on the linearization performed by Simscape. This is due to different introduction of
the state-space vector. Nevertheless, eigenfrequencies of the structure are independent
from particular selection of the state-space vector. After using the MATLAB function
eig(A) for calculation of eigenvalues (and eigenvectors) of A, eigenfrequencies ΩD

ν of the
computational model are expressed according to the equation (3.29)).

47

3. Dynamics of tensegrity systems

3.3.3. Example

Naturally, structural prestress has a significant effect on eigenfrequencies. Thanks to the
simple procedure proposed in the previous section 3.3.2, this statement can be easily
proved. The example structure is a 2-D tensegrity tower used as an example in previous
form-finding sections extended by one floor and topped by a special termination, the top
node of which represents an effector. The structure is depicted in Figure 3.15a.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

z

(a) Initial configuration.

2 4 6 8 10 12 14 16 18

 [-]

0

100

200

300

400

500

600

700

800

D
 [
H

z
]

q
1

q
2

(b) Eigenfrequencies.

Figure 3.15.: A 2-D structure and its eigenfrequencies.

The structure showed in Figure 3.15a contains cables that are not pretensioned – their
rest lengths are defined by the distance of two corresponding nodes. Cables are then
shortened causing prestress in the whole structure. After that, the DRM described in
section 2.2 is used to figure out the equilibrated configuration, in which the structure
is then linearized. Finally, modal analysis is performed and eigenfrequencies are deter-
mined.

In the first case, each cable is shortened by 3 % of its initial rest length which causes
prestress represented by the force density vector q1. In the second case, cables are
shortened by 6 % causing force densities q2. Resulting eigenfrequencies12 of both cases are
compared in Figure 3.15b. The structure has 19 degrees of freedom (in xz plane) which
corresponds with the number of eigenfrequencies. The comparison confirms a general
mechanical rule – the more a structure is pretensioned, the higher eigenfrequencies the
structure has.

12In fact, only a half of all eigenfrequencies is visualized. The second half of them does not bring any
new information, since they are the same (complex conjugate eigenvalues).

48

4. Active tensegrity structures

Until this point, only passive tensegrity structures were examined. In this chapter, active
tensegrities are introduced. There are various ways how to actuate tensegrity structures,
e.g. changing rest lengths of elements via actuators. This work considers actuation
in form of adjusting rest lengths of cables, all struts in the structure are still assumed
passive.

First of all, it is necessary to determine the main goal of control. This work deals
with tensegrity shape control. Let a set of desired trajectories be defined for one or more
structure nodes. These nodes are supposed to follow desired trajectories with minimal
deviations while the whole structure maintains its integrity during shape change. Usually,
the desired trajectory is assigned only to some of the structure nodes, not to all of
them. Therefore, one of control design crucial tasks is to find feasible trajectories of
the remaining nodes to satisfy mentioned control goals (minimal deviations from desired
trajectories, maintaining integrity). This problem is called path-planning.

4.1. Path-planning

In the beginning of this section, two terms are introduced to simplify the following text.
Let master nodes be defined as structure nodes that are supposed to follow desired
trajectories. On the other hand, slave nodes are the nodes without any assigned desired
trajectory.

As mentioned in the introduction of this chapter, the term path-planning is used for the
problem of searching for trajectories of slave nodes with the objective of minimizing the
deviation of master nodes’ trajectories from their desired trajectories and maintaining
structural integrity. However, primary goal of path-planning is different. The goal is
to design the actuation (adjustments of cables’ rest lengths) that leads master nodes
through desired trajectories (trajectories of slave nodes are only the result of designed
actuation).

Evidently, an important role of path-planning represent positions ξi of master nodes
specified by coordinates xi,d. The index i denotes the i-th node from the set Nm of all
nm master nodes, and d is the particular direction. Positions of all master nodes can be
summarized into the vector

Y = [..., xi,1, ..., xi,2, ..., xi,3, ...]
T ∈ R3nm (4.1)

with analogous structure to the structure configuration vector X introduced by (2.2) in
chapter 2 but containing only master nodes. The vector Y is called the configuration

49

4. Active tensegrity structures

vector of master nodes. If Y = Y(t), then this vector function of time can be called the
vector of master nodes’ trajectories.

Problem discretization

Significant simplification of the time-continuous problem of path-planning is realized by
its discretization. Let a continuous desired trajectory be defined as

ξdesi = ξdesi (t) =

xdesi,1 (t)
xdesi,2 (t)
xdesi,3 (t)

 ∈ R3, t ∈ 〈0, tf〉, i ∈ Nm, (4.2)

for the i-th node from the set Nm of master nodes, consisting of desired coordinates xdesi,d
for each direction. Independent variable is time t while initial time is assumed to be
0 and final time is denoted as tf . All desired trajectories can be summarized into the
time-variable vector

Ydes(t) = [..., xdesi,1 (t), ..., xdesi,2 (t), ..., xdesi,3 (t), ...]T ∈ R3nm (4.3)

with the same structure as Y(t) introduced in (4.1).
Each trajectory is sampled with a constant sampling period T into nT + 1 discrete

desired positions

ξdesi (κT) =

xdesi,1 (κT)
xdesi,2 (κT)
xdesi,3 (κT)

 ∈ R3, κ = 0, 1, ..., nT , i ∈ Nm. (4.4)

Similarly to (4.2) and (4.3), desired positions (4.4) for all master nodes are summarized
into nT + 1 discrete desired configuration vectors

Ydes(κT) ∈ R3nm , κ = 0, 1, ..., nT . (4.5)

Solution to the discretized problem of path-planning is represented by nT + 1 discrete
sets of cables’ rest lengths:

l0(κT) ∈ Rnc , κ = 0, 1, ..., nT , (4.6)

where nc is the number of cables in the structure.

4.1.1. Optimization problem

One of possible ways how to deal with path-planning is to consider it as an optimiza-
tion problem. This approach is utilized for instance in [26, 28, 5], however, each paper
considers slightly different objectives of path-planning. Authors of [26] use nested opti-
mization without applying the DRM method. Another paper, [5], deals with planning
of a trajectory between a couple of relatively remote positions. It uses genetic algorithm

50

4. Active tensegrity structures

in combination with the DRM. Resulting optimized trajectories usually dispose of quite
chaotic or random appearance.

In this work, discretized path-planning is solved by nT + 1 separate optimization itera-
tions. Constrained optimization problem is formulated in each iteration (κ = 0, 1, ..., nT)
as

δ∗ = arg min
δ

Ψ(X, s), (4.7)

s.t. Ds = F, (4.8)

∆l
k ≤ δk ≤ ∆u

k , k ∈ Kc, (4.9)

where Ψ denotes the objective function, optimization variables are adjustments δ of
cables’ initial rest lengths L0 (δk and L0

k are values valid for the k-th cable from the
set Kc of all mc cables), D is the equilibrium matrix defined in (2.15), s is the vector of
internal forces in structure elements and F is the vector of external nodal loads. Variables
∆l
k ≤ 0, ∆u

k ≥ 0 denote lower and upper bounds of adjustments of cables’ rest lengths
summarized into vectors ∆l, ∆u. Subsequently, the vector l0,∗ of optimized cables’ rest
lengths can be naturally calculated from optimized adjustments δ∗ of cables’ rest lengths
as

l0,∗ = L0 + δ∗. (4.10)

As indicated in (4.7), the value of the objective function Ψ is dependent on the tenseg-
rity configuration X. Particular configuration is the result of specific selection of ad-
justments δ , or, more formally, the configuration must satisfy the static equilibrium
condition expressed in (4.8) for chosen adjustments of rest lengths. At this point, the
DRM, a very efficient tool described in chapter 2.2 providing statically equilibrated X
as the result of specific δ, is fully utilized13. Moreover, the DRM informs about internal
forces s, which are also used in the objective function. From the expression (4.9), it is
clear that the adjustment δk of the k-th cable’s rest length must be from the correspond-
ing interval 〈∆l

k,∆
u
k〉.

The expression (4.7) is only a general notation of the minimization problem. The
actual challenging part is determination of the objective function Ψ in combination with
appropriate choice of the numerical optimization solver. The objective of the optimization
is to minimize errors of master nodes’ positions from desired positions in combination
with maintaining the integrity of the structure. According to [26], structural integrity is
guaranteed when all internal forces in cables are positive, i.e. all cables are in tension.
Additionally, cables’ internal forces should be in a feasible range due to both limited
power of cables’ actuators and preventing struts from buckling. Therefore, in order to
reduce stress in the active structure and to prevent the structure from the integrity loss,
undesirable increase or decrease in cables’ internal forces between optimization iterations
is minimized.

Based on requirements summarized in the previous paragraph, preliminary expecta-
tions of the objective function are that it must process the structure configuration X

13The usage of the DRM fully replaces the need for solving the system of equations (4.8).

51

4. Active tensegrity structures

(strictly speaking, only the master nodes’ configuration Y, which is contained in X) and
cables’ internal forces s. This is already noted in (4.7). The appropriate selection of the
objective function was the subject of considerable effort. The best results were achieved
by specifying the problem as the multi-objective optimization in form of a minimax
problem. The objective function is expressed as

Ψ = max
γ

ψγ, (4.11)

where ψγ (γ = 1, 2) are components of the vector function

ψ = [ψ1, ψ2]T ∈ R2. (4.12)

Components of ψ are specified as

ψ1 = wY
(
Y −Ydes

)T (
Y −Ydes

)
, (4.13)

quantifying position errors of master nodes with the weight parameter wY , and

ψ2 = wPP + wS
∑
k∈Kc

|sk − sk|, (4.14)

where sk is the final value of the internal force in the k-th cable achieved in the previous
optimization iteration. Regardless of P and wP , ψ2 quantifies differences in cables’
internal forces with the weight parameter wS. The penalty member P combined with
the penalization weight wP penalizes values of internal forces in cables lower than the
threshold smin > 0 in form of

P =
∑
k∈Kc

Pk, (4.15)

where

Pk =

{
(smin − sk)2 sk < smin,
0, otherwise.

(4.16)

In many cases, multi-objective optimization process reaches the state that components
ψ1,2 of objective function are contradictory – reducing one component inevitably results in
increase of the other one. This is called the problem of Pareto optimality. Mutual settings
of weight parameters wY , wS (partially wP) fundamentally affect which optimization
objective is preferred. Theoretically, let a balanced setting be assumed for a case when
wY is set to value W Y and wS to value W S. This state results in balanced minimization
of position errors and total difference of internal forces. If wY > W Y and, simultaneously,
wS < W S, it is clear that minimization of position errors is preferred. Analogously, the
opposite case applies. When both weights are increased, i.e. wY > W Y , wS > W S, it
could be intuitively said that more emphasis is placed on both objectives. Generally, it is
true, but there is a danger of numerical process collapse, which grows with the growth of
weights wY , wS. From given examples, it is evident that appropriate setting of weights
represents an important stage of path-planning process tuning.

In this work, the function fminimax from the MATLAB Optimization Toolbox is ap-
plied as a numerical solver of the described optimization problem.

52

4. Active tensegrity structures

Start
Ydes(t),X,L0,∆

[X, s] = DRM(X,L0)

∆u = ∆

∆l = −∆

κ = 0

δ∗ = fminimax (δ,∆l,∆u,

objf(δ,L0,Ydes(κT),X, s))

l0,∗ = δ∗ + L0

[X, s] = DRM(X, l0,∗)

l0(κT) = l0,∗

L0 = l0,∗

∆u = ∆u − δ∗

∆l = ∆l − δ∗

κ ?
= nT κ = κ + 1

3 7End
l0(0), ..., l0(nTT)

Figure 4.1.: Flow chart of the path-planning process.

4.1.2. Algorithmization

This section summarizes the numerical process of path-planning, which is visualized by
a flow chart in Figure 4.1. Due to algorithm clarity improvement, there are marked only
the most important variables from the algorithmization point of view (e.g. structure
variables, process parameters, or solver settings are not depicted).

The first box of the flow chart includes input data of the process: desired trajec-
tories Ydes(t), initial configuration X of the structure, initial values L0 of cables’ rest
lengths, and maximal allowed adjustments ∆ of cables’ rest lengths (maximal shorten-
ing/lengthening). X and L0 can be advantageously determined by the AFDM described
in chapter 2.1 – the output from the AFDM is in form of the super-stable configuration
and force densities, which can be used to calculate cables’ rest lengths. The first step is to
calculate equilibrated configuration and equilibrated cables’ internal forces from X and
L0 applying the DRM. Equilibrated configuration overwrites the original initial configu-
ration X because this configuration is used as the new initial configuration in following
steps. Then, upper and lower bounds ∆u,∆l of optimization parameters are set. The
last step before entering the optimization cycle represents initialization of the iterator κ.

The first step in the optimization cycle is the crucial one, optimization itself. The
MATLAB function fminimax solving the optimization problem described in previous

53

4. Active tensegrity structures

section 4.1.1 is invoked14. Its first three inputs are the vector δ of optimization param-
eters, and upper and lower bounds ∆u,∆l of optimization parameters. The following
one is the reference “objf” to the objective function. There is a separate flow chart in
Figure 4.2 dedicated to evaluation of the objective function. As the output, the function
fminimax provides optimal values δ∗ of adjustments of cables’ rest lengths L0.

After the optimization, optimized adjustments δ∗ are converted to optimized rest
lengths l0,∗ of cables. Then, the DRM is applied in order to discover the equilibrated
configuration and equilibrated cables’ internal forces achieved from the initial configura-
tion X combined with optimized cables’ rest lengths l0,∗. Original values of variables X,
s are overwritten by new data again. In next two steps, optimized cables’ rest lengths
l0,∗ are saved to l0(κT) representing output data, and they are also used as initial rest
lengths L0 in the next optimization iteration. Finally, upper and lower bounds ∆u,∆l

are adjusted.
Optimization cycle is interrupted when all iterations are performed, otherwise, the

path-planning process continues with increasing the iterator and performing another
iteration. The result of path-planning represents the output in form of nT + 1 optimized
sets of cables’ rest lengths: l0(0), l0(T), ..., l0(nTT).

Start
δ,L0,Ydes,X, s

l0 = δ + L0 [X, s] = DRM(X, l0)

ψ1, ψ2
(4.13), (4.14)

ψ = [ψ1, ψ2]T

(4.12)

End
ψ

Figure 4.2.: Flow chart of the objective function ψ evaluation.

As mentioned in the previous text, Figure 4.2 contains a flow chart visualizing evalu-
ation of the objective function ψ. Input data provided to the function “objf”, which is
referenced during fmincon invocation (see Figure 4.1), are current values δ of optimiza-
tion parameters, initial rest lengths L0 of cables, desired positions Ydes of master nodes,
the initial structure configuration X, and cables’ internal forces s.

First, adjustments δ are converted to rest lengths l0 of cables. Then, the equilibrated
configuration X of the structure and equilibrated internal forces s in cables are expressed
by the DRM. After that, particular components ψ1,2 of the objective function are evalu-
ated, and, finally, both components are returned as the output in form of the vector ψ.

4.1.3. Examples

This section contains results of several calculations concerning two different structures
(2-D and 3-D) showing functionality and generality of the proposed path-planning pro-
cedure. Values of path-planning parameters as well as members’ properties are available
in Appendix A.1.

14The invocation of fminimax input parameters is not noted correctly according to MATLAB syntax –
only a symbolical notation is used.

54

4. Active tensegrity structures

2-D structure

The first example structure is a 2-D tensegrity tower already used as an example in
section 3.3 dedicated to modal analysis. The initial configuration of the structure is
depicted in Figure 4.3.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

x [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
z
 [
m

]

Figure 4.3.: A 2-D structure in the initial configuration.

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

x [m]

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

z
 [
m

]

Desired trajectory Y
des

(t)

Desired configurations Y
des

(T)

Reached configurations Y(T)

(a) Desired trajectory Ydes(t) and reached
configurations Y(κT).

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

x [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

z
 [
m

]

(b) A selection of 5 reached configurations
X(κT).

Figure 4.4.: The 2-D structure subjected to path-planning.

Two different desired trajectories are assigned to the top node (it is the only master
node, thus, nm = 1). First, the focus is laid on a piecewise linear desired trajectory
Ydes(t) depicted in Figure 4.4a. For path-planning purposes, it is discretized into 13

55

4. Active tensegrity structures

(nT = 12) separate points Ydes(κT) that are also visualized in the figure. Resulting
positions Y(κT) of the top node for each desired configuration provided by the path-
planning procedure are marked with red crosses in Figure 4.4a. Little deviations can be
observed but the result can be definitely considered as sufficiently accurate. In the figure
4.4b, there are 5 resulting structure configurations X(κT) visualized, specifically for
κ = 0, 3, 6, 9, 12, where κ = 0, 12 represent the first and the last path-planning iteration.
Positions of the top node can be easily compared with desired positions represented by
black circles.

The essential path-planning product is in form of discrete sets of cables’ rest lengths
l0(κT). Based on them, a time-continuous actuation l0(t) can be produced by linear
interpolation. It is clear that the sampling period T determines actuation speed and
thus speed of resulting motion of the actuated structure. First, the parameter is set to
T = 3 s, corresponding actuation is denoted as l0,A(t), t ∈ 〈0 s, 36 s〉, and it is visualized
in Figure 4.5a.

0 5 10 15 20 25 30 35

t [s]

0

0.05

0.1

0.15

0.2

0.25

l0
,A

 [
m

]

(a) Original l0,A(t), t ∈ 〈0 s, 36 s〉.

0 5 10 15 20 25 30 35

t [s]

0

0.05

0.1

0.15

0.2

0.25
l0

,A
 [
m

]

(b) Extended l0,A(t), t ∈ 〈0 s, 39 s〉.

Figure 4.5.: Continuous actuation l0,A(t).

In order to make the beginning of structure motion smooth, actuation l0,A(t) is shifted
in time domain by one sampling period, t = t + T , and then extended with additional
linear stage for t ∈ 〈0, T 〉 defined by l0,A(0) = L0, where L0 is the initial setting of cables’
rest lengths in the beginning of the path-planning process (see Figure 4.1, box “Start”).
Modified actuation l0,A(t), t ∈ 〈0 s, 39 s〉, is depicted in Figure 4.5b.15

Figure 4.6 contains results obtained by a Simscape simulation of the discussed structure
actuated by l0,A(t). In Figure 4.6a, there is the trajectory Y(t) of the top node compared
to the desired trajectory Ydes(t). There are only minor observable deviations confirming
discrete path-planning results from Figure 4.4. In Figure 4.6b, there are cables’ internal
forces s(t) calculated by Simscape compared to linearly interpolated discrete sets of

15Actuation modification described in this paragraph is used in all following simulations without men-
tioning it again.

56

4. Active tensegrity structures

cables’ forces s(κT) from each iteration of path-planning. It can be observed that the
linear approximation based only on path-planning data is pretty close to simulated values.
Moreover, more important conclusion can be made: all forces are in a feasible range
(maximal force around 600 N), integrity is maintained (minimal force around 80 N) and
forces do not change during the process a lot.

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

x [m]

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

z
 [
m

]

Desired trajectory Y
des

(t)

Reached trajectory Y(t) by Simscape

(a) Reached trajectory Y(t) by Simscape.

0 5 10 15 20 25 30 35

t [s]

0

100

200

300

400

500

600

700

s
 [
N

]

Forces s(t) by path-planning

Forces s(t) by Simscape

(b) Forces s(t) calculated by path-planning
and by Simscape.

Figure 4.6.: A Simscape simulation of the 2-D structure with actuation l0,A(t) defined by
path-planning.

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28

x [m]

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

z
 [
m

]

Desired trajectory Y
des

(t)

Reached trajectory Y(t) by Simscape

(a) Reached trajectory Y(t) by Simscape.

0 0.2 0.4 0.6 0.8 1 1.2

t [s]

0

100

200

300

400

500

600

700

s
 [
N

]

Forces s(t) by path-planning

Forces s(t) by Simscape

(b) Forces s(t) calculated by path-planning
and by Simscape.

Figure 4.7.: A Simscape simulation of the 2-D structure with actuation l0,B(t) defined by
path-planning.

57

4. Active tensegrity structures

The previous case with T = 3 s represents a quasi-static process (the motion is relatively
slow). Far more dynamic behaviour can be observed when the period is lowered to
T = 0.1 s defining the actuation l0,B(t), t ∈ 〈0 s, 1.3 s〉. Corresponding results are depicted
in Figure 4.7. The calculated trajectory Y(t) in Figure 4.7a still follows the desired
trajectory Ydes(t) but it is evident that the system is vibrating. This is confirmed by
curves of cables’ forces depicted in Figure 4.7b, which are oscillating too. The vibration
is generated mainly by sharp changes in actuation, which are not smooth.

The second desired trajectory Ydes(t) assigned to the top node is depicted in Fig-
ure 4.8a. It is composed of a linear part followed by a semicircle while the transition
between these two curves is not smooth. The desired trajectory is discretized into 15
(nT = 14) isolated points Ydes(κT). Positions Y(κT) of the top node reached in each
iteration of the path-planning process are visualized in mentioned Figure 4.8a. As in
the previous case, position errors are satisfying. Figure 4.8b shows 4 resulting struc-
ture configurations for κ = 0, 2, 8, 14, while κ = 0, 14 represent the first and the last
path-planning iteration.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

x [m]

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

z
 [
m

]

Desired trajectory Y
des

(t)

Desired configurations Y
des

(T)

Reached configurations Y(T)

(a) Desired trajectory Ydes(t) and reached
configurations Y(κT).

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

x [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

z
 [
m

]

(b) A selection of 4 reached configurations
X(κT).

Figure 4.8.: The 2-D structure subjected to path-planning.

A dynamic simulation was performed for two cases again. First, with relatively high
value of the sampling period T = 3 s resulting in continuous actuation l0,A(t), t ∈ 〈0 s, 45 s〉.
Corresponding results are shown in Figure 4.9. In the left figure, it can be seen that the
calculated trajectory Y(t) of the top node deviates from the desired trajectory Ydes(t)
mainly in the semicircle part between two adjacent desired path-planning configurations
Ydes(κT) and Ydes(κT + T). This is the result of linear interpolation of discrete sets of
actuations l0(κT) designed for depicted desired configurations. Right figure shows the
comparison of cables’ forces s(t) calculated by Simscape and linearly interpolated sets of
cables’ forces s(κT) calculated by path-planning. Quite a similar phenomenon as in case
of Figure 4.6b applies – all forces are in acceptable range of values with maximal force

58

4. Active tensegrity structures

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

x [m]

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

z
 [
m

]

Desired trajectory Y
des

(t)

Reached trajectory Y(t) by Simscape

(a) Reached trajectory Y(t) by Simscape.

0 5 10 15 20 25 30 35 40 45

t [s]

100

200

300

400

500

600

700

s
 [
N

]

Forces s(t) by path-planning

Forces s(t) by Simscape

(b) Forces s(t) calculated by path-planning
and by Simscape.

Figure 4.9.: A Simscape simulation of the 2-D structure with actuation l0,A(t) defined by
path-planning.

about 610 N and minimal force about 100 N.
As promised, the second case of the dynamic simulation is presented too, specifically

with the sampling period T = 0.3 s and corresponding actuation l0,B(t), t ∈ 〈0 s, 4.5 s〉.
This actuation results in fast motion with occurence of significant structural vibrations.
From visual results in Figure 4.10a, it is clear that oscillations are excited mainly by the
sharp transition between the linear and the semicircular part of the desired trajectory.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

x [m]

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

z
 [
m

]

Desired trajectory Y
des

(t)

Reached trajectory Y(t) by Simscape

(a) Reached trajectory Y(t) by Simscape.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t [s]

100

200

300

400

500

600

700

s
 [
N

]

Forces s(t) by path-planning

Forces s(t) by Simscape

(b) Forces s(t) calculated by path-planning
and by Simscape.

Figure 4.10.: A Simscape simulation of the 2-D structure with actuation l0,B(t) defined
by path-planning.

59

4. Active tensegrity structures

3-D structure

The second example structure is in form of a 3-D tensegrity tower consisting of 3 floors.
In Figure 4.11, the structure is visualized from two views. It is a symmetric tensegrity,
each floor consists of 4 struts and adjacent floors are rotated 45◦ relative to each other.

0

0.1

0.2

0.3

-0.4

0.4

z
 [
m

]

0.5

0.6

0.2-0.2

0.7

x [m] y [m]

0 0
0.2 -0.2

0.4

(a) First view.

0.2

y [m]

00
-0.2

0.1

0.2

0.3

0.4

z
 [
m

]

0.5

x [m]

0.6

0.7

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

(b) Second view.

Figure 4.11.: A 3-D structure in the initial configuration.

Regarding this 3-D structure, it is required that the top behaves like a horizontal plat-
form. Therefore, any tilting of the plane formed by 4 top nodes relative to the xy plane
is undesirable during the tensegrity motion. Thus, all 4 top-layer nodes are selected as
master nodes (nm = 4) and 4 parallel desired trajectories are designed – each one assigned

0.1

y [m]

0
-0.1

0.65

0.7

0.75

0.8

z
 [

m
] 0.85

x [m]

0.9

0.95

1

-0.1 0 0.1 0.2 0.3

Desired trajectory Y
des

(t)

Desired configurations Y
des

(T)

Reached configurations Y(T)

(a) Desired trajectory Ydes(t) and reached
configurations Y(κT).

0.4
0.2

y [m]

0
-0.2

0

0.1

0.2

0.3

0.4z
 [

m
] 0.5

0.6

x [m]

0.7

0.8

0.9

-0.4-0.4 -0.2 0 0.2 0.4 0.6

(b) A selection of 2 reached configurations
X(κT).

Figure 4.12.: The 3-D structure subjected to path-planning.

60

4. Active tensegrity structures

to one of master nodes. Desired trajectories Ydes(t) are depicted in Figure 4.12a. These
trajectories are discretized into 7 (nT = 6) desired configurations Ydes(κT), each one
consisting of 4 spatial positions. The structure is then subjected to path-planning and
resulting configurations Y(κT) are marked in Figure 4.12a. They seem accurate at
the first sight. In Figure 4.12b, there are 2 resulting structure configurations X(κT)
visualized (more configurations would make the figure confusing). The light one is for
the first path-planning iteration and the black one is for the last iteration. Black circles
have the same meaning as in case of the 2-D structure, they represent desired positions
ξi(κT) of each master node in the first and the last iteration.

0.2
0.1

y [m]

0
-0.1

0.65

0.7

0.75

0.8z
 [

m
] 0.85

x [m]

0.9

0.95

1

-0.1 0 0.1 0.2 0.3

Desired trajectory Y
des

(t)

Reached trajectory Y(t) by Simscape

(a) Reached trajectory Y(t) by Simscape.

0 5 10 15 20

t [s]

300

400

500

600

700

800

900

1000

1100

s
k
 [

N
]

Forces s(t) by path-planning

Forces s(t) by Simscape

(b) Forces s(t) calculated by path-planning
and by Simscape.

Figure 4.13.: A Simscape simulation of the 3-D structure with actuation l0,A(t) defined
by path-planning.

0.2
0.1

y [m]

0
-0.1

0.65

0.7

0.75

0.8

z
 [

m
] 0.85

x [m]

0.9

0.95

1

-0.1 0 0.1 0.2 0.3

Desired trajectory Y
des

(t)

Reached trajectory Y(t) by Simscape

(a) Reached trajectory Y(t) by Simscape.

0 0.5 1 1.5 2

t [s]

300

400

500

600

700

800

900

1000

1100

s
k
 [

N
]

Forces s(t) by path-planning

Forces s(t) by Simscape

(b) Forces s(t) calculated by path-planning
and by Simscape.

Figure 4.14.: A Simscape simulation of the 3-D structure with actuation l0,B(t) defined
by path-planning.

61

4. Active tensegrity structures

In Figures 4.13 and 4.14, there are results of two Simscape simulations, the first one
with actuation l0,A(t), t ∈ 〈0 s, 24 s〉, as a result of the sampling period T = 3 s, and the
second one with actuation l0,B(t), t ∈ 〈0 s, 2.4 s〉, with the sampling period T = 0.3 s. The
results are analogous to the previous 2-D example, therefore, no additional commentary
is needed.

4.2. Shape control

From results presented in the previous section, it is clear that the first stage of control
design presented in this work, path-planning, fulfils its role – it generates primary ac-
tuation enabling the structure to follow the desired trajectory. Eventually, in cases of
slow motion, relatively straight desired paths, and precisely set path-planning process not
allowing considerable position errors, it is possible to use the designed actuation as the
final one. In opposite cases, mainly in cases of fast movements, or with desired paths that
cannot be considered as almost linear, significant position errors occur mainly in form
of vibrations. Therefore, subsequent actuation has to be performed to suppress position
errors. A feedback H2 controller reducing position errors (both structural vibrations and
non-oscillating deviations) is designed in the second stage of tensegrity control design in
this work.

4.2.1. Linearization

Tensegrity model created in Simscape is non-linear, therefore, it has to be linearized to
be able to design an H2 controller. Non-linear dynamics of the MIMO (multiple input,
multiple output) system can be conventionally summarized as

ẋ = f(x,u) ∈ R2ndof , x(t) ∈ R2ndof ,u(t) ∈ Rmc , (4.17)

y = g(x,u) ∈ Rnm , (4.18)

where x is the vector of state variables, u is the input vector (cables’ rest lengths), y
is the output vector (positions of master nodes), and f ,g are non-linear functions. The
number of structure’s degrees of freedom is denoted as ndof , number of inputs (number
of cables) as mc and number of outputs (number of master nodes) as nm.

Let the point x∗ be considered as an equilibrium point with corresponding equilibrium
input u∗ and equilibrium output y∗. For x∗,u∗, it applies that

ẋ = f(x∗,u∗) = 0 (4.19)

according to [15]. If system starts from the initial state x(0) = x∗ and the input u(t) = u∗

is applied for all t ≥ 0, the resulting state and the system output is in form of

x(t) = x∗, t ≥ 0, (4.20)

y(t) = y∗. (4.21)

62

4. Active tensegrity structures

Deviation variables x̂, û, ŷ can be introduced as

x̂(t) = x(t)− x∗ → x(t) = x∗ + x̂(t), (4.22)

û(t) = u(t)− u∗ → u(t) = u∗ + û(t), (4.23)

ŷ(t) = y(t)− y∗ → y(t) = y∗ + ŷ(t). (4.24)

According to [11], the non-linear system defined in (4.17) and (4.18) combined with
(4.22)–(4.24) can be expanded to Taylor series of the first order with higher orders omitted
as

ẋ = ẋ∗ + ˙̂x = f(x∗ + x̂,u∗ + û) =

= f(x∗,u∗) +
∂f(x∗,u∗)

∂x
(x− x∗) +

∂f(x∗,u∗)

∂u
(u− u∗) ,

(4.25)

y = y∗ + ŷ = g(x∗ + x̂,u∗ + û) =

= g(x∗,u∗) +
∂g(x∗,u∗)

∂x
(x− x∗) +

∂g(x∗,u∗)

∂u
(u− u∗) .

(4.26)

Because equations (4.19) and (4.21) apply, it can be written that

˙̂x =
∂f(x∗,u∗)

∂x
x̂ +

∂f(x∗,u∗)

∂u
û, (4.27)

ŷ =
∂g(x∗,u∗)

∂x
x̂ +

∂g(x∗,u∗)

∂u
û. (4.28)

Equations (4.27) and (4.28) represent linear time-invariant system valid in the neigh-
bourhood of the equilibrium point x∗ with corresponding u∗ and y∗, in other words, for
small values of deviation variables x̂, û, ŷ. Linearized state-space model can be expressed
in a compact conventional matrix form

˙̂x = Ax̂ + Bû, (4.29)

ŷ = Cx̂ + Dû, (4.30)

where

A =


∂f1(x∗,u∗)

∂x1
. . . ∂f1(x∗,u∗)

∂x
ndof

...
. . .

...
∂f
ndof

(x∗,u∗)

∂x1
. . .

∂f
ndof

(x∗,u∗)

∂x
ndof

 ∈ Rndof×ndof , (4.31)

B =


∂f1(x∗,u∗)

∂u1
. . . ∂f1(x∗,u∗)

∂umc
...

. . .
...

∂f
ndof

(x∗,u∗)

∂u1
. . .

∂f
ndof

(x∗,u∗)

∂umc

 ∈ Rndof×mc , (4.32)

C =


∂g1(x∗,u∗)

∂x1
. . . ∂g1(x∗,u∗)

∂x
ndof

...
. . .

...
∂gnm (x∗,u∗)

∂x1
. . . ∂gnm (x∗,u∗)

∂x
ndof

 ∈ Rnm×ndof , (4.33)

63

4. Active tensegrity structures

D =


∂g1(x∗,u∗)

∂u1
. . . ∂g1(x∗,u∗)

∂umc
...

. . .
...

∂gnm (x∗,u∗)
∂u1

. . . ∂gnm (x∗,u∗)
∂umc

 ∈ Rnm×mc . (4.34)

As mentioned in the beginning of section 4.2.1, the input u represents cables’ rest
lengths l0 and the output y is in form of positions Y of master nodes. An appropriate
equilibrium input u∗ with the corresponding response in form of the equilibrium output
y∗ has to be determined. These two variables define the state, in which the system is
linearized. One of suitable options is to choose cables’ rest lengths L0 used as the input to
the path-planning process (see Figure 4.1, box “Start”). The corresponding equilibrium
output is also available – positions Y of master nodes calculated by the DRM in the
beginning of the path-planning process (see Figure 4.1, first box after “Start”, where
X naturally contains Y). Therefore, the input û represents deviations δ of cables’ rest
lengths from the their initial setting L0. Deviations of cables’ rest lengths were already
introduced in section 4.1 in form of adjustments of cables’ rest lengths16. Thus, input
deviations are defined analogously to (4.10) as

δ(t) = l0(t)− L0. (4.35)

The output ŷ represents deviations Ŷ of master nodes’ positions expressed as

Ŷ(t) = Y(t)−Y. (4.36)

L

Laug

U

V

Y

Z

û ŷ e
δ

δc

Ŷdes

ẽ

δ̃c

e

wv1

wv2 wz1

wz2

Figure 4.15.: Augmented plant.

16Adjustments δ in section 4.1 have exactly the same meaning as deviations used in this section. The
only difference is that L0 is changed after each iteration of the path-planning process. Here, L0

remains the same of course.

64

4. Active tensegrity structures

4.2.2. Augmented plant

An augmented plant is an instrument, with which it is possible to express control objec-
tives. A specific augmented plant, which is slightly inspired by [26] and [16], is used in
this work for H2 controller design. It is schematically depicted in Figure 4.15.

The linearized model of tensegrity expressed in (4.29)–(4.34) is denoted as L and the
resulting augmented plant model as Laug. Inputs of Laug are divided into two separate
sections. Section V includes external inputs, namely the deviation Ŷdes of the current
desired configuration from the configuration Y (same as in (4.36)) defined as

Ŷdes(t) = Ydes(t)−Y, (4.37)

and deviations δ of cables’ rest lengths. Section U includes controller effort δc (output
from the controller). Outputs are also divided into two sections. Section Z contains sig-
nals that are desired to be minimized (control objectives), namely the weighted position

error ẽ of master nodes and the weighted controller effort δ̃c. Section Y representing
controller inputs consists only of the position error e of master nodes.

As mentioned, all external inputs and control objectives are subjected to filtering. In
accordance with [26], weights wv1 , wv2 represent input filters approximating spectrum of
input signals, while weights wz1 , wz2 are designed to emphasize relevant frequencies of
the objectives.

4.2.3. H2 controller

This section is dedicated to a few comments regarding H2 controller synthesis. The
problem is defined according to [31] as searching for the controller C, which stabilizes
the system in form of the augmented plant Laug and minimizes the H2-norm of transfer
function from V to Z. A block diagram illustrating the closed loop consisting of controller
and the augmented plant is depicted in Figure 4.16. For an overview, the H2-norm of
a general continuous system with transfer function T (s) is defined according to [7] as

||T ||2 =

√
1

2π

∫ ∞
−∞

trace{T (iω)HT (iω)}dω. (4.38)

Further details about principles of H2 controller synthesis can be found for instance in
[31]. This topic is beyond the scope of this work, thus, it is not further discussed.

Laug

C

U

V

Y

Z

Figure 4.16.: Closed loop system.

65

4. Active tensegrity structures

In this work, H2 controller synthesis is performed by the MATLAB function h2syn
from the Robust Control Toolbox.

The application of a robust controller is justifiable. The original tensegrity system,
which is going to be controlled, is strongly non-linear. Also, working conditions can be
quite far from the equilibrium point, in which the system is linearized. Furthermore, this
work aims especially on active tensegrity structures in form of robotic manipulators, and,
therefore, structures should be able to carry loads in form of additional mass.

4.2.4. Examples

H2 control is demonstrated on the 2-D example structure from section 4.1.3 depicted in
Figure 4.3 with desired trajectory consisting of a line followed by a semicircle assigned
to the top node. Primary actuation defined by path-planning with sampling period
T = 0.3 s, i.e. l0,B(t), is considered. Apparently from the previous section, quality of
the resulting H2 controller is derived from particular setting of weighting filters in the
augmented plant. For purposes of this work, two sets of weighting filters (differing in the
weight wz1 designed as a low-pass filter in both cases) are selected, therefore, two different
controllers labelled as A and B are designed. Filters’ transfer functions are available in
Appendix A.1. Benefits of both controllers are evident from following figures.

Figure 4.17 contains a comparison of the desired trajectory Ydes(t) and calculated
trajectories Y(t) of the structure without control (actuation defined by path-planning is
final), with controller A, and with controller B.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

x [m]

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

z
 [
m

]

Desired trajectory Y
des

(t)

Trajectory Y(t) without control

Trajectory Y(t) with control A

Trajectory Y(t) with control B

(a) Overall view.

0.18 0.185 0.19 0.195 0.2 0.205 0.21 0.215

x [m]

0.68

0.685

0.69

0.695

0.7

0.705

z
 [
m

]

Desired trajectory Y
des

(t)

Trajectory Y(t) without control

Trajectory Y(t) with control A

Trajectory Y(t) with control B

(b) Zoomed view.

Figure 4.17.: Reached trajectory Y(t) of uncontrolled and controlled 2-D structure.

At the first sight, the control quality is might not very clear from Figure 4.17. Thus,
the total error ||e(t)|| of the configuration Y(t) from the desired configuration Ydes(t) is
defined as an Euclidean norm

||e(t)|| = ||Y(t)−Ydes(t)||. (4.39)

66

4. Active tensegrity structures

This quantity is visualized in Figure 4.18. From both mentioned Figures 4.17 and 4.18, it
is obvious that both controllers satisfy the requirement of position error reduction. Both
static error caused by linear approximation of primary actuation defined by path-planning
and dynamic error in form of vibrations caused by sharp corner in the desired trajectory
are suppressed. Moreover, Figure 4.18 shows that the initial position error ||e(0)|| is
reduced very fast. The controller A is much stronger than B in minimizing static errors.
On the other hand, the controller B is designed to quickly suppress structural vibrations.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t [s]

0

0.5

1

1.5

2

2.5

3

3.5

4
10-3

Without control

With control A

With control B

(a) Overall view.

1.8 2 2.2 2.4 2.6 2.8 3

t [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
10-4

Without control

With control A

With control B

(b) Zoomed view.

Figure 4.18.: Position error ||e(t)|| of uncontrolled and controlled 2-D structure.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t [s]

-100

0

100

200

300

400

500

600

700

s
 [
N

]

Without control

With control A

With control B

Figure 4.19.: Cables’ forces s(t) in uncontrolled and controlled 2-D structure.

Figure 4.19, where internal forces s(t) are depicted, serves as a proof that the controlled
structure is maintaining its integrity during the whole simulation. Moreover, magnitudes

67

4. Active tensegrity structures

of forces are pretty similar to the ones in the uncontrolled structure (tension in the
uncontrolled and controlled structure is at the same level).

Input deviation δ(t) defined in (4.35) represents only a different form of the primary
actuation l0(t) designed by path-planning. This quantity is shown in Figure 4.20a. It
can be used as an effective measure of control effort magnitudes. The control effort δc(t)
visualized in Figure 4.20b represents the output of the controller added to the actuation
l0(t) delivered as the input to the controlled system. One of controller design criteria is
the control effort minimization. This objective seems to be satisfied because the control
effort δc(t) is relatively small compared to the input deviation δ(t).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t [s]

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

 [
m

]

(a) Input deviation δ(t).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t [s]

-4

-2

0

2

4

6

8

c
 [
m

]

10-3

With control A

With control B

(b) Control effort δc(t).

Figure 4.20.: Input deviation δ(t) defined by path-planning and control effort δc(t) of the
controlled 2-D structure.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

x [m]

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

z
 [
m

]

Desired trajectory Y
des

(t)

Trajectory Y(t) with control B, no mass

Trajectory Y(t) with control B, mass added

Figure 4.21.: Reached trajectory Y(t) of controlled 2-D unloaded and loaded structure.

68

4. Active tensegrity structures

Structure with additional mass

As the headline suggests, the same 2-D structure discussed in the previous text is loaded
by additional point mass madd placed to the top node. This imitates the situation that
the robotic manipulator transfers some load by its effector. For purposes of this exam-
ple, madd ≈ 0.2 ·mreal, where mreal denotes the weight of the whole structure, which is
a considerable burden. Particular value of madd is provided in Appendix A.1. The con-
troller B designed for controlling of the unloaded structure is utilized for controlling this
new system and original outputs from path-planning considering the unloaded structure
are used as well.

In Figure 4.21, desired trajectory and calculated trajectories of unloaded and loaded
controlled structures are compared. No problems in controlling the loaded structure are
visible. Also the position error ||e(t)|| and the control effort δc(t) visualized in Figure 4.22
do not report any control problems. When comparing the simulation of unloaded and
loaded structure, the only significant differences in these quantities are observed around
t = 0.3 s and t = 0.9 s representing the start time of following the desired trajectory and
time of encountering the sharp corner in the desired trajectory. It is definitely caused
by higher inertia of the whole structure. Static effects of additional mass are suppressed
very well.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t [s]

0

0.5

1

1.5

2

2.5

3

3.5

4
10-3

With control B, no mass

With control B, mass added

(a) Position error ||e(t)||.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t [s]

-3

-2

-1

0

1

2

3

4

c
 [
m

]

10-3

With control B, no mass

With control B, mass added

(b) Control effort δc(t).

Figure 4.22.: Position error ||e(t)|| and control effort δc(t) of controlled 2-D unloaded and
loaded structure.

69

5. Conclusion

The submitted thesis deals with the design of an active tensegrity structure. In chapter 2,
the problem of form-finding (searching for a stable equilibrated configuration associated
with prestresses) is treated with two different approaches: the Adaptive force density
method (AFDM) and the Dynamic relaxation method (DRM). However, both methods
solve the same problem, their applicability is different. Usage of the first mentioned one
is advantageous mainly in the beginning of the design process, when almost no data
are available and the designer’s aim is to explore various stable configurations with the
same topology without much effort. On the other hand, the second form-finding method
requires a fully specified structure. It calculates the static response of the structure to
a specific actuation, which is necessary to know during the design stage called path-
planning.

The principal aim of path-planning is to design the actuation that leads the structure
to follow a desired trajectory in form of trajectories of selected structure nodes. Path-
planning is approached as an iterative optimization process utilizing the DRM when
evaluating the objective function. All details regarding this topic can be found in sec-
tion 4.1. If the motion of a tensegrity following a desired trajectory is relatively slow,
it can be considered as quasi-static, and the proposed process of actuation design is
sufficient. But in many robotic applications, motion can be quite fast, and thus, unde-
sirable vibrations can occur. Because the presented path-planning process is based on
static analysis only, it cannot suppress them. Therefore, an H2 controller is designed in
section 4.2 to reduce vibrations.

Chapter 3 of the thesis dedicated to modelling the dynamics of tensegrity structures
is started with Lagrange’s equations. The main aim of this chapter is to present a devel-
oped methodology of tensegrity computational model creation in Simscape software. In
order to make generation of Simscape dynamic models of tensegrities fast and smooth,
a software automatically generating the Simscape model is developed in the MATLAB
scripting environment as an alternative to manual creation.

The whole methodology consisting of individual fragments mentioned above form quite
a robust instrument enabling the design of various active tensegrity structures of arbitrary
class. Each part of the design process is tested with different structures. As the topic of
the thesis represents pretty large area, there is plenty of potential for future augmentation
mainly in the field of control. The proposed control approach does not ensure internal
stability of the whole structure, therefore the designed H2 controller can destabilize the
structure in some cases. This has to be treated before applying the controller into a real
structure. Another possible development of the work can be performed by allowing the
usage of other compressive members in form of at least 2-D bodies.

70

Bibliography

[1] Ali, N. B. H., Rhode-Barbarigos, L., Smith, I.: Analysis of clustered tensegrity
structures using a modified dynamic relaxation algorithm, International Journal of
Solids and Structures, vol. 48, no. 5, pp. 637-347, 2011.

[2] Barnes, M.: Form finding and analysis of tension structures by dynamic relaxation,
International Journal of Space Structures, vol. 14, no. 2, pp. 89-104, 1999.

[3] Barnes, M.: Form Finding and Analysis of Tension Structures by Dynamic Relax-
ation, Ph.D. thesis, The City University, London, UK, 1977.

[4] Buĺın, R.: Advanced computational methods for the dynamical analysis of multibody
systems with flexible beams and ropes, Ph.D. thesis, University of West Bohemia,
Pilsen, Czech Republic, 2019.

[5] Cai, H., Wang, M., Xu, X., Luo, Y.: A general model for both shape control and
locomotion control of tensegrity systems, Frontiers in Built Environment, vol. 6,
2020.

[6] Connelly, R., Whiteley, W.: Second-order rigidity and prestress stability for tenseg-
rity frameworks, SIAM Journal on Discrete Mathematics, vol. 9, no. 3, pp. 453-491,
1996.

[7] Documentation, manuals and user’s guide to MATLAB [online], MathWorks, avail-
able: https://www.mathworks.com/support.html. [Accessed: 19-May-2022].

[8] Dupal, J.: Mechanics 3, Script for lectures, University of West Bohemia, Pilsen,
Czech Republic, 2012.

[9] Fuller, R. B.: Tensile-integrity structures, United States Patent no. 3063521, Novem-
ber, 1962.

[10] Gan, B. S.: Computational modeling of tensegrity structures, Springer, Cham,
Switzerland, 2020, ISBN 978-3-030-17835-2.

[11] Goubej, M., Melichar, J.: Linear systems 1, Script for lectures, University of West
Bohemia, Pilsen, Czech Republic, 2017.

[12] Heartney, E.: Kenneth Snelson: Art and ideas, Kenneth Snelson’s web, 2013.

[13] Liu, Y., Bi, Q., Yue, X., Wu, J., Yang, B., Li, Y.: A review of tensegrity structures-
based robots, Mechanism and Machine Theory, vol. 168, 2022.

[14] Morto, R.: Tensegrity systems: state of the art, International Journal of Space
Structures, vol. 7, no. 2, pp. 75-83, 1992.

71

Bibliography

[15] Packard, A., Poolla, K., Horowitz, R.: Dynamic systems and feedback, Script for
lectures, University of California, Berkeley, USA, 2002.

[16] Robust control of an active suspension [online], MathWorks, available:
https://www.mathworks.com/help/robust/gs/active-suspension-control-
design.html. [Accessed: 19-May-2022].

[17] Schek, H.-J.: The force density method for form finding and computation of general
networks, Computer Methods in Applied Mechanics and Engineering, vol. 3, pp.
115-134, 1974.

[18] Schlotter, M.: Multibody system simulation with SimMechanics, TU Darmstadt,
Darmstadt, Germany, 2003.

[19] Shabana, A. A.: Dynamics of multibody systems, Fifth edition, Cambridge Univer-
sity Press, Cambridge, UK, 2020, ISBN 978-1-108-48564-7.

[20] Shah, D. S., Booth, J. W., Baines, R. L., Wang, K., Vespignani, M., Bekris, K.,
Kramer-Bottiglio, R.: Tensegrity robotics, Soft Robotics, vol. 10, 2021.

[21] Skelton, R., de Oliveira, M.: Tensegrity systems, Springer, Berlin, Germany, 2009,
ISBN 978-0-387-74241-0.

[22] Skelton, R.: Dynamics of tensegrity systems: Compact forms, Proceedings of the
45th IEEE Conference on Decision and Control, pp. 2276-2281, 2006.

[23] Smoĺık, L.: Dynamic behavior analysis of turbocharger rotors, Diploma thesis, Uni-
versity of West Bohemia, Pilsen, Czech Republic, 2013.

[24] Tur, J. M. M., Juan, S. H.: Tensegrity frameworks: Dynamic analysis review and
open problems, Mechanism and Machine Theory, vol. 44, pp. 1-18, 2009.

[25] Wakefield, D. S.: Pretensioned Networks Supported by Compression Arches, Ph.D.
thesis, The City University, London, UK, 1980.

[26] van de Wijdeven, J., de Jager, B.: Shape change of tensegrity structures: Design
and control, American Control Conference, pp. 2522-2527, 2005.

[27] Wroldsen, A. S.: Modelling and control of tensegrity structures, Ph.D. thesis, Nor-
wegian University of Science and Technology, Trondheim, Norway, 2007.

[28] Xu, X., Sun, F., Luo, Y., Xu, Y.: Collision-free planning of tensegrity structures,
Journal of Structural Engineering, vol. 140, no. 4, 2005.

[29] Zhang, J. Y., Ohsaki, M.: Tensegrity Structures: Form, Stability, and Symmetry,
Springer, Tokyo, Japan, 2015, ISBN 978-4-431-54812-6.

[30] Zhang, J. Y., Ohsaki, M.: Adaptive force density method for form-finding problem
of tensegrity structures, International Journal of Solids and Structures, vol. 43, pp.
5658-5673, 2006.

[31] Zhou, K., Doyle, J. C., Glover, K.: Robust and optimal control, Prentice Hall, En-
glewood Cliffs, New Jersey, USA, 1996.

72

A. Appendices

A.1. Parameter table

Type Parameter Value Unit

Strut
Young’s modulus, Es 210 · 109 Pa
Cross-section, As 5 · 10−5 m
Mass density, ρs 7.8 · 103 kgm3

Cable
Young’s modulus, Ec 1 · 109 Pa
Cross-section, Ac 1 · 10−5 m
Proportional damping coef., β 1 · 10−4 −

DRM Residuum tolerance, Rtol 0.1 N
17Maximal allowed adjustments, ∆k 0.2 / 0.5 m
17Internal force threshold, smin 1 · 103 / 1 · 104 N

Path-planning
17Position error weight, wS 1 · 10−8 / 1 · 10−7 −

and
Penalty weight, wP 1 · 103 −

optimization solver
Solver algorithm fminimax −
FiniteDifferenceType forward −
OptimalityTolerance 1 · 10−6 −
FunctionTolerance 1 · 10−6 −

ODE solver

17Solver algorithm ode15s / ode45 −
InitialStepSize 1 · 10−10 s
MaxStepSize 1 · 10−3 s
RelativeTolerance 1 · 10−3 −
Input filter, wv1 0.1 −

Augmented plant Input filter, wv2 0.05 −
weighting filters 18Output filter, wz1 s+300

s+0.1
/ s+30
s+0.01

−
and control Output filter, wz2 0.01 −

Additional mass, madd 0.15 kg
General Gravitational acceleration, g −9.81 m/s2

Table A.1.: Summary of parameters and their values.

17Two different values are used: for both 2-D structures / for the 3-D structure.
18Two different values are used: for the controller A / for the controller B.

73

A. Appendices

A.2. MATLAB function for automatic generation of
Simscape tensegrity models

1 % Martin Hrabacka, 31.5.2022
2 % Function for automatic generation of Simscape tensegrity models
3 %
4 % q - force density vector
5 % C - connectivity matrix
6 % X - configuration vector
7 % type - type of member
8 % fname - name of resulting slx model
9 % beta - cable’s damping coeficient

10 % E_c - cable’s Young’s modulus
11 % A_s - strut’s cross-section
12 % A_c - cable’s cross-section
13 % rho_s - strut’s mass density
14 % l_0 - discrete sets of cables’ rest lengths
15 % T - sampling period
16 %
17 function slx_auto_create(q,C,X,type,fname,beta,E_c,A_s,A_c,rho_s,l_0,T)
18
19 n = length(C(1,:)); % nr of nodes
20 m = length(C(:,1)); % nr of members
21 m_c = length(find(type)); % nr of cables
22 m_s = m - m_c; % nr of struts
23
24 cable = zeros(10,m_c); % cable parameter matrix (each column for each cable)
25 % [j;i_1;x_1;y_1;z_1;i_2;x_2;y_2;z_2;nodes_dist]
26 % j - member index, i - node index, x/y/z - node coordinates
27 strut = zeros(10,m_s); % strut parameter matrix (each column for each strut)
28 % [j;i_1;x_1;y_1;z_1;i_2;x_2;y_2;z_2;l_0]
29 % j - member index, i - node index, x/y/z - node coordinates
30 N = [X(1:n)’;X(n+1:2*n)’;X(2*n+1:3*n)’]; % modification of config. vector to matrix [3 x n]
31
32 %% Various calculations
33
34 t_stop = T*(length(l_0(1,:))) + T; % simulation final time
35 r_s = sqrt(A_s/pi); % strut’s radius
36
37 c_i = 0; % cable index in cable parameter matrix
38 s_i = 0; % strut index in strut parameter matrix
39 fl = 1; % flag for switching between first-second node
40
41 for j = 1:m % member index
42 for i = 1:n % node index
43 if C(j,i) ˜= 0
44 if fl == 1
45 first = [i;N(:,i)]; % node i = 1st node of member m
46 fl = 2;
47 else
48 second = [i;N(:,i)]; % node i = 2nd node of member m
49 fl = 1;
50 break;
51 end
52 end
53 end
54
55 if (first(4) - second(4)) > 0 % 1st node must be in lower z-level than 2nd node
56 aux = first;
57 first = second;
58 second = aux;
59 end
60
61 l = norm(first(2:4)-second(2:4)); % length of member m
62

74

A. Appendices

63 if type(j) == 1 % member m == cable
64 c_i = c_i + 1;
65 cable(1,c_i) = j;
66 cable(2:5,c_i) = first;
67 cable(6:9,c_i) = second;
68 cable(10,c_i) = l;
69 else % member m == strut
70 s_i = s_i + 1;
71 strut(1,s_i) = j;
72 strut(2:5,s_i) = first;
73 strut(6:9,s_i) = second;
74 strut(10,s_i) = l;
75 end
76 end
77
78 l_0_seq = zeros(m_c,length(l_0(1,:))+1); % modified sequence of l_0 for actuation
79 c_i = 0;
80
81 for j = 1:m % through all members
82 if type(j) == 1 % type of member == cable
83 c_i = c_i + 1;
84 l_0_init = E_c*A_c*cable(10,c_i)/(cable(10,c_i)*q(j)+E_c*A_c); % calculation of l_0 from q
85 l_0_seq(c_i,:) = [l_0_init,l_0(c_i,:)];
86 end
87 end
88
89 end_nodes = zeros(n,1); % indices of nodes at the end of chains
90
91 for s_i = 1:m_s % through all struts
92 end_nodes(strut(2,s_i),1) = end_nodes(strut(2,s_i),1) + 1; % beginning of s_i-th strut
93 end_nodes(strut(6,s_i),1) = end_nodes(strut(6,s_i),1) + 1; % end of s_i-th strut
94 end
95 end_nodes = find(end_nodes == 1);
96
97 %% Counting joints in the lowest z-level (spherical/planar)
98
99 joints_planar = zeros(0,1); % vector of nodes representing planar joints

100 z_min = min(strut(5,:)); % find the lowest z-level
101
102 nr = 0;
103 for n_i = 1:n % through all nodes
104 if (N(3,n_i) - z_min) <= 1e-3 % different z-levels, resolution == 1e-3
105 nr = nr + 1;
106 if nr == 1
107 joint_sph = n_i; % node representing spherical joint
108 else
109 joints_planar = [joints_planar;n_i];
110 end
111 end
112 end
113
114 s_laying = zeros(0,1); % members laying in the lowest z-level
115
116 for s_i = 1:m_s % through all struts
117 elev_s_i = strut([5,9],s_i); % z-coord. of both nodes of strut s_i
118 bool_laying = (elev_s_i == [z_min;z_min]); % is node laying in the lowest z-level?
119 if (bool_laying(1) == 1) && (bool_laying(2) == 1) % member lies in the lowest z-level
120 s_laying = [s_laying;s_i];
121 end
122 end
123
124 %% File generation, "world" configuration, standard blocks
125
126 if exist(fname,’file’) == 4
127 if bdIsLoaded(fname)
128 close_system(fname,0);

75

A. Appendices

129 end
130 delete([fname,’.mdl’]);
131 end
132 new_system(fname);
133 open_system(fname);
134
135 add_block(’nesl_utility/Solver Configuration’, [gcs,’/Solver’],...
136 ’Position’, [10 40 50 80],’Orientation’,0);
137 add_block(’sm_lib/Utilities/Mechanism Configuration’, [gcs,’/Conf’],...
138 ’Position’, [10 110 50 150],’Orientation’,0,’GravityVector’,’[0 0 -9.81]’);
139 add_block(’sm_lib/Frames and Transforms/World Frame’, [gcs,’/WorldFr’],...
140 ’Position’, [10 180 50 220],’Orientation’,0);
141 add_block(’built-in/Constant’, [gcs,’/Const’],...
142 ’Position’, [10 280 50 320], ’Orientation’,0,’Value’,’0’);
143 add_block(’nesl_utility/Simulink-PS Converter’, [gcs,’/S-PS’],...
144 ’Position’, [90 280 130 320], ’Orientation’,0);
145 add_line(gcs,’Solver/RConn1’,’Conf/RConn1’);
146 add_line(gcs,’Solver/RConn1’,’WorldFr/RConn1’);
147 add_line(gcs,’Const/1’,’S-PS/1’);
148
149 set_param(gcs,’Solver’,’ode15s’,’MaxStep’,’1e-3’,’StopTime’,num2str(t_stop));
150
151 %% Generation of links between frame and struts in lowest z-level, part 1 (1x spherical)
152
153 POSITION = struct; % structure for positioning blocks in the model
154 POSITION.size_half_small = [40/2,40/2]; % x/y-dimensions of small blocks
155 POSITION.size_half_large = [80/2,60/2]; % x/y-dimensions of large blocks
156 POSITION.y_gap = 90; % y-gap between blocks
157 POSITION.x_gap_small = 80; % small x-gap between blocks
158 POSITION.x_gap_large = 200; % large x-gap between blocks
159 POSITION.x_level = 330; % current x-position
160 POSITION.y_level = 130; % current y-position
161 POSITION.x_level_sensor = 250; % current x-position for sensors
162
163 members_used = zeros(0,1); % already added members
164 nodes_used = zeros(0,1); % already added nodes
165 strut_orient = zeros(m_s,1); % orienation of struts compared to strut param. matrix
166 strut_rot = zeros(m_s,2); % rotation of struts
167
168 missing_sph = -1*ones(n,1); % index = node with missing sph joint
169 % value = nr of the last strut added to the node
170
171 lib_path = ’sm_lib/Joints/Spherical Joint’;
172 name = [’/Spherical’, num2str(joint_sph)];
173 add_joint(name,POSITION,lib_path,0); % add spherical joint
174
175 POSITION.x_level = POSITION.x_level - POSITION.x_gap_small;
176 trans = "[" + N(1,joint_sph) + "," + N(2,joint_sph) + "," + N(3,joint_sph) + "]";
177 name = [’/Trans’, num2str(joint_sph)];
178 add_trans(name,POSITION,trans); % realize translation
179
180 add_line(gcs, ’Conf/RConn1’,...
181 [’Trans’, num2str(joint_sph), ’/LConn1’]);
182 add_line(gcs,[’Trans’, num2str(joint_sph), ’/RConn1’],...
183 [’Spherical’, num2str(joint_sph), ’/LConn1’]);
184
185 POSITION.x_level = POSITION.x_level + POSITION.x_gap_small + POSITION.x_gap_large;
186 nodes_used = [nodes_used;joint_sph];
187 parent_name = [’Spherical’, num2str(joint_sph)]; % name of the base
188 parent_rot_1 = 0; % precession angle of the base
189 parent_rot_2 = 0; % nutation angle of the base
190
191 recurs_layer_nr = 0; % number of recurences of the fcn ’add_node’
192
193 % add the node representing spherical joint
194 [members_used,nodes_used,end_nodes,...

76

A. Appendices

195 strut_orient,missing_sph,strut_rot,POSITION] = ...
196 add_node(joint_sph,joints_planar,members_used,nodes_used,...
197 recurs_layer_nr,parent_name,parent_rot_1,parent_rot_2,POSITION,...
198 missing_sph,strut_rot,s_laying,end_nodes,strut_orient,strut,type,N,C,r_s,rho_s);
199
200 %% Generation of links between frame and struts in lowest z-level, part 2 (planar)
201
202 POSITION.x_level = POSITION.x_level - POSITION.x_gap_large;
203
204 if ˜isempty(joints_planar(:,1)) % only one node in lowest z-level -> no planar joints
205 for i = 1:length(joints_planar(:,1)) % through all nodes representing planar joint
206 if isempty(find(nodes_used == joints_planar(i))) % node ’joint_planar(i)’ not added yet
207
208 lib_path = ’sm_lib/Joints/6-DOF Joint’;
209 name = [’/Planar’, num2str(joints_planar(i))];
210 add_joint(name,POSITION,lib_path,1); % add planar joint
211
212 POSITION.x_level = POSITION.x_level - POSITION.x_gap_small;
213 trans = "[" + N(1,joints_planar(i)) + ","...
214 + N(2,joints_planar(i)) + "," + N(3,joints_planar(i)) + "]";
215 name = [’/Trans’, num2str(joints_planar(i))];
216 add_trans(name,POSITION,trans); % realize translation
217
218 add_line(gcs, ’Conf/RConn1’,...
219 [’Trans’, num2str(joints_planar(i)), ’/LConn1’]);
220 add_line(gcs,[’Trans’, num2str(joints_planar(i)), ’/RConn1’],...
221 [’Planar’, num2str(joints_planar(i)), ’/LConn1’]);
222
223 POSITION.x_level = POSITION.x_level + POSITION.x_gap_small + POSITION.x_gap_large;
224 nodes_used = [nodes_used;joints_planar(i)];
225 parent_name = [’Planar’, num2str(joints_planar(i))]; % name of the base
226 parent_rot_1 = 0; % precession angle of the base
227 parent_rot_2 = 0; % nutation angle of the base
228
229 % add current node representing planar joint
230 [members_used,nodes_used,end_nodes,...
231 strut_orient,missing_sph,strut_rot,POSITION] = ...
232 add_node(joints_planar(i),joints_planar,members_used,nodes_used,...
233 recurs_layer_nr,parent_name,parent_rot_1,parent_rot_2,POSITION,...
234 missing_sph,strut_rot,s_laying,end_nodes,strut_orient,strut,type,N,C,r_s,rho_s);
235
236 end
237 POSITION.x_level = POSITION.x_level - POSITION.x_gap_large;
238 end
239 end
240
241
242 %% Generation of links between frame and struts in other z-levels (6DOF)
243
244 if length(nodes_used) ˜= n % only one node in lowest z-level -> no planar joints
245 for i = 1:n % through all nodes
246 if isempty(find(nodes_used == i)) % i-th node not added yet
247
248 lib_path = ’sm_lib/Joints/6-DOF Joint’;
249 name = [’/6DOF’, num2str(i)];
250 add_joint(name,POSITION,lib_path,0);
251
252 POSITION.x_level = POSITION.x_level - POSITION.x_gap_small;
253 trans = "[" + N(1,i) + "," + N(2,i) + "," + N(3,i) + "]";
254 name = [’/Trans’, num2str(i)];
255
256 add_trans(name,POSITION,trans);
257 add_line(gcs, ’Conf/RConn1’,...
258 [’Trans’, num2str(i), ’/LConn1’]);
259 add_line(gcs,[’Trans’, num2str(i), ’/RConn1’],...
260 [’6DOF’, num2str(i), ’/LConn1’]);

77

A. Appendices

261
262 POSITION.x_level = POSITION.x_level + POSITION.x_gap_small + POSITION.x_gap_large;
263 nodes_used = [nodes_used;i];
264 parent_name = [’6DOF’, num2str(i)];
265 parent_rot_1 = 0;
266 parent_rot_2 = 0;
267
268 [members_used,nodes_used,end_nodes,...
269 strut_orient,missing_sph,strut_rot,POSITION] = ...
270 add_node(i,joints_planar,members_used,nodes_used,...
271 recurs_layer_nr,parent_name,parent_rot_1,parent_rot_2,POSITION,...
272 missing_sph,strut_rot,s_laying,end_nodes,strut_orient,strut,type,N,C,r_s,rho_s);
273
274 POSITION.x_level = POSITION.x_level - POSITION.x_gap_large;
275 end
276 end
277 end
278
279 %% Cables and their connection with struts
280
281 POSITION.y_level = POSITION.y_level - m_s*POSITION.y_gap;
282 POSITION.x_level = POSITION.x_level + POSITION.x_gap_small + 2*POSITION.x_gap_large;
283
284 for i = 1:m_c % through all cables
285
286 name = [’/m’, num2str(cable(1,i))];
287 add_cable(name,POSITION,num2str(A_c),num2str(E_c),num2str(beta)); % add cable
288 add_actuation(num2str(cable(1,i)),num2str(l_0_seq(i,:)),num2str(T),POSITION); % add actuator
289
290 for side = 1:2 % through both ends of the cable
291 [lr,strut_index] = find(strut([2,6],:) == cable(side*4-2,i));
292 % lr - port is on the left side or right side?
293 % strut_index - strut index in strut parameter matrix
294 % cable(side*4-2,i)) - nr of first/second node
295 if length(lr) > 1
296 lr = lr(1);
297 strut_index = strut_index(1);
298 end
299 if lr == 1
300 if strut_orient(strut_index) == 1
301 LR = ’L’;
302 else
303 LR = ’R’;
304 end
305 else
306 if strut_orient(strut_index) == 1
307 LR = ’R’;
308 else
309 LR = ’L’;
310 end
311 end
312 if side == 1 % connection of appropriate end of appropriate strut to cable’s end
313 add_line(gcs,[’m’, num2str(cable(1,i)), ’/LConn1’],...
314 [’M’, num2str(strut(1,strut_index)), ’/’,num2str(LR),’Conn1’]);
315 else
316 add_line(gcs,[’m’, num2str(cable(1,i)), ’/RConn1’],...
317 [’M’, num2str(strut(1,strut_index)), ’/’,num2str(LR),’Conn1’]);
318 end
319 end
320 POSITION.y_level = POSITION.y_level + POSITION.y_gap;
321 end
322
323 %% Add 1 scope for all cables (force)
324
325 POSITION.y_level = POSITION.y_level - m_c*POSITION.y_gap;
326 POSITION.x_level = POSITION.x_level + POSITION.x_gap_large;

78

A. Appendices

327
328 if m_c ˜= 0 % some cable must exist
329 add_block(’built-in/Scope’, [gcs,’/Scope_m_force’],...
330 ’Position’, [POSITION.x_level-POSITION.size_half_small(1),...
331 POSITION.y_level-POSITION.size_half_small(2),...
332 POSITION.x_level+POSITION.size_half_small(1),...
333 POSITION.y_level+POSITION.size_half_small(2)],...
334 ’Orientation’,0,’NumInputPorts’,num2str(m_c));
335 end
336
337 for i = 1:m_c % through all cables
338 add_line(gcs,[’m’, num2str(cable(1,i)), ’/1’],...
339 [’Scope_m_force’, ’/’, num2str(i)]);
340 end
341
342 %% Add missing constraints to close cycles
343
344 POSITION.x_level = POSITION.x_level + POSITION.x_gap_large;
345
346 missing_sph_nodes = find(missing_sph); % mark indices of nodes with missing sperical joint
347 for i = 1:length(missing_sph_nodes) % through all nodes with missing sph. joints
348
349 struts_in_node = find(C(:,missing_sph_nodes(i))); % all struts connected to the node
350 struts_in_node = struts_in_node.*(-type(struts_in_node)+ones(length(struts_in_node),1));
351 struts_in_node = struts_in_node(find(struts_in_node));
352
353 first_member = missing_sph(missing_sph_nodes(i)); % always on the right (F) side
354 if struts_in_node(1) == first_member
355 second_member = struts_in_node(2);
356 else
357 second_member = struts_in_node(1);
358 end
359
360 [lr,strut_index] = find(strut([2,6],:) == missing_sph_nodes(i));
361 % lr - port to node is on left (B) side or right (F) side?
362 % strut_index - strut index in strut parameter matrix
363 second_member_side = lr(find(strut_index == second_member));
364
365 if second_member_side == 1
366 if strut_orient(second_member) == 1
367 LR = ’L’;
368 else
369 LR = ’R’;
370 end
371 else
372 if strut_orient(second_member) == 1
373 LR = ’R’;
374 else
375 LR = ’L’;
376 end
377 end
378
379 name = [’/Rot*-’, num2str(first_member)];
380 add_rot_2(name,POSITION,... % realize reverse rotation relative to first_member
381 "" + (-strut_rot(first_member,2)),"" + (-strut_rot(first_member,1)));
382
383 POSITION.x_level = POSITION.x_level + POSITION.x_gap_small;
384 add_line(gcs,[’Rot*-’, num2str(first_member), ’/LConn1’],...
385 [’M’, num2str(first_member), ’/RConn1’]);
386
387 lib_path = ’sm_lib/Joints/Spherical Joint’;
388 name = [’/Spherical*’, num2str(missing_sph_nodes(i))];
389 add_joint(name,POSITION,lib_path,0); % add missing joint
390 POSITION.x_level = POSITION.x_level + POSITION.x_gap_small;
391 add_line(gcs,[’Spherical*’, num2str(missing_sph_nodes(i)), ’/LConn1’],...
392 [’Rot*-’, num2str(first_member), ’/RConn1’]);

79

A. Appendices

393
394 name = [’/Rot*-’, num2str(second_member)];
395 add_rot_2(name,POSITION,... % realize reverse rotation relative to first_member
396 "" + (-strut_rot(second_member,2)),"" + (-strut_rot(second_member,1)));
397
398 POSITION.x_level = POSITION.x_level + POSITION.x_gap_small;
399 add_line(gcs,[’Rot*-’, num2str(second_member), ’/RConn1’],...
400 [’Spherical*’, num2str(missing_sph_nodes(i)), ’/RConn1’]);
401 add_line(gcs,[’Rot*-’, num2str(second_member), ’/LConn1’],...
402 [’M’, num2str(second_member), ’/’,num2str(LR),’Conn1’]);
403
404 POSITION.y_level = POSITION.y_level + POSITION.y_gap;
405 POSITION.x_level = POSITION.x_level - 3*POSITION.x_gap_small;
406 end
407
408 %% End of model generation
409
410 save_system(fname);
411 open_system(fname);
412
413 end
414
415
416 %% Support functions
417
418 function add_joint(name,POSITION,lib_path,planar)
419 add_block(lib_path, [gcs,name],...
420 ’Position’, [POSITION.x_level-POSITION.size_half_small(1),...
421 POSITION.y_level-POSITION.size_half_small(2),...
422 POSITION.x_level+POSITION.size_half_small(1),...
423 POSITION.y_level+POSITION.size_half_small(2)],...
424 ’Orientation’,0);
425 if planar == 1
426 set_param([gcs,name],...
427 ’PzTorqueActuationMode’,’ComputedTorque’,’PzMotionActuationMode’,’InputMotion’);
428 name2 = name(2:length(name)); % without ’/’ at the beginning
429 add_line(gcs,’S-PS/RConn1’,[name2, ’/LConn2’]);
430 end
431 end
432
433 function add_trans(name,POSITION,trans)
434 add_block(’sm_lib/Frames and Transforms/Rigid Transform’, [gcs,name],...
435 ’Position’, [POSITION.x_level-POSITION.size_half_small(1),...
436 POSITION.y_level-POSITION.size_half_small(2),...
437 POSITION.x_level+POSITION.size_half_small(1),...
438 POSITION.y_level+POSITION.size_half_small(2)],...
439 ’Orientation’,0,’TranslationMethod’,’Cartesian’,...
440 ’TranslationLengthUnit’,’m’,’TranslationCartesianOffset’,trans);
441 end
442
443 function add_rot(name,POSITION,rot_1,rot_2)
444 add_block(’sm_lib/Frames and Transforms/Rigid Transform’, [gcs,name],...
445 ’Position’, [POSITION.x_level-POSITION.size_half_small(1),...
446 POSITION.y_level-POSITION.size_half_small(2),...
447 POSITION.x_level+POSITION.size_half_small(1),...
448 POSITION.y_level+POSITION.size_half_small(2)],...
449 ’Orientation’,0,’RotationMethod’,’RotationSequence’,’RotationSequence’,’YXY’,...
450 ’RotationSequenceAnglesUnits’,’deg’,...
451 ’RotationSequenceAngles’,’[’ + rot_1 + ’,’ + rot_2 + ’, 0]’);
452 end
453
454 function add_rot_2(name,POSITION,rot_1,rot_2)
455 add_block(’sm_lib/Frames and Transforms/Rigid Transform’, [gcs,name],...
456 ’Position’, [POSITION.x_level-POSITION.size_half_small(1),...
457 POSITION.y_level-POSITION.size_half_small(2),...
458 POSITION.x_level+POSITION.size_half_small(1),...

80

A. Appendices

459 POSITION.y_level+POSITION.size_half_small(2)],...
460 ’Orientation’,0,’RotationMethod’,’RotationSequence’,’RotationSequence’,’YXY’,...
461 ’RotationSequenceAnglesUnits’,’deg’,...
462 ’RotationSequenceAngles’,’[0,’ + rot_1 + ’,’ + rot_2 + ’]’);
463 end
464
465 function add_strut(name,POSITION,l,r,rho)
466 add_block(’my_lib/Strut’, [gcs,name],...
467 ’Position’, [POSITION.x_level-POSITION.size_half_large(1),...
468 POSITION.y_level-POSITION.size_half_large(2),...
469 POSITION.x_level+POSITION.size_half_large(1),...
470 POSITION.y_level+POSITION.size_half_large(2)],...
471 ’Orientation’,0,’L’,num2str(l),’r’,num2str(r),’rho’,num2str(rho));
472 end
473
474 function add_cable(name,POSITION,A,E,beta) %add_cable(name,POSITION,k,b)
475 add_block(’my_lib/Cable with actuation’, [gcs,name],...
476 ’Position’, [POSITION.x_level-POSITION.size_half_large(1),...
477 POSITION.y_level-POSITION.size_half_large(2),...
478 POSITION.x_level+POSITION.size_half_large(1),...
479 POSITION.y_level+POSITION.size_half_large(2)],...
480 ’Orientation’,0,’A’,A,’E’,E,’beta’,beta,’f_s’,1);
481 end
482
483 function add_actuation(num_cable,cable_l_0_seq,T,POSITION)
484 add_block(’my_lib/Linear interpolation of periodically sampled values’,...
485 [gcs,[’/l0_’, num_cable]],...
486 ’Position’, [10,...
487 250 + POSITION.y_level-POSITION.size_half_large(2),...
488 10 + 2*POSITION.size_half_large(1),...
489 250 + POSITION.y_level+POSITION.size_half_large(2)],...
490 ’Orientation’,0,’vector’, [’[’, cable_l_0_seq, ’]’],’period’,T);
491 add_line(gcs,[’l0_’, num_cable, ’/1’],[’m’, num_cable, ’/1’]);
492 end
493
494 function bool_added = add_nodal_sensor(node,POSITION,parent_name)
495 bool_added = 0;
496 sensor_exist = find_system(gcs,’Name’,[’Sensor_’, num2str(node)]);
497 if isempty(sensor_exist)
498 add_block(’my_lib/Position sensor’, [gcs,’/Sensor_’, num2str(node)],...
499 ’Position’, [POSITION.x_level_sensor-POSITION.size_half_small(1),...
500 70-POSITION.size_half_small(2),...
501 POSITION.x_level_sensor+POSITION.size_half_small(1),...
502 70+POSITION.size_half_small(2)],...
503 ’Orientation’,0);
504 add_line(gcs,[’Sensor_’, num2str(node), ’/LConn1’],’Conf/RConn1’);
505 add_line(gcs,[’Sensor_’, num2str(node), ’/RConn1’],[parent_name,’/RConn1’]);
506
507 add_block(’simulink/Sinks/To Workspace’, [gcs,’/toWS_’, num2str(node)],...
508 ’Position’, [POSITION.x_level_sensor-POSITION.size_half_small(1),...
509 10-POSITION.size_half_small(2),...
510 POSITION.x_level_sensor+POSITION.size_half_small(1),...
511 10+POSITION.size_half_small(2)],...
512 ’Orientation’,2,’VariableName’,[’position_’, num2str(node)],’SaveFormat’,’Array’);
513 add_line(gcs,[’Sensor_’, num2str(node), ’/1’],[’toWS_’, num2str(node), ’/1’]);
514 bool_added = 1;
515 end
516 end
517
518 function [members_used,nodes_used,end_nodes,...
519 strut_orient,missing_sph,strut_rot,POSITION] = ...
520 add_node(node,joints_planar,members_used,nodes_used,...
521 recurs_layer_nr,parent_name,parent_rot_1,parent_rot_2,POSITION,...
522 missing_sph,strut_rot,s_laying,end_nodes,strut_orient,strut,type,N,C,r,rho)
523
524 recurs_layer_nr = recurs_layer_nr + 1; % another recurence of the fcn ’add_node’

81

A. Appendices

525
526 struts_in_node = find(C(:,node));
527 struts_in_node = struts_in_node.*(-type(struts_in_node)+ones(length(struts_in_node),1));
528 struts_in_node = struts_in_node(find(struts_in_node)); % struts connected to the node
529 length_nodes_used = length(nodes_used(:,1)); % length of the vector nodes_used
530
531 bool_added = add_nodal_sensor(node,POSITION,parent_name); % try to add position sensor
532 if bool_added == 1
533 POSITION.x_level_sensor = POSITION.x_level_sensor + 4*POSITION.size_half_small(1);
534 end
535
536 if length(struts_in_node) >= 2 % more than 2 struts in the node
537 parent_member = str2double(strrep(parent_name,’M’,’’));
538 missing_sph(node) = parent_member;
539 else
540 missing_sph(node) = 0; % no sph. joints are missing in the node
541 end
542
543 for j = 1:length(struts_in_node) % through all struts in the node
544
545 current_member = struts_in_node(j); % current strut index
546 current_member_nodes = strut([2,6],current_member); % indices of strut’s nodes
547
548 if isempty(find(members_used == current_member)) % strut not added to model yet
549
550 if (recurs_layer_nr == 1)...
551 || ((isempty(find(joints_planar == current_member_nodes(1)))) &&...
552 (isempty(find(joints_planar == current_member_nodes(2)))))
553
554 missing_sph(node) = 0;
555
556 members_used = [members_used;current_member];
557
558 if recurs_layer_nr ˜= 1 % not 1st recurence of fcn ’add_node’
559
560 POSITION.x_level = POSITION.x_level - 2*POSITION.x_gap_small;
561 name = [’/Rot-’, num2str(current_member)];
562 add_rot_2(name,POSITION,"" + (-parent_rot_2),"" + (-parent_rot_1)); % realize reverse rot.
563 POSITION.x_level = POSITION.x_level + 2*POSITION.x_gap_small;
564
565 POSITION.x_level = POSITION.x_level - POSITION.x_gap_small;
566 lib_path = ’sm_lib/Joints/Spherical Joint’;
567 name = [’/Sph’, num2str(current_member)];
568 add_joint(name,POSITION,lib_path,0); % add spherical joint
569 POSITION.x_level = POSITION.x_level + POSITION.x_gap_small;
570
571 end
572
573 if node == strut(2,current_member) % the node is start node of the member
574 first = N(:,current_member_nodes(1));
575 second = N(:,current_member_nodes(2));
576 strut_orient(current_member) = 1;
577 else
578 first = N(:,current_member_nodes(2));
579 second = N(:,current_member_nodes(1));
580 strut_orient(current_member) = -1;
581 end
582 rot_1 = atan2((second(1) - first(1)),(second(3) - first(3)))*180/pi; % precession angle
583 rot_2 = -asin((second(2) - first(2))/norm(first - second))*180/pi; % nutation angle
584
585 name = [’/Rot’, num2str(current_member)];
586 add_rot(name,POSITION,"" + rot_1,"" + rot_2); % realize absolute rotation
587 strut_rot(current_member,1) = rot_1; % save the value of precession angle
588 strut_rot(current_member,2) = rot_2; % save the value of nutation angle
589
590 POSITION.x_level = POSITION.x_level + POSITION.x_gap_small;

82

A. Appendices

591 name = [’/M’, num2str(current_member)];
592 add_strut(name,POSITION,strut(10,current_member),r,rho); % add strut
593
594 if recurs_layer_nr ˜= 1
595 add_line(gcs,[’Rot’, num2str(current_member), ’/RConn1’],...
596 [’M’, num2str(current_member), ’/LConn1’]);
597 add_line(gcs,[’Rot’, num2str(current_member), ’/LConn1’],...
598 [’Sph’, num2str(current_member), ’/RConn1’]);
599 add_line(gcs,[’Sph’, num2str(current_member), ’/LConn1’],...
600 [’Rot-’,num2str(current_member), ’/RConn1’]);
601 add_line(gcs,[’Rot-’,num2str(current_member), ’/LConn1’],...
602 [parent_name, ’/RConn1’]);
603 else
604 add_line(gcs,[’Rot’, num2str(current_member), ’/RConn1’],...
605 [’M’, num2str(current_member), ’/LConn1’]);
606 add_line(gcs,[’Rot’, num2str(current_member),’/LConn1’],...
607 [parent_name, ’/RConn1’]);
608 end
609
610 POSITION.x_level = POSITION.x_level - POSITION.x_gap_small;
611 POSITION.y_level = POSITION.y_level + POSITION.y_gap;
612
613 parent_name_inner = [’M’, num2str(current_member)]; % save strut’s name for its followers
614
615 % first or second node of strut has been added now?
616 if current_member_nodes(1) == nodes_used(length_nodes_used)
617 if isempty(find(s_laying == current_member))
618 nodes_used = [nodes_used;current_member_nodes(2)];
619 end
620 % add second node of strut
621 [members_used,nodes_used,end_nodes,...
622 strut_orient,missing_sph,strut_rot,POSITION] = ...
623 add_node(current_member_nodes(2),joints_planar,members_used,nodes_used,...
624 recurs_layer_nr,parent_name_inner,rot_1,rot_2,POSITION,...
625 missing_sph,strut_rot,s_laying,end_nodes,strut_orient,strut,type,N,C,r,rho);
626 else
627 if isempty(find(s_laying == current_member))
628 nodes_used = [nodes_used;current_member_nodes(1)];
629 end
630 % add first node of strut
631 [members_used,nodes_used,end_nodes,...
632 strut_orient,missing_sph,strut_rot,POSITION] = ...
633 add_node(current_member_nodes(1),joints_planar,members_used,nodes_used,...
634 recurs_layer_nr,parent_name_inner,rot_1,rot_2,POSITION,...
635 missing_sph,strut_rot,s_laying,end_nodes,strut_orient,strut,type,N,C,r,rho);
636 end
637 end
638 end
639 end
640
641 end

83

